JPS6196666A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPS6196666A
JPS6196666A JP59217002A JP21700284A JPS6196666A JP S6196666 A JPS6196666 A JP S6196666A JP 59217002 A JP59217002 A JP 59217002A JP 21700284 A JP21700284 A JP 21700284A JP S6196666 A JPS6196666 A JP S6196666A
Authority
JP
Japan
Prior art keywords
oxide
zinc
thallium
indium
additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59217002A
Other languages
Japanese (ja)
Other versions
JPH0582023B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Yoshiki Fujiwara
藤原 孝樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59217002A priority Critical patent/JPS6196666A/en
Publication of JPS6196666A publication Critical patent/JPS6196666A/en
Publication of JPH0582023B2 publication Critical patent/JPH0582023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an alkaline zinc storage battery having long cycle life by specifying the kind and the amount of additives of a zinc electrode. CONSTITUTION:Oxides or hydroxides of indium and thallium, and at least one oxide or hydroxide selected from a metal group comprising gallium, cadmium, lead, tin, bismuth and mercury are contained in a zinc electrode as additives. The total amount of additives is limited to 1-15wt% of the zinc electrode. Preferably, the content of oxides or hydroxides of indium and thallium is specified to 1/6-1/9 of the oxide or hydroxide selected from the metal group. By this mixing ratio, the uneven distribution of indium and thallium is suppressed and inactiveness of zinc active material is also suppressed.

Description

【発明の詳細な説明】 (イ1 産業上の利用分野 本発明はニッケルー亜鉛蓄電池、銀−亜鉛蓄電池などの
ように負極活物質とし1亜鉛を用いるアルカリ亜鉛蓄電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to an alkaline zinc storage battery using zinc as the negative electrode active material, such as a nickel-zinc storage battery or a silver-zinc storage battery.

(ロ)従来の技術 負極活物質としての亜鉛は単位型@あたりのエネルギー
密度が大き、く且つ安価である利点を有する反面、放電
時に亜鉛がアルカリ電解液中に溶出し1亜鉛酸イオンと
なり充電時L′−この亜鉛酸イオンが亜鉛極表面に樹枝
状あるいは海綿状に電析するため、充放tk繰り返すと
電析亜鉛がセパレータti通して対極に接して内部短絡
を惹起するためサイクル寿命が短い欠点がある。
(b) Conventional technology Zinc as a negative electrode active material has the advantage of having a high energy density per unit type and being inexpensive, but on the other hand, zinc dissolves into the alkaline electrolyte during discharge and becomes one zincate ion during charging. At time L', these zincate ions are deposited on the surface of the zinc electrode in a dendritic or spongy form, so when charging and discharging tk are repeated, the deposited zinc comes into contact with the counter electrode through the separator ti, causing an internal short circuit, which shortens the cycle life. There is a short drawback.

このサイクル寿命を改善するために各種の金属めるいは
金属酸化物または水酸化物を亜鉛極中に滴加することが
提案されている。この亜鉛極への淳加物として特公昭5
1−56450号公報では水酸化インジウムまたは酸化
インジウムが、また特願昭58−62634号公報では
タリウムの酸化物ま九は水酸化物に加えインジウムの酸
化物または水酸化物を添カロ物として亜鉛極に添加する
ことが提案されている。インジウム及びタリウムは水素
過電圧が病く且つ亜鉛の酸化還元電位より貴でらるため
亜鉛の樹枝状結晶の発生を抑制し極板変形を抑えること
ができ、また、インジウム及びタリウムの酸化物またげ
水酸化物を姶那した亜鉛極ttSえた電池はインジウム
の添加によりタリウムの電解液中への溶解が抑えられる
のでサイクル寿命の大巾な向上がみらfi7’(、Lか
しながら、インジウム及びタリウムの酸化物または水酸
化物を添)Jilしfce鉛極を用いても長期にわたる
充放電サイクルを行なうと、亜鉛活物質だけてなくイン
ジウム及びタリウムも充放電に関与しそれらの分布が偏
在化すると共に亜鉛活物質の不活性化が進行して「寵極
の有効反応面積が減少し電池答1が低下した。
In order to improve this cycle life, it has been proposed to drop various metals, metal oxides or hydroxides into the zinc electrode. As a supplement to this zinc electrode,
In Japanese Patent Application No. 1-56450, indium hydroxide or indium oxide is used, and in Japanese Patent Application No. 58-62634, thallium oxide is used as a zinc hydroxide and indium oxide or hydroxide as a caloric compound. It has been proposed to add it to the pole. Indium and thallium have a high hydrogen overvoltage and are nobler than the oxidation-reduction potential of zinc, so they can suppress the formation of zinc dendrites and suppress plate deformation. Batteries with zinc electrodes containing hydroxide have significantly improved cycle life because the addition of indium suppresses the dissolution of thallium into the electrolyte. Even if a lead electrode (with thallium oxide or hydroxide) is used, if a long charge/discharge cycle is performed, not only the zinc active material but also indium and thallium will be involved in charge/discharge, and their distribution will become uneven. At the same time, the deactivation of the zinc active material progressed, and the effective reaction area of the main electrode decreased, resulting in a decrease in battery resistance.

(ハ)・発明が解決しようとする問題点本考案は亜鉛極
の添加剤及び添加量を検討することによってインジウム
及びタリウムの酸化物!       または水酸化物
を亜鉛極に添加してなるアルカリ畜電池より、より長期
にわたるサイクル寿命を有するアルカリ亜鉛毎電池を得
ようとするものである。
(c) Problems to be solved by the invention This invention solves the problem of indium and thallium oxide by examining the additives and amounts added to the zinc electrode! Alternatively, it is an attempt to obtain an alkaline zinc battery having a longer cycle life than an alkaline battery formed by adding hydroxide to the zinc electrode.

に)問題点を解決するための手段 本発明によるアルカリ亜鉛蓄電池は添加剤としてのイン
ジウムの酸化物または水酸化物、タリウムの酸化物また
は水酸化物及びガリウム、カドミウム、鉛、錫、ビスマ
ス、水銀よりなる金属群から選ばれた少なくとも一種の
酸化物または水酸化物を含有する亜鉛極を備え、且つ前
記か加剤の総量が亜鉛極に対して1乃至15重量%のも
のであり、好ましくは前記金属群から選ばれた少なくと
も一種の酸化物に対する前記インジウム及びタリウムの
酸化物または水酸化物の配合比率が176乃至9のもの
である。
B.) Means for solving the problem The alkaline zinc storage battery according to the present invention contains as additives an oxide or hydroxide of indium, an oxide or hydroxide of thallium, and gallium, cadmium, lead, tin, bismuth, mercury. A zinc electrode containing at least one oxide or hydroxide selected from the metal group consisting of: and the total amount of the additives is 1 to 15% by weight based on the zinc electrode, preferably The blending ratio of the oxide or hydroxide of indium and thallium to at least one oxide selected from the metal group is 176 to 9.

(ホ)作 用 上記手段によってインジウム及びタリウムの分布の偏在
化が抑制されると共に亜鉛活物質の不活性化が抑制され
る。
(E) Effect The above means suppresses uneven distribution of indium and thallium, and also suppresses deactivation of the zinc active material.

(へ)実施例 酸化亜鉛粉末70重量%、亜鉛粉末20重量%、添加剤
としての酸化インジウム1.5重量%、酸化タリウム2
.5重量%及び酸化ガリウム1重量%・結着剤としての
フッ素樹脂粉末5重世のよりなる混合粉末に水を加えて
混練した後、ローラによりシート状にしたものを@など
よりなる集電体の両面に付着し加圧成型し乾燥して亜鉛
極を作製する。こうして作製された亜鉛極と公知の焼結
式ニッケル極とを組み合せて不発明のニッケルー亜鉛蓄
電池(Al’e組み立てた。第1図はこの電池(AJの
縦断面図であり、1)+は亜鉛極、(21はニッケル極
、(;う1はセパレータ、(4)は保液j−1(51は
電槽、(6)Fi電槽蓋、+71(81は主、負極端子
である。
(f) Example 70% by weight of zinc oxide powder, 20% by weight of zinc powder, 1.5% by weight of indium oxide as an additive, 2% of thallium oxide
.. 5% by weight of gallium oxide, 1% by weight of gallium oxide, and 5 layers of fluororesin powder as a binder, water is added and kneaded, and the resulting sheet is formed into a sheet using a roller. Zinc electrodes are produced by adhering to both sides of the electrode, press-molding, and drying. By combining the zinc electrode thus produced and a known sintered nickel electrode, an uninvented nickel-zinc storage battery (Al'e) was assembled. Zinc electrode, (21 is a nickel electrode, (1 is a separator, (4) is a liquid storage j-1 (51 is a battery case, (6) is a Fi tank lid, +71 (81 is a main and negative terminal).

また比較とじ℃上記実施例に於ける亜鉛極の添加剤を酸
化インジウム2重量%及び酸化タリウム6重量%に代え
、その他は同一の比較電池(ト)1を作製した。
In addition, a comparative battery (G) 1 was fabricated except that the additives in the zinc electrode in the above Example were replaced with 2% by weight of indium oxide and 6% by weight of thallium oxide.

第2図は本発明による電池(Atと比較電池の1のサイ
クル特性図である。サイクル条件は150mAで6時間
充電じた後、150ffiAで放電し電池電圧が1、O
vに達する時点で放電停止するものである。第2図から
明らかなように本発明による電池(Atは比較電池(B
lに比較してサイクル寿命が延びていることがわかる。
Figure 2 is a cycle characteristic diagram of a battery according to the present invention (At) and a comparative battery.The cycle conditions were to charge at 150mA for 6 hours, then discharge at 150ffiA, so that the battery voltage was 1, O
The discharge is stopped when the voltage reaches v. As is clear from FIG. 2, the battery according to the present invention (At is the comparative battery (B
It can be seen that the cycle life is longer than that of 1.

比較電池(Blの亜鉛極は充放電サイクルが長期になる
と添加剤のインジウム及びタリウムも充放電に関与し、
これら添加剤の分布が偏在化するため語加剤が存在しな
いところに亜鉛の樹枝状結晶が生長すると共に、活物質
の不活性化が進行して亜鉛極の有効反応面積が減少した
ため容量劣化が比較的早く起きたものと考えられる。一
方、本発明による電池(Alの亜鉛極は添加剤とし″C
前記酸化インジウム及び酸化タリウムに加えて酸化ガリ
ウムもか加していることにより、前記インジウム及びタ
リウムの分布の偏在化が抑制され、且つ亜鉛活物質の不
活性化も抑制され工疹加剤の添加効果が維持されたため
サイクル寿命が改善されたものと考えられる。
Comparative battery (Bl zinc electrode) When the charge/discharge cycle becomes long, the additives indium and thallium also participate in charge/discharge.
Due to the uneven distribution of these additives, zinc dendrites grow in areas where additives are not present, and the active material becomes inactivated, reducing the effective reaction area of the zinc electrode, resulting in capacity deterioration. It is thought that this happened relatively quickly. On the other hand, the battery according to the present invention (the zinc electrode of Al is used as an additive)
By adding gallium oxide in addition to the indium oxide and thallium oxide, uneven distribution of the indium and thallium is suppressed, and deactivation of the zinc active material is also suppressed. It is thought that the cycle life was improved because the effect was maintained.

゛次いで、添加剤の亜鉛極への添加量の総量について説
明する。
Next, the total amount of additives added to the zinc electrode will be explained.

酸化亜鉛粉末W重量%、亜鉛粉末15重ffi’%、添
加剤としての酸化インジウムX重量%、酸化タリウム7
重量%及び酸化ガリウム2重量%、添加剤とし工のフッ
素樹脂粉末5電量%とからなる混合粉本を、前記実施例
に於ける亜鉛極伶製時に用いた混合粉末に代え1使用し
、W、x%Y、Zの4if!を第1表の(7)乃至例の
ように変化させて同様にして電池を作製した。尚、添加
剤の配合比率はX/Y=1、(X+Y)/Z=4と条件
ヲ一定としている。酸化インジウムに対する酸化タリウ
ムの配合比率(T l 205 / I n 20 &
 )を1としたのは、範囲で艮好なサイクル寿命が得ら
れたためである。
Zinc oxide powder W wt%, zinc powder 15 wtffi'%, indium oxide X wt% as additive, thallium oxide 7
A mixed powder consisting of 2% by weight of gallium oxide and 5% by weight of fluororesin powder as an additive was used in place of the mixed powder used when manufacturing the zinc pole in the above example, and W ,x%Y,Z 4if! Batteries were produced in the same manner by changing the values as shown in (7) to Examples in Table 1. Note that the mixing ratio of the additives is kept constant: X/Y=1, (X+Y)/Z=4. Mixing ratio of thallium oxide to indium oxide (T l 205 / I n 20 &
) was set to 1 because a good cycle life was obtained within the range.

第3図はこれら電池を用い亜鉛極の添加剤の総量(酸化
インジウム、酸化タリウム及び酸化ガリウムの総重量%
)に対する電池のサイクル寿命を測定したときの結果を
示す図面であり、前述したサイクル条件で充放電を繰り
返し、放電容量が初期容量の50%に到達した時点で充
放電サイクルを終了しサイクル寿命とした。第5図から
明らかなように添加剤の総量が1乃至15重量%の′電
池のサイクル寿命が長く良好であることがわかる。
Figure 3 shows the total amount of additives (total weight percent of indium oxide, thallium oxide, and gallium oxide) in the zinc electrode using these batteries.
) is a drawing showing the results of measuring the cycle life of a battery, where charging and discharging are repeated under the above-mentioned cycle conditions, and when the discharge capacity reaches 50% of the initial capacity, the charging and discharging cycle is terminated and the cycle life is determined. did. As is clear from FIG. 5, it can be seen that the battery containing additives in a total amount of 1 to 15% by weight has a long cycle life and is good.

また更に添加剤の配合比率及び酸化インジウム及び酸化
タリウムと共に添加する酸化カリウムと同様な効果を有
する金属酸化物について以下に説明する。
Furthermore, the blending ratio of additives and the metal oxide that has the same effect as potassium oxide added together with indium oxide and thallium oxide will be explained below.

■ 酸化亜鉛粉末80重量%、亜鉛粉末10i量%、添
加剤としての酸化インジウム1重lJ$、酸化タリウム
yM*%及び酸化ガリウムzNt%、結着剤としてのフ
ッ素樹脂粉末5重量%とかうなる混合粉末を用い、添加
剤の総量を5重量%とじてx、y、zの値を第2表のC
コ1乃至圀のように変化させて前述と同様に亜鉛極を作
製すると共にこの亜鉛極を用いて同様の操作で電池を組
み立てた。
■ A mixture of 80% by weight of zinc oxide powder, 10% by weight of zinc powder, 1 J$ of indium oxide as an additive, yM*% of thallium oxide and zNt% of gallium oxide, and 5% by weight of fluororesin powder as a binder. Using powder, the values of x, y, and z are determined by C in Table 2, with the total amount of additives being 5% by weight.
Zinc electrodes were prepared in the same manner as described above by changing the conditions as shown in FIGS.

この電池を(alとする。Let this battery be (al).

第2表 ■ 前記電池(alに於ける酸化ガリウムに代えて鹸化
カドミウムを用い、その他は同一の電池(bl i作製
した。
Table 2 (2) The same battery (bli) was prepared except that saponified cadmium was used instead of gallium oxide in the above battery (al).

■ 簡記電池(L)に於ける酸化ガリウムに代えて酸化
鉛を用いその他は同一の電池letを作製した。
(2) A battery (let) was produced which was the same as the simple battery (L) except that lead oxide was used instead of gallium oxide.

(◇ 前記電池(atに於ける酸化カリウムに代えて酸
化錫を用い、その他は同一の電池(diを作製した。
(◇ A battery (di) was fabricated using tin oxide instead of potassium oxide in the battery (at), which was otherwise the same.

■ 前記電池(alに於ける酸化カリウムに代えて酸化
ビスマスを用い、その他は同一の電池re)′(e作製
した。
(2) A battery (re)'(e) was fabricated using bismuth oxide instead of potassium oxide in the battery (al), but otherwise the same battery.

■) 簡紀電池(alに於ける酸化ガリウムに代え1酸
化水銀を用い、その他は同一の電池(/′1を作製した
(2) A simple battery (/'1 was prepared using mercury monoxide instead of gallium oxide in the Al, but otherwise the same battery).

第4図はこれら′心電(al乃至φの亜鉛極の添加剤の
配合比率〔酸化ガリウム等の前記金属酸化物のt(zl
に対する酸化インジウム及び酸化タリウムの総−j(x
+y )の配合比〕に対する’tT1池のサイクル寿命
を示す図面であり、前述と同様の操イfでサイクル寿命
を決定した。第4因から亜鉛極に酸化インジウム及び酸
化タリウムに加えぼ化ガリウムを添加した電池(alと
同様に、酸化ガリウムに代え各種金属酸化物を添加した
電池(bl乃至(/1のサイクル寿命が向上したことが
わかる。これにより鹸化カドミウム、酸化鉛、酸化錫、
酸化ビスマス及び酸化水銀も酸化ガリウムと同じくイン
ジウム及びタリウムの分布の偏在化を抑制し且つ亜鉛活
物質の不活性化を抑制したものと考えら九る。また第4
図からこれら亜鉛極に用いられた添加剤の配合比率(X
+Y/z)は1A乃至9C範囲内て電池のサイクル寿命
が長く良好になることがわかる。
Figure 4 shows the blending ratio of additives for these 'electrocardiograms' (al to φ zinc electrodes [t(zl) of the metal oxides such as gallium oxide
The sum of indium oxide and thallium oxide for −j(x
This is a drawing showing the cycle life of the 'tT1 pond with respect to the mixing ratio of +y), and the cycle life was determined using the same operation f as described above. From the fourth factor, a battery in which gallium oxide is added to the zinc electrode in addition to indium oxide and thallium oxide (Similar to AL, a battery in which various metal oxides are added instead of gallium oxide (the cycle life of BL to (/1) is improved. This shows that saponified cadmium, lead oxide, tin oxide,
It is believed that bismuth oxide and mercury oxide, like gallium oxide, suppressed the uneven distribution of indium and thallium and also suppressed the inactivation of the zinc active material. Also the fourth
From the figure, the blending ratio of additives used in these zinc electrodes (X
+Y/z), it can be seen that the cycle life of the battery is long and good within the range of 1A to 9C.

尚、上記実施か1では添加剤を酸化物の形1;i%−’
(亜鉛極に添加したが、水酸化物の形態で油剤しても同
様の効果が得られる。
In addition, in the above implementation 1, the additive is in the oxide form 1; i%-'
(Although it was added to the zinc electrode, the same effect can be obtained by using an oil agent in the form of hydroxide.

(ト)発明の効果 本発明によるアルカリ亜鉛蓄電池は添加剤とし工のイン
ジウムの酸化物または水酸化物、タリウムの酸化物また
は水酸化物及びガリウム、カドミウム、鉛、錫、ビスマ
ス、水銀よりなる金属群から選ばれた少なくとも一種の
酸化物または水酸化物を含有する亜鉛極を備え、且つ前
記添加剤の総量が亜鉛極に対して1乃至15重量%のも
のであるため、充放電を繰り返し行なった際に生じるイ
ンジウム及びタリウム分布の偏在化が抑制され且つ亜鉛
活物質の不活性化が抑制され、より長期にわたるサイク
ル寿命を有するアルカリ亜鉛蓄電池を提供することがで
きる。まな、前記金属群から選ばれた少なくとも一種の
酸化物または水酸化物に対する前記インジウム及びタリ
ウムの酸化物り または水酸化物総和の配合比率全1A乃至9とす^ ると、上記効果をより一層ひきだすことが可能である。
(G) Effects of the Invention The alkaline zinc storage battery according to the present invention uses indium oxide or hydroxide, thallium oxide or hydroxide, and metals made of gallium, cadmium, lead, tin, bismuth, and mercury as additives. Since it is equipped with a zinc electrode containing at least one kind of oxide or hydroxide selected from the group, and the total amount of the additive is 1 to 15% by weight based on the zinc electrode, charging and discharging can be repeated. The maldistribution of indium and thallium that occurs when the indium and thallium are heated is suppressed, and the deactivation of the zinc active material is suppressed, thereby making it possible to provide an alkaline zinc storage battery having a longer cycle life. Furthermore, if the total compounding ratio of the oxides or hydroxides of indium and thallium to at least one kind of oxide or hydroxide selected from the metal group is 1A to 9, the above effects can be further enhanced. It is possible to draw it out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に於けるアルカリ亜鉛蓄電池
の縦断面図、第2図は本発明電池(〜と比較電池(Bl
のサイクル特性図、第6図は亜鉛極の癌性のサイクル寿
命を示す図面である。 Tll・・・亜鉛極、 (21・・・ニッケル極、 +
31・・・セノ(レータ、 14+−・・保液層、 +
51 ・・・電槽、 (61・・・電槽蓋。 +71(81、−正、°負極端子。
FIG. 1 is a longitudinal sectional view of an alkaline zinc storage battery according to an embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view of an alkaline zinc storage battery according to an embodiment of the present invention.
FIG. 6 is a diagram showing the cancerous cycle life of the zinc electrode. Tll...Zinc electrode, (21...Nickel electrode, +
31...Ceno(rate), 14+-...liquid retaining layer, +
51...Battery container, (61...Battery container lid. +71 (81, - positive, ° negative terminal.

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛または酸化亜鉛を主成分とし、添加剤として
インジウムの酸化物または水酸化物、タリウムの酸化物
または水酸化物及びガリウム、カドミウム、鉛、錫、ビ
スマス、水銀よりなる金属群から選ばれた少なくとも一
種の酸化物または水酸化物を含有する亜鉛極を備えると
共に、前記添加剤の総量が亜鉛極に対して1乃至15重
量%であるアルカリ亜鉛蓄電池。
(1) The main component is zinc or zinc oxide, and the additives are selected from the metal group consisting of indium oxide or hydroxide, thallium oxide or hydroxide, and gallium, cadmium, lead, tin, bismuth, and mercury. 1. An alkaline zinc storage battery comprising a zinc electrode containing at least one oxide or hydroxide, wherein the total amount of the additives is 1 to 15% by weight based on the zinc electrode.
(2)前記金属群から選ばれた少なくとも一種の酸化物
または水酸化物に対する前記インジウムの酸化物または
水酸化物とタリウムの酸化物または水酸化物の総和の配
合比率が1/6乃至9である特許請求の範囲第(1)項
記載のアルカリ亜鉛蓄電池。
(2) The total blending ratio of the indium oxide or hydroxide and the thallium oxide or hydroxide to at least one oxide or hydroxide selected from the metal group is 1/6 to 9. An alkaline zinc storage battery according to claim (1).
JP59217002A 1984-10-16 1984-10-16 Alkaline zinc storage battery Granted JPS6196666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217002A JPS6196666A (en) 1984-10-16 1984-10-16 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217002A JPS6196666A (en) 1984-10-16 1984-10-16 Alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS6196666A true JPS6196666A (en) 1986-05-15
JPH0582023B2 JPH0582023B2 (en) 1993-11-17

Family

ID=16697277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217002A Granted JPS6196666A (en) 1984-10-16 1984-10-16 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS6196666A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128222A (en) * 1991-04-22 1992-07-07 Matsushita Electric Industrial Co., Ltd. Zinc-alkaline batteries
US5168018A (en) * 1990-05-17 1992-12-01 Matsushita Electric Industrial Co., Ltd. Method of manufacturing zinc-alkaline batteries
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
WO2013027767A1 (en) 2011-08-23 2013-02-28 株式会社日本触媒 Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte
JP2013054877A (en) * 2011-09-02 2013-03-21 Nissan Motor Co Ltd Alkaline secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021009077A (en) * 2019-01-29 2021-11-17 Mitsui Chemicals Inc Aluminum-based metal-resin composite structure, aluminum-based metal member, method for manufacturing aluminum-based metal member, and method for manufacturing aluminum-based metal-resin composite structure.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889342A (en) * 1972-02-29 1973-11-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889342A (en) * 1972-02-29 1973-11-22

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168018A (en) * 1990-05-17 1992-12-01 Matsushita Electric Industrial Co., Ltd. Method of manufacturing zinc-alkaline batteries
US5128222A (en) * 1991-04-22 1992-07-07 Matsushita Electric Industrial Co., Ltd. Zinc-alkaline batteries
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
WO2013027767A1 (en) 2011-08-23 2013-02-28 株式会社日本触媒 Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte
JP2013054877A (en) * 2011-09-02 2013-03-21 Nissan Motor Co Ltd Alkaline secondary battery

Also Published As

Publication number Publication date
JPH0582023B2 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
JPS6196666A (en) Alkaline zinc storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP2019153402A (en) Alkali secondary battery
JPH09180717A (en) Nickel electrode for alkaline storage battery
JP3263603B2 (en) Alkaline storage battery
JP2614486B2 (en) Alkaline zinc storage battery
JPH0576743B2 (en)
JPH08321302A (en) Hydrogen storage electrode
JPS59189563A (en) Alkaline zinc storage battery
JPH0410709B2 (en)
JPH06101331B2 (en) Alkaline zinc storage battery
JPS58176870A (en) Alkaline-zinc battery
JPS61104564A (en) Alkaline zinc storage battery
JP2538303B2 (en) Zinc electrode for alkaline storage battery
JPH0584027B2 (en)
JPS58163160A (en) Alkaline zinc storage battery
JPH0560220B2 (en)
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPS62108467A (en) Alkaline zinc storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JPS59167970A (en) Nickel-zinc battery
JPS60216450A (en) Alkaline zinc storage battery
JPH073793B2 (en) Alkaline zinc storage battery
JPS60185372A (en) Nickel-zinc storage battery
JPH0522343B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term