JPH06260166A - Nickel electrode for alkaline storage battery - Google Patents

Nickel electrode for alkaline storage battery

Info

Publication number
JPH06260166A
JPH06260166A JP5069323A JP6932393A JPH06260166A JP H06260166 A JPH06260166 A JP H06260166A JP 5069323 A JP5069323 A JP 5069323A JP 6932393 A JP6932393 A JP 6932393A JP H06260166 A JPH06260166 A JP H06260166A
Authority
JP
Japan
Prior art keywords
electrode
nickel
cobalt
active material
nickel hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5069323A
Other languages
Japanese (ja)
Inventor
Masaharu Watada
正治 綿田
Yuichi Matsumura
勇一 松村
Noboru Miyake
登 三宅
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP5069323A priority Critical patent/JPH06260166A/en
Publication of JPH06260166A publication Critical patent/JPH06260166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a nickel electrode for alkaline storage battery which ensures a high rate of service, prevention of the electrode from wet swelling, prolongation of the lifetime, and enhancement of the high temp. performance by including copper, silver, or compound thereof in nickel hydroxide which is the main active material for the positive electrode, and also mixing cobalt compound with it. CONSTITUTION:Cobalt compound added to nickel hydroxide as main active material is dissolved and dispersed as cobalt complex ions in an alkaline electrolytic solution and re-educed as an active cobalt hydroxide film on the surfaces of nickel hydroxide particles. In charging thereafter, it is turned into electroconductive oxy cobalt hydroxide (CoOOH), and as a result, the active material particles and an electricity collector are connected microscopically through a conductive network of CoOOH, so that the discharge depth is as deep as near NiO1.0 to ensure an increased rate of service. Formation of the network disperse the discharge current uniformly, so that production of gamma-NiOOH resulting from unevenness of the current density can be suppressed effectively, and the electrode is prevented from wet swelling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル・カドミウム
電池やニッケル金属水素化物電池等に用いられるアルカ
リ蓄電池用ニッケル電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel electrode for an alkaline storage battery used in a nickel-cadmium battery or a nickel metal hydride battery.

【0002】[0002]

【従来の技術】ニッケル電極の理想的な充放電反応は放
電生成物を水酸化ニッケルNi(OH)2 とし、充電生
成物をオキシ水酸化ニッケルNiOOHとする均一固相
反応であり、ニッケルの酸化値は充放電に伴い2価(N
iO1 0 )と3価(NiO15 )の間を連続的に変
化する。また、オキシ水酸化ニッケルにはβ型(β−N
iOOH)とγ型(γ−NiOOH)が存在し、γ型は
β型よりも低密度な酸化物であるために、γ型の生成は
ニッケル電極の膨潤(電極厚みの増大)の原因となるこ
とが知られている。
2. Description of the Related Art The ideal charge / discharge reaction of a nickel electrode is a homogeneous solid-phase reaction in which the discharge product is nickel hydroxide Ni (OH) 2 and the charge product is nickel oxyhydroxide NiOOH. The value is divalent (N
i0 1 . 0) and trivalent (NiO 1. 5) varies between continuously. In addition, nickel oxyhydroxide has β-type (β-N
iOOH) and γ-type (γ-NiOOH) exist, and γ-type is an oxide having a lower density than β-type, so the generation of γ-type causes swelling of the nickel electrode (increased electrode thickness). It is known.

【0003】ニッケル電極の活物質の利用率は、オキシ
水酸化ニッケル(NiO1 5 )がどの程度放電される
か、即ちその放電深度によって通常決定される。その理
由は、充電過程ではオキシ水酸化ニッケルがある程度の
導電性を持つために容易にNiO1 5 まで酸化される
のに対して、放電過程では、水酸化ニッケルが絶縁物で
あるために放電末期に急激に導電性が低下し.Ni
1 0 まで深く放電するのが非常に困難となるためで
ある。従来のニッケル電極では、放電深度を上げるため
に、ニッケル粉末やカーボン粉末などの導電助剤の添加
や、金属粉末焼結体基板などが用いられている。しかし
ながら、従来 最も導電性および集電性に優れていると
言われるニッケル粉末焼結式電極においても、その放電
深度はNiO1 1 に留まり、利用率も80%である。
また、高多孔度の金属多孔体基板に活物質を充填する非
焼結式電極(ペースト式電極)においては、更に放電深
度は低下し50〜60%の低い利用率を示すに留まる
が、アルカリ溶液に可溶なコバルト化合物の添加によっ
て、利用率の向上が計られている。
[0003] utilization of the active material of the nickel electrode, or nickel oxyhydroxide (NiO 1. 5) is how much discharge, that is, usually determined by the depth of discharge. The reason is that since nickel oxyhydroxide has some conductivity in the charging process, NiO 1 . In contrast to being oxidized up to 5 , in the discharge process, since nickel hydroxide is an insulator, the conductivity drops sharply at the end of discharge. Ni
O 1 . This is because it becomes very difficult to discharge deeply to 0 . In the conventional nickel electrode, in order to increase the depth of discharge, the addition of a conductive auxiliary agent such as nickel powder or carbon powder, or a metal powder sintered body substrate is used. However, even in the nickel powder sintered electrode, which has been said to have the most excellent conductivity and current collecting property, the depth of discharge is NiO 1 . It remains at 1 , and the utilization rate is 80%.
In addition, in a non-sintered electrode (paste electrode) in which a porous metal substrate having a high porosity is filled with an active material, the depth of discharge is further reduced and the utilization rate is as low as 50 to 60%. The utilization rate has been improved by adding a cobalt compound that is soluble in the solution.

【0004】ニッケル電極の膨潤は、寿命の低下や電極
間の短絡、電解液の偏在による容量低下などを引き起
し、その原因は、前述のように、充電末期に生成する低
密度なγ−NiOOHにあることが知られている。従
来、このγ−NiOOHの生成を防止するために、カド
ミウムが水酸化ニッケルの結晶中に固溶状態で添加され
ていたが、最近では環境保全の観点から、亜鉛がカドミ
ウムに替わる無害な代替元素として主に添加されてい
る。
The swelling of the nickel electrode causes a decrease in life, a short circuit between the electrodes, and a decrease in capacity due to uneven distribution of the electrolytic solution. The cause thereof is, as described above, the low density γ- produced at the end of charging. It is known to be in NiOOH. Conventionally, in order to prevent the production of this γ-NiOOH, cadmium has been added in a solid solution state in the crystals of nickel hydroxide, but recently, from the viewpoint of environmental protection, zinc is a harmless alternative element that replaces cadmium. It is mainly added as.

【0005】このように、ニッケル電極の実用化におけ
る重要な課題は、放電深度をより深くするための導電助
剤の開発(利用率の向上)と電極膨潤の防止、即ちγ−
NiOOHの生成防止のための無公害な添加剤の開発
(長寿命化)にあるが、従来コバルト化合物と亜鉛の組
合わせ以外に効果的なものは見出されていない。
As described above, the important problems in the practical application of the nickel electrode are the development of a conductive auxiliary agent for improving the depth of discharge (improvement of utilization rate) and the prevention of electrode swelling, that is, γ-
The development of a pollution-free additive for preventing the generation of NiOOH (prolongation of the life) has been made, but conventionally, no effective additive has been found other than the combination of the cobalt compound and zinc.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記課題に鑑
みてなされたものであり、利用率が高く、電極膨潤を防
止した長寿命で、かつ高温性能の優れた無公害なアルカ
リ蓄電池用ニッケル電極を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a high utilization rate, a long life in which electrode swelling is prevented, and a nickel-free alkaline storage battery having excellent high-temperature performance. An electrode is provided.

【0007】[0007]

【課題を解決するための手段】本発明のニッケル電極
は、主活物質である水酸化ニッケルにIb族の遷移元素
である銅、銀あるいはその化合物を含有し、かつコバル
ト化合物を混合させたことを特徴とするものである。前
記の遷移元素は、その含有量が1〜10重量%であり、
水酸化ニッケルの結晶中で固溶状態にある。また、前記
の化合物は酸化物あるいは水酸化物である。更に、Ib
族の遷移元素以外にコバルトが水酸化ニッケルの結晶中
で固溶状態にある。
In the nickel electrode of the present invention, nickel hydroxide, which is the main active material, contains copper, silver or a compound thereof, which is a transition element of Group Ib, and is mixed with a cobalt compound. It is characterized by. The transition element has a content of 1 to 10% by weight,
It is in a solid solution state in the nickel hydroxide crystal. The compound is an oxide or hydroxide. Furthermore, Ib
In addition to the transition elements of group III, cobalt is in solid solution in the nickel hydroxide crystal.

【0008】[0008]

【作 用】主活物質である水酸化ニッケルに添加された
コバルト化合物は、アルカリ電解液にコバルト錯イオン
HCoO2 1 として溶解・分散した後、水酸化ニッケ
ル粒子表面に活性な水酸化コバルト被膜とし再析出する
性質を持っており、その後の充電において、導電性のオ
キシ水酸化コバルト(CoOOH)に変化する。その結
果、活物質粒子と集電体間がCoOOHの導電性ネット
ワークで微視的に接続されるために、放電深度がNiO
1 0 付近まで可能となり、利用率を顕著に増大させる
作用がある。
[Create a cobalt compound added to the nickel hydroxide is a main active material is the alkaline electrolyte cobalt complex ion HCoO 2 - was dissolved and dispersed as 1, the active cobalt hydroxide coating the nickel hydroxide particle surface And has the property of re-precipitating, and changes to conductive cobalt oxyhydroxide (CoOOH) in the subsequent charging. As a result, the active material particles and the current collector are microscopically connected by the conductive network of CoOOH, so that the discharge depth is NiO.
1 . It becomes possible to be close to 0 , which has the effect of significantly increasing the utilization rate.

【0009】電極膨潤の原因であるγ−NiOOHは、
電流密度が高くなる程に生成され易い。前記の一酸化コ
バルト添加剤による導電性ネットワークの形成は、利用
率を向上させる以外にも、充電電流を均一に分散化する
ので、電流密度の不均一化に起因するγ−NiOOHの
生成を効果的に抑制する作用がある。しかしながら、電
極膨潤を完全に抑制するには、それ以外にも活物質自体
の改質を必要とする。従来、水酸化ニッケルの結晶中へ
のII族元素(亜鉛、カドミウム、マグネシウム等)の固
溶体添加は、活物質自体のγ−NiOOHの生成を抑制
することが知られているが、新たに、Ib族の遷移元素
である銅、銀の水酸化ニッケルの結晶中への固溶体添加
あるいはそれら化合物の添加によっても同様の作用があ
るのを見出した。
Γ-NiOOH, which is the cause of electrode swelling, is
The higher the current density, the easier it is to generate. The formation of the conductive network by the cobalt monoxide additive not only improves the utilization factor but also uniformly disperses the charging current, so that the formation of γ-NiOOH due to the non-uniformity of the current density is effective. It has the effect of suppressing. However, in order to completely suppress the swelling of the electrode, modification of the active material itself is required. Conventionally, addition of a solid solution of a Group II element (zinc, cadmium, magnesium, etc.) to nickel hydroxide crystals has been known to suppress the production of γ-NiOOH in the active material itself. It was found that the same effect can be obtained by adding a solid solution or a compound thereof to the crystal of nickel hydroxide of copper or silver which is a transition element of the group.

【0010】このように本発明によれば、Ib族の銅、
銀およびコバルト化合物の相乗作用によってγ−NiO
OHの生成を抑制して電極膨潤を効果的に防止し、かつ
活物質利用率の高く無公害なニッケル電極を得ることが
可能となる。また、銅、銀は完全な固溶状態にないと対
極に析出するおそれもあるが、前記コバルト化合物が水
酸化ニッケル粒子の表面に被膜を形成するので、そのお
それもない。
As described above, according to the present invention, copper of Group Ib,
Γ-NiO by the synergistic action of silver and cobalt compounds
It becomes possible to obtain a nickel electrode which suppresses the generation of OH, effectively prevents electrode swelling, and has a high utilization rate of the active material and no pollution. Further, copper and silver may be deposited on the counter electrode if they are not in a completely solid solution state, but since the cobalt compound forms a film on the surface of the nickel hydroxide particles, there is no such fear.

【0011】[0011]

【実施例】本発明の実施例を以下に説明する。本実施例
の水酸化ニッケルは、硫酸ニッケルに硫酸銅あるいは硝
酸銀の所定量を加えた水溶液に硫酸アンモニウムを添加
してアンミン錯体とし、水酸化ナトリウム水溶液を激し
く撹拌しながら滴下し、アルカリ度をpH11〜13に
制御することによって、銅あるいは銀を固溶した水酸化
ニッケル粒子を析出成長させて作製し、タップ密度が約
2g/mlの水酸化ニッケル粉末を得た。本実施例では、
銅、銀の含有量はそれぞれ5重量%とした。同様に比較
例として、無添加の水酸化ニッケル粉末を得た。
EXAMPLES Examples of the present invention will be described below. The nickel hydroxide of this example was added with ammonium sulfate to an aqueous solution of nickel sulfate to which a predetermined amount of copper sulfate or silver nitrate was added to form an ammine complex, and the aqueous sodium hydroxide solution was dropped with vigorous stirring to adjust the alkalinity to pH 11 to 11. By controlling the concentration to 13, nickel hydroxide particles in which copper or silver was solid-dissolved were deposited and grown to obtain nickel hydroxide powder having a tap density of about 2 g / ml. In this embodiment,
The contents of copper and silver were each set to 5% by weight. Similarly, as a comparative example, an additive-free nickel hydroxide powder was obtained.

【0012】これら水酸化ニッケル粉末に一酸化コバル
ト粉末(CoO)を10重量%混合し、カルボキシメチ
ルセルロースの増粘液にてペースト状とした後に、約9
5%の多孔度のニッケル繊維多孔体基板に所定量充填し
て、乾燥・加圧を行い本発明のニッケル電極を得た。
10% by weight of cobalt monoxide powder (CoO) was mixed with these nickel hydroxide powders, and the mixture was made into a paste with a thickening solution of carboxymethyl cellulose.
A nickel fiber porous body substrate having a porosity of 5% was filled in a predetermined amount, dried and pressed to obtain a nickel electrode of the present invention.

【0013】ここで、銅あるいは銀を固溶体添加した水
酸化ニッケル粉末に一酸化コバルト粉末を混合した活物
質を充填した本発明のニッケル電極をそれぞれ電極
(A)と電極(B)とする。また、比較電極として、無
添加の水酸化ニッケル粉末に一酸化コバルト粉末を混合
した活物質を充填したものを電極(C)、銅を固溶体添
加した水酸化ニッケル粉末のみを充填したものを電極
(D)、無添加の水酸化ニッケル粉末のみを充填したも
のを電極(E)とする。
Here, the nickel electrodes of the present invention filled with an active material prepared by mixing nickel hydroxide powder containing copper or silver as a solid solution with cobalt monoxide powder will be referred to as electrodes (A) and (B), respectively. Further, as a reference electrode, an electrode (C) filled with an active material obtained by mixing undoped nickel hydroxide powder with cobalt monoxide powder, and an electrode filled with only nickel hydroxide powder added with copper as a solid solution ( D), the electrode (E) is filled with only nickel hydroxide powder without any additive.

【0014】これら各種のニッケル電極の活物質の利用
率および電極膨潤を調べるために、カドミウム電極を相
手極としてセパレーターを介して開放形セルを構成し、
6N水酸化カリウム水溶液の電解液中で充放電を行っ
た。前記の一酸化コバルトによる均一な導電性ネットワ
ークを形成させるために、電解液中にて3日間放置した
後に初充電を行った。充電は0.1C率で公称容量の1
50%まで行い、放電は0.2C率で酸化水銀参照電極
に対して0Vまでとした。また、5℃にて0.5Cの充
電率で過充電を行い、電極膨潤の原因であるγ−NiO
OHの生成率にて評価した。γ−NiOOHの生成率
は、活物質の粉末X線回折にて計測した。
In order to examine the utilization rate of the active material and the electrode swelling of these various nickel electrodes, an open type cell is constructed with a cadmium electrode as a counter electrode through a separator,
Charging and discharging were performed in an electrolytic solution of a 6N potassium hydroxide aqueous solution. In order to form a uniform conductive network of cobalt monoxide, it was left in the electrolytic solution for 3 days and then initially charged. Charging is at a rate of 0.1C and is 1 of the nominal capacity
The discharge was performed up to 50%, and the discharge was performed at a rate of 0.2 C up to 0 V with respect to the mercury oxide reference electrode. In addition, overcharging was performed at a charge rate of 0.5 C at 5 ° C., and γ-NiO, which causes electrode swelling,
It was evaluated by the production rate of OH. The production rate of γ-NiOOH was measured by powder X-ray diffraction of the active material.

【0015】各種のニッケル電極の活物質利用率および
放電末期のニッケル酸化値(NiOX 式のX値)の測定
結果を表1に示す。利用率は、水酸化ニッケルの充填量
から計算した理論容量値に対する実際の放電容量値の比
率として算出した。
Table 1 shows the measurement results of the active material utilization rate of various nickel electrodes and the nickel oxidation value ( X value of NiO X formula) at the end of discharge. The utilization factor was calculated as the ratio of the actual discharge capacity value to the theoretical capacity value calculated from the filling amount of nickel hydroxide.

【0016】 [0016]

【0017】本発明の電極(A)と(B)および比較例
(C)は、比較例(D)と(E)に対して高い利用率を
示し、かつ、放電深度もニッケル酸化値1.0〜1.1
の深い領域まで達しているのがわかる。また、充電末期
のニッケル酸化値の測定結果では、本発明電極(A)と
(B)は1.5前後であるのに対して、比較例(D)と
(E)では1.6以上の値を示し高次酸化物であるγ−
NiOOHの生成を来たした。比較例(C)においても
少しその傾向が認められた。このように、活物質への一
酸化コバルト粉末の添加は、利用率の向上に対して必要
不可欠であることがわかる。
The electrodes (A) and (B) and the comparative example (C) of the present invention have a high utilization rate with respect to the comparative examples (D) and (E), and the discharge depth is 1. 0-1.1
You can see that it has reached a deeper area. Further, in the measurement result of the nickel oxidation value at the end of charging, the electrodes (A) and (B) of the present invention were about 1.5, while the comparative examples (D) and (E) showed 1.6 or more. Γ- which is a high-order oxide
The production of NiOOH came. Even in Comparative Example (C), such a tendency was recognized. Thus, it is understood that the addition of the cobalt monoxide powder to the active material is indispensable for improving the utilization rate.

【0018】次に、電極膨潤の原因であるγ−NiOO
Hの生成率と充電量との関係を図1に示す。本発明電極
(A)は、比較例に対して、過充電領域においてもγ−
NiOOHの生成を効果的に抑制するのがわかる。γ−
NiOOHの生成防止の効果は、本発明電極(A)が最
も優れており、次いで一酸化コバルト粉末を添加した比
較例(C)、次いで銅を固溶体添加した水酸化ニッケル
粉末のみを充填した比較例(D)、次いで水酸化ニッケ
ル粉末のみを充填した比較例(E)の順であった。ま
た、電極(B)は電極(A)と同様であった。これらの
ことは、γ−NiOOHの生成防止には、Ib族の遷移
元素を水酸化ニッケルの結晶中に固溶体添加して活物質
自体を改質し、かつ一酸化コバルト粉末の添加によって
活物質間に導電性ネットワークを形成させることが重要
であることを意味する。
Next, γ-NiOO which is the cause of electrode swelling
FIG. 1 shows the relationship between the H generation rate and the charge amount. The electrode (A) of the present invention has a γ-value even in the overcharge region as compared with the comparative example.
It can be seen that the production of NiOOH is effectively suppressed. γ-
Regarding the effect of preventing the generation of NiOOH, the electrode (A) of the present invention is the most excellent, and the comparative example (C) in which the cobalt monoxide powder is added next, and then the comparative example in which only the nickel hydroxide powder to which copper is added as a solid solution is filled (D) and then Comparative Example (E) in which only nickel hydroxide powder was filled. The electrode (B) was similar to the electrode (A). In order to prevent the formation of γ-NiOOH, the fact that the active material itself is modified by adding a solid solution of a transition element of the Ib group to the nickel hydroxide crystal, and the addition of cobalt monoxide powder between active materials This means that it is important to form a conductive network in.

【0019】尚、本実施例ではIb族の遷移元素の添加
量を5重量%としたが、1〜10重量%の範囲で効果を
持つ。また、Ib族の遷移元素を固溶体添加した水酸化
ニッケル粉末の替わりに、それらの化合物である酸化銅
や酸化銀を一酸化コバルト粉末と共に添加しても、前記
と同様の効果を得ることができる。
In this embodiment, the amount of the Ib group transition element added is 5% by weight, but it is effective in the range of 1 to 10% by weight. Further, instead of the nickel hydroxide powder to which the transition element of the Ib group is added as a solid solution, copper oxide or silver oxide, which is a compound thereof, may be added together with the cobalt monoxide powder to obtain the same effect as described above. .

【0020】また、実施例ではコバルト化合物としてC
oOを用いたが、他にα−Co(OH)2 又はβ−Co
(OH)2 を用いても同様の効果がある。
Further, in the examples, C was used as the cobalt compound.
Although oO was used, other than α-Co (OH) 2 or β-Co
The same effect can be obtained by using (OH) 2 .

【0021】更に、前記と同様の方法にて銅とコバルト
を同時に水酸化ニッケルの結晶中に固溶体添加した水酸
化ニッケル粉末に一酸化コバルト粉末を添加して作製し
本発明のニッケル電極(F)を作製した。コバルトの含
有量は3重量%とした。本発明電極(F)は、45℃の
高温領域における利用率の低下が小さく、比較例(C)
の63%(20℃の容量に対する比率)に対して、92
%と高い値を示した。高温性能の向上には、Ib族の遷
移元素とコバルトを同時に固溶体添加した水酸化ニッケ
ル粉末が有効であることがわかる。
Further, the nickel electrode (F) of the present invention was prepared by adding cobalt monoxide powder to nickel hydroxide powder in which copper and cobalt were simultaneously added as a solid solution in nickel hydroxide crystals in the same manner as described above. Was produced. The content of cobalt was 3% by weight. The electrode (F) of the present invention showed a small decrease in the utilization factor in the high temperature region of 45 ° C., and thus the comparative example (C)
Of 63% (ratio to capacity at 20 ° C) of 92
%, Which was a high value. It can be seen that nickel hydroxide powder in which a transition element of Group Ib and cobalt are simultaneously added as a solid solution is effective for improving the high temperature performance.

【0022】[0022]

【発明の効果】上述のように、本発明によれば、主活物
質である水酸化ニッケルにIb族の遷移元素である銅、
銀あるいはその化合物あるいはコバルトを同時に含有
し、かつ一酸化コバルト粉末を混合させることによっ
て、利用率が高く、電極膨潤を防止した長寿命で、かつ
高温性能に優れた無公害なアルカリ蓄電池用ニッケル電
極を提供することが出来るので、その工業的価値は極め
て大である。
As described above, according to the present invention, nickel hydroxide, which is the main active material, and copper, which is a transition element of the Ib group, are added.
A nickel electrode for a non-polluting alkaline storage battery, which contains silver or its compound or cobalt at the same time, and which is mixed with cobalt monoxide powder, has a high utilization rate, has a long service life that prevents electrode swelling, and has excellent high-temperature performance. , Its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と比較例のニッケル電極における充電量
とγ−NiOOHの生成比率の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a charge amount and a γ-NiOOH production ratio in nickel electrodes of the present invention and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Oshiya 6-6 Josaimachi, Takatsuki-shi, Osaka Yuasa Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極の主活物質である水酸化ニッケルに
Ib族の遷移元素である銅、銀あるいはその化合物を含
有し、かつコバルト化合物を混合させたことを特徴とす
るアルカリ蓄電池用ニッケル電極。
1. A nickel electrode for an alkaline storage battery, characterized in that nickel hydroxide, which is a main active material of a positive electrode, contains copper, silver, or a compound thereof, which is a transition element of Group Ib, and is mixed with a cobalt compound. .
【請求項2】 前記コバルト化合物が、CoO、α−C
o(OH)2 又はβ−Co(OH)2 である請求項1記
載のアルカリ蓄電池用ニッケル電極。
2. The cobalt compound is CoO or α-C.
The nickel electrode for an alkaline storage battery according to claim 1, which is o (OH) 2 or β-Co (OH) 2 .
【請求項3】 前記Ib族の遷移元素の含有量が、1〜
10重量%であり、該元素が水酸化ニッケルの結晶中で
固溶状態にある請求項1記載のアルカリ蓄電池用ニッケ
ル電極。
3. The content of the transition element of Group Ib is 1 to
The nickel electrode for an alkaline storage battery according to claim 1, wherein the content is 10% by weight, and the element is in a solid solution state in the crystal of nickel hydroxide.
【請求項4】 前記Ib族の化合物が、酸化物あるいは
水酸化物である請求項1記載のアルカリ蓄電池用ニッケ
ル電極。
4. The nickel electrode for an alkaline storage battery according to claim 1, wherein the group Ib compound is an oxide or a hydroxide.
【請求項5】 Ib族の遷移元素以外にコバルトが水酸
化ニッケルの結晶中で固溶状態にある請求項1記載のア
ルカリ蓄電池用ニッケル電極。
5. The nickel electrode for an alkaline storage battery according to claim 1, wherein cobalt other than the transition element of Group Ib is in a solid solution state in nickel hydroxide crystals.
JP5069323A 1993-03-03 1993-03-03 Nickel electrode for alkaline storage battery Pending JPH06260166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5069323A JPH06260166A (en) 1993-03-03 1993-03-03 Nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5069323A JPH06260166A (en) 1993-03-03 1993-03-03 Nickel electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH06260166A true JPH06260166A (en) 1994-09-16

Family

ID=13399234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5069323A Pending JPH06260166A (en) 1993-03-03 1993-03-03 Nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH06260166A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0721229A1 (en) * 1994-12-19 1996-07-10 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method of producing Ni/Co hydroxide active mass for positive electrode
EP1116287A4 (en) * 1998-08-17 2003-04-02 Ovonic Battery Co Composite positive electrode material and method for making same
KR100373721B1 (en) * 1995-11-17 2003-04-26 삼성에스디아이 주식회사 Nickel electrode active material and nickel electrode using the same
US6740451B2 (en) * 2001-12-20 2004-05-25 The Gillette Company Gold additive for a cathode including nickel oxyhydroxide for an alkaline battery
US7315633B2 (en) 2002-11-07 2008-01-01 Sony Corporation Fingerprint processing apparatus, fingerprint processing method, recording medium and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0721229A1 (en) * 1994-12-19 1996-07-10 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method of producing Ni/Co hydroxide active mass for positive electrode
US5759718A (en) * 1994-12-19 1998-06-02 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method for making same
KR100373721B1 (en) * 1995-11-17 2003-04-26 삼성에스디아이 주식회사 Nickel electrode active material and nickel electrode using the same
EP1116287A4 (en) * 1998-08-17 2003-04-02 Ovonic Battery Co Composite positive electrode material and method for making same
US6740451B2 (en) * 2001-12-20 2004-05-25 The Gillette Company Gold additive for a cathode including nickel oxyhydroxide for an alkaline battery
US7315633B2 (en) 2002-11-07 2008-01-01 Sony Corporation Fingerprint processing apparatus, fingerprint processing method, recording medium and program

Similar Documents

Publication Publication Date Title
US4844999A (en) Nickel electrode for alkaline battery and battery using said nickel electrode
US4985318A (en) Alkaline battery with a nickel electrode
JP4454052B2 (en) Method for producing nickel electrode active material for alkaline storage battery, and method for producing nickel positive electrode
JPH0982319A (en) Positive active material for alkaline storage battery and manufacture thereof
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP2002056844A (en) Method of manufacturing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JPH11111330A (en) Nickel-hydrogen storage battery
JPS6196666A (en) Alkaline zinc storage battery
JPH09115543A (en) Alkaline storage battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JP3454274B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH0685325B2 (en) Active material for nickel electrode, nickel electrode and alkaline battery using the same
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3332488B2 (en) Nickel-hydrogen alkaline storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPH0568068B2 (en)
JPH0817434A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode
JPH06318455A (en) Nickel-hydrogen battery
JP2846673B2 (en) Method for producing zinc electrode for alkaline storage battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JPH09245827A (en) Manufacture of alkaline storage battery
JPH073793B2 (en) Alkaline zinc storage battery
JPH10284072A (en) Manufacture of alkaline storage battery