JPH0685325B2 - Active material for nickel electrode, nickel electrode and alkaline battery using the same - Google Patents

Active material for nickel electrode, nickel electrode and alkaline battery using the same

Info

Publication number
JPH0685325B2
JPH0685325B2 JP63262047A JP26204788A JPH0685325B2 JP H0685325 B2 JPH0685325 B2 JP H0685325B2 JP 63262047 A JP63262047 A JP 63262047A JP 26204788 A JP26204788 A JP 26204788A JP H0685325 B2 JPH0685325 B2 JP H0685325B2
Authority
JP
Japan
Prior art keywords
active material
nickel
magnesium
nickel hydroxide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63262047A
Other languages
Japanese (ja)
Other versions
JPH02109261A (en
Inventor
圭一 長谷川
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63262047A priority Critical patent/JPH0685325B2/en
Priority to DE68917045T priority patent/DE68917045T2/en
Priority to EP89303952A priority patent/EP0353837B1/en
Priority to US07/358,118 priority patent/US4985318A/en
Publication of JPH02109261A publication Critical patent/JPH02109261A/en
Priority to US08/005,157 priority patent/USRE34752E/en
Publication of JPH0685325B2 publication Critical patent/JPH0685325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル電極用活物質及びニッケル電極とこ
れを用いたアルカリ電池に関するものである。
TECHNICAL FIELD The present invention relates to an active material for a nickel electrode, a nickel electrode, and an alkaline battery using the same.

従来技術とその問題点 一般にニッケル電極を正極として用いたアルカリ電池
は、焼結式電池と称し、ニッケル粉末をぽ穿孔鋼板等に
焼結した微孔基板に水酸化ニッケルを充填させたもので
ある。この方式の電極は、充填工程を何度も繰り返し非
常に煩雑であり、コストが高い。しかも、用いる基板の
多孔度が制限されるため、活物質の充填密度が低く、電
極のエネルギー密度400mAh/cc程度の電極しか製造でき
ない。
Conventional technology and its problems In general, an alkaline battery using a nickel electrode as a positive electrode is called a sintered battery, and is a microporous substrate made of sintered nickel powder on a perforated steel plate filled with nickel hydroxide. . This type of electrode is very complicated because the filling process is repeated many times, and the cost is high. Moreover, since the porosity of the substrate used is limited, the packing density of the active material is low, and only an electrode having an electrode energy density of 400 mAh / cc can be manufactured.

これを改良する試みとして、非焼結式電極の開発が広く
行われている。例えば、水酸化コバルト被覆水酸化ニッ
ケル粉末に導電性付加剤として、20数wt%のグラファイ
ト粉末を混合し、シート状にした後、集電体であるニッ
ケル板に圧着して電極とする。この導電性付加剤そのも
のは電極の容量に寄与しないため、容量密度が低下し、
且つグラファイトの分解による炭酸根が多量に生成す
る。このために、密閉形ニッケルカドミウム電池の如
く、電解液量の少ない電池には使用できない。上記欠点
を克服するべく、95%の高多孔度の金属繊維基板を用い
たペースト式ニッケル電極が実用化されつつある。該電
極は、硫酸ニッケル塩水溶液と水酸化ナトリウム水溶液
から作製された水酸化ニッケル粉末活物質に、活物質間
導電性のネットワークを形成するCoO粉末を添加し、カ
ルボキシメチルセルローズを水に溶解した粘調液を加え
ペースト状態で繊維基板に充填して作製される。この方
式の電極は、焼結式電極に比べ安価であり、エネルギー
密度も500mAh/ccと高い。
Non-sintered electrodes have been widely developed as an attempt to improve this. For example, cobalt hydroxide-coated nickel hydroxide powder is mixed with 20% by weight of graphite powder as a conductive additive to form a sheet, which is then pressure-bonded to a nickel plate serving as a current collector to form an electrode. Since the conductive additive itself does not contribute to the capacity of the electrode, the capacity density decreases,
In addition, a large amount of carbonate radicals are generated due to the decomposition of graphite. For this reason, it cannot be used in a battery with a small amount of electrolyte, such as a sealed nickel-cadmium battery. In order to overcome the above drawbacks, a paste type nickel electrode using a metal fiber substrate having a high porosity of 95% is being put to practical use. The electrode was prepared by adding a nickel hydroxide powder active material prepared from a nickel sulfate aqueous solution and a sodium hydroxide aqueous solution to a CoO powder that forms a conductive network between active materials, and dissolving carboxymethyl cellulose in water. It is prepared by adding a liquid preparation and filling a fiber substrate in a paste state. This type of electrode is cheaper than a sintered electrode and has a high energy density of 500 mAh / cc.

しかし、近年のポータブルエレクトロニクス機器の軽量
化に伴い、市場ニーズとして600mAh/cc程度の高エネル
ギー密度が要求されている。これに対応するためには、
基板の多孔度に限界があることから、水酸化ニッケル粉
末そのものを高密度化する必要がある。高密度水酸化ニ
ッケル粉末は、鉄板のパーカライジング処理の原料の一
部として用いられている。その製造法は硝酸ニッケルあ
るいは硫酸ニッケルを弱塩基性のアンモニア水溶液中に
溶解させ、ニッケルアンミン錯イオンとして安定化さ
せ、水酸化ナトリウム水溶液を加えながら、粒子内部に
空孔が発達しないように徐々に水酸化ニッケルとして析
出させるものである。
However, as the weight of portable electronic devices has been reduced in recent years, a high energy density of about 600 mAh / cc is required as a market need. To address this,
Due to the limited porosity of the substrate, it is necessary to densify the nickel hydroxide powder itself. The high-density nickel hydroxide powder is used as a part of the raw material for the parkarizing treatment of iron plates. The production method is to dissolve nickel nitrate or nickel sulfate in a weakly basic aqueous ammonia solution to stabilize it as a nickel ammine complex ion, and gradually add sodium hydroxide aqueous solution so that pores do not develop inside the particles. It is deposited as nickel hydroxide.

この方式では、従来の中和法の如き、無秩序な析出を行
なわないために、粒界が少なく、結晶性の高い(細孔容
積が少ない)高密度な水酸化ニッケルとなる。
In this system, unlike the conventional neutralization method, since the disordered precipitation is not carried out, a high-density nickel hydroxide having few grain boundaries and high crystallinity (small pore volume) is obtained.

しかしこの特異な物性故に、この粉末をそのまゝ電池用
活物質材料として用いるには、いくつかの問題点を有し
ている。
However, due to this peculiar physical property, there are some problems in using this powder as an active material for a battery.

例えば、水酸化ニッケル電極の充放電反応は、水酸化ニ
ッケルの結晶内をプロトンが自由に移動することによっ
て起る。ところが、水酸化ニッケルの高密度化に伴って
結晶が緻密になるため、結晶内のプロトン移動の自由さ
が限定される。しかも比表面積の減少により電流密度が
増大し、高次酸化物γ−NiOOHが多量に生成するように
なり、2段放電及び電極の膨潤と言った放電並びに寿命
特性の悪化あるいは利用率低下といった現象をひきおこ
す。電極の致命的因子であるニッケル電極のγ−NiOOH
生成に伴う膨潤機構は、高密度β−NiOOHから低密度γ
−NiOOHへの密度変化に起因するものである。γ−NiOOH
の生成防止に有効な手段として、本発明者は既に少量の
カドミウムの水酸化ニッケルへの固溶体添加を見い出し
たが、公害の見地よりカドミウム以外の有効な添加剤が
望まれている。
For example, the charge / discharge reaction of the nickel hydroxide electrode occurs due to free movement of protons in the nickel hydroxide crystal. However, as the density of nickel hydroxide increases, the crystal becomes denser, which limits the freedom of proton transfer within the crystal. Moreover, the current density increases due to the decrease in the specific surface area, and a large amount of higher-order oxide γ-NiOOH is generated, which causes discharges such as two-stage discharge and electrode swelling, and deterioration of life characteristics or a decrease in utilization rate. Cause. Γ-NiOOH of nickel electrode which is a fatal factor of electrode
The swelling mechanism associated with generation is from high density β-NiOOH to low density γ
-This is due to the change in density to NiOOH. γ-NiOOH
The present inventors have already found that a small amount of cadmium is added as a solid solution to nickel hydroxide as an effective means for preventing the formation of methane, but effective additives other than cadmium are desired from the viewpoint of pollution.

発明の目的 本発明は、水酸化ニッケル粉末をより高密度化し、更に
高密度化に伴うγ−NiOOHの生成を毒性の少ない添加剤
によって防止し、長寿命化すると共に、活物質の利用率
を向上させたニッケル電極用活物質及びニッケル電極
と、これを用いたアルカリ電池を提供することを目的と
する。
OBJECT OF THE INVENTION The present invention densifies nickel hydroxide powder to a higher density, prevents the formation of γ-NiOOH with further densification by a less toxic additive, and prolongs the service life, while increasing the utilization rate of the active material. It is an object of the present invention to provide an improved active material for a nickel electrode, a nickel electrode, and an alkaline battery using the same.

発明の構成 本発明は、水酸化ニッケル粉末活物質にマグネシウムを
1〜3wt%添加し、該マグネシウムが水酸化ニッケルの
結晶中で固溶状態にあり、且つ細孔半径が30Å以上の粒
子内部遷移細孔の発達を阻止し、更に全細孔容積を0.05
ml/g以下に制御したことを特徴とするニッケル電極用活
物質である。
Composition of the Invention The present invention is to add 1 to 3 wt% of magnesium to a nickel hydroxide powder active material, the magnesium is in a solid solution state in the crystal of nickel hydroxide, and the pore radius is 30 Å or more particle internal transition Prevents the development of pores and further increases the total pore volume to 0.05
It is an active material for a nickel electrode, which is controlled to be less than ml / g.

又、耐アルカリ性金属多孔体を集電体とし、水酸化ニッ
ケル粉末活物質にマグネシウムを1〜3wt%添加し、該
マグネシウムが水酸化ニッケルの結晶中で固溶状態にあ
るニッケル電極用活物質を主成分とするペーストを充填
したことを特徴とするニッケル電極である。
Further, the alkali-resistant metal porous body is used as a current collector, magnesium is added to the nickel hydroxide powder active material in an amount of 1 to 3 wt%, and the magnesium active material for nickel electrode is in a solid solution state in the nickel hydroxide crystal. The nickel electrode is characterized by being filled with a paste as a main component.

内部細孔容積を最小限にした高密度水酸化ニッケル粉末
の場合、高次酸化物γ−NiOOHが多量に生成する。しか
しながら異種金属イオン特にマグネシウムイオンを水酸
化ニッケルの結晶中に配置すると結晶に歪を生じるた
め、プロトンの動きに自由さが増し、利用率の向上及び
γ−NiOOHの生成を減少する作用があることを見いだし
た。
In the case of high density nickel hydroxide powder with a minimum internal pore volume, a large amount of higher order oxide γ-NiOOH is produced. However, when dissimilar metal ions, especially magnesium ions, are placed in the nickel hydroxide crystal, distortion occurs in the crystal, which increases the freedom of movement of protons, has the effect of improving the utilization rate and decreasing the production of γ-NiOOH. I found it.

一般にはマグネシウムの添加はニッケル電極に悪影響を
及ぼすといわれていたが、1〜3wt%の微量添加であれ
ば、非常に高性能な電極が得られることが明らかになっ
た。
It was generally said that the addition of magnesium adversely affects the nickel electrode, but it has been clarified that a very high performance electrode can be obtained by adding a trace amount of 1 to 3 wt%.

一方、水酸化ニッケルの結晶外においては、コバルト化
合物添加剤を溶解させ、集電体と水酸化ニッケル粒子間
をHCoO2 -→β−Co(OH)2反応によって接続させた後に充
電する。しかる後に、充電と言う電気化学的酸化によっ
てβ−Co(OH)2→CoOOH反応によって、導電率の高いオキ
シ水酸化コバルトに変化し集電体ニッケル繊維と水酸化
ニッケル粒子間の電子の流れをスムーズにし、利用率を
増大させる作用がある。この反応メカニズムを第1図に
モデル化して示した。モデル図で示すように、この電極
の重要な点は添加剤を溶解させ、集電体ニッケル繊維と
活物質を接続させるところがある。
On the other hand, in the crystal outside of the nickel hydroxide to dissolve the cobalt compound additive, the current collector and between nickel hydroxide particles HCoO 2 - charged after → β-Co (OH) is connected by two reactions. Then, by β-Co (OH) 2 → CoOOH reaction due to electrochemical oxidation called charging, it changes into cobalt oxyhydroxide with high conductivity, and the electron flow between the current collector nickel fiber and nickel hydroxide particles is changed. It has the effect of smoothing and increasing the utilization rate. This reaction mechanism is modeled and shown in FIG. As shown in the model diagram, an important point of this electrode is that the additive is dissolved and the current collector nickel fiber is connected to the active material.

実施例 以下、本発明における詳細について実施例により説明す
る。
Examples Hereinafter, details of the present invention will be described with reference to examples.

硫酸ニッケルに少量の硫酸マグネシウムを加えた水溶液
に硫酸アンモニウムを添加し、ニッケル及びマグネシウ
ムのアンミン錯イオンを形成させる。
Ammonium sulfate is added to an aqueous solution of nickel sulfate to which a small amount of magnesium sulfate is added to form an ammine complex ion of nickel and magnesium.

この液を水酸化ナトリウム水溶液中に滴下しながら激し
い攪拌を行い、徐々に錯イオンを分解させてマグネシウ
ムの固溶体化した水酸化ニッケル粒子を析出成長させ
る。この時水酸化ナトリウム水溶液はPH11〜13程度の薄
いアルカリ濃度にし、温度は40〜50℃の範囲で徐々に析
出させる。析出溶液のPHによって、種々な物性の水酸化
ニッケル粒子が得られる。
This solution is dripped into an aqueous solution of sodium hydroxide and vigorously stirred to gradually decompose complex ions to precipitate and grow nickel hydroxide particles in the form of solid solution of magnesium. At this time, the sodium hydroxide aqueous solution is made to have a low alkaline concentration of about PH 11 to 13, and the temperature is gradually precipitated in the range of 40 to 50 ° C. Depending on the pH of the precipitation solution, nickel hydroxide particles having various physical properties can be obtained.

第2図に組成が水酸化ニッケルのみからなる粉末の内部
細孔容積とγ−NiOOH生成率のPH依存性の関係を示し
た。
Fig. 2 shows the relationship between the internal pore volume of the powder composed of only nickel hydroxide and the PH dependence of the γ-NiOOH production rate.

内部細孔容積は低いPHほど少なく、より高密度な粉末に
なる。一方、γ−NiOOHは低いPHほど生成しやすい傾向
にある。二つの因子を満足させる領域は、各々の変曲点
に挟まれたハッチングで示したPH11付近から13付近に至
る領域である。
The lower the internal pore volume, the lower the PH, and the more dense the powder. On the other hand, γ-NiOOH tends to be generated more easily as the pH becomes lower. The region that satisfies the two factors is the region between PH11 and 13 shown by the hatching sandwiched between the inflection points.

第3図に細孔容積と比表面積の関係を示した。析出溶液
のPHを変えることによって水酸化ニッケルの細孔容積が
変化したが、同時に比表面積も変化した。A〜Eが水酸
化ニッケルのみで、Fが3wt%のマグネシウムを固溶状
態で添加したものであり、Gは従来法による水酸化ニッ
ケルのみのものである。
Fig. 3 shows the relationship between the pore volume and the specific surface area. The pore volume of nickel hydroxide changed by changing the pH of the precipitation solution, but at the same time, the specific surface area also changed. A to E are nickel hydroxide only, F is 3 wt% of magnesium added in a solid solution state, and G is only nickel hydroxide prepared by the conventional method.

尚、従来法とは、PH14以上の高濃度アルカリに水酸化ニ
ッケル粒子を析出したものである。
The conventional method is a method in which nickel hydroxide particles are precipitated in a high-concentration alkali having a pH of 14 or higher.

いずれも比表面積の増大に伴い粒子内部の細孔容積が増
大する傾向を示している。即ち、比表面積と細孔容積の
間には相関々係があり、マグネシウム添加の有無に関係
なく細孔容積の少ない高密度活物質は、比表面積が少な
い。
In each case, the pore volume inside the particles tends to increase as the specific surface area increases. That is, there is a correlation between the specific surface area and the pore volume, and a high-density active material with a small pore volume has a small specific surface area regardless of whether magnesium is added or not.

第4図に従来法による水酸化ニッケルと本発明によるマ
グネシウム添加高密度水酸化ニッケル活物質の細孔径分
布の比較を窒素吸着等温線の脱離側より算出して示し
た。
FIG. 4 shows a comparison of the pore size distributions of the conventional nickel hydroxide and the magnesium-added high-density nickel hydroxide active material of the present invention calculated from the desorption side of the nitrogen adsorption isotherm.

従来法による水酸化ニッケルGは、硫酸ニッケル塩水溶
液を50℃、PH=14.5の高濃度アルカリ溶液中に滴下し析
出させたものである。
Nickel hydroxide G prepared by the conventional method is prepared by dropping a nickel sulfate aqueous solution into a high-concentration alkaline solution having a PH of 14.5 at 50 ° C.

G粒子は、約66m2/gの比表面積、細孔半径15〜100Åの
幅広い範囲に渡り多量に存在する。その細孔容積は、0.
136ml/gと粒子容積(0.41ml/g)の30〜40%にも達し、
かなり空隙の大きい粒子である。一方、本発明のマグネ
シウム添加高密度水酸化ニッケルFは、その容積が0.02
8ml/gと小さく、G粒子の1/4程度にすぎない。これは、
F粒子がG粒子よりも20〜30%高密度であるということ
である。即ち、活物質粒子が高密度であるためには、で
きるかぎり比表面積、及び空孔容積が小さなものでなけ
ればならないことを示している。これらの水酸化ニッケ
ル粉末に、アルカリ電解液に溶解しCo(II)錯イオンを
生成する少量のコバルト化合物、CoO、a−Co(OH)2、β
−Co(OH)2あるいは酢酸コバルト等の粉末を混合した。
しかる後、1%のカルボキシメチルセルローズの溶解し
た水溶液を加えて流動性のあるペースト液を作製した。
このペースト液を多孔度95%の耐アルカリ繊維基板、例
えばニッケル繊維基板等に所定量充填させ、乾燥後ニッ
ケル電極とした。
The G particles are present in a large amount in a wide range of a specific surface area of about 66 m 2 / g and a pore radius of 15 to 100Å. Its pore volume is 0.
Reaching 136-40 ml / g and 30-40% of particle volume (0.41 ml / g),
It is a particle with fairly large voids. On the other hand, the magnesium-added high density nickel hydroxide F of the present invention has a volume of 0.02
It is as small as 8 ml / g, which is only about 1/4 of G particles. this is,
The F particles are 20 to 30% more dense than the G particles. That is, it is shown that in order for the active material particles to have a high density, the specific surface area and the pore volume should be as small as possible. A small amount of cobalt compound, CoO, a-Co (OH) 2 , β, which dissolves in an alkaline electrolyte to form a Co (II) complex ion, is added to these nickel hydroxide powders.
Powders such as —Co (OH) 2 or cobalt acetate were mixed.
Thereafter, an aqueous solution containing 1% of carboxymethyl cellulose dissolved therein was added to prepare a fluid paste solution.
A predetermined amount of this paste solution was filled in an alkali resistant fiber substrate having a porosity of 95%, such as a nickel fiber substrate, and dried to obtain a nickel electrode.

活物質利用率並びに充放電によるγ−NiOOHの生成率を
知るために、このニッケル電極を正極とし、対極として
カドミウム電極をポリプロピレン不織布セパレータを介
して組立て、比重1.27の水酸化カリウム水溶液を電解液
として注入した。電解液注入後、電池は添加剤であるコ
バルト化合物を腐食電位で溶解させ、水酸化ニッケル粉
末間を接続させるために、各種条件で放置した。第5図
に添加剤としてCoOを用い、比表面積66m2/gの水酸化ニ
ッケル粉末を用いて作製した電池についての放置条件と
活物質利用率の関係を示した。導電性ネットワーク形成
の重要な過程である放置条件は、高濃度電解液及び高温
度ほど短期間で高い利用率の得られる事を示しており、
且つ溶解したCoO量が有効に作用していることを示して
いる。これは添加剤の溶解析出による均一分散性(より
完全なネットワーク形成)に起因している。
In order to know the utilization rate of the active material and the production rate of γ-NiOOH by charge and discharge, this nickel electrode was used as a positive electrode, a cadmium electrode as a counter electrode was assembled via a polypropylene nonwoven fabric separator, and a potassium hydroxide aqueous solution with a specific gravity of 1.27 was used as an electrolytic solution. Injected. After injecting the electrolytic solution, the battery was left under various conditions in order to dissolve the cobalt compound as an additive at the corrosion potential and to connect the nickel hydroxide powders. FIG. 5 shows the relationship between the standing condition and the active material utilization rate for a battery prepared using CoO as an additive and nickel hydroxide powder having a specific surface area of 66 m 2 / g. The storage condition, which is an important process of forming the conductive network, indicates that the higher the concentration of the electrolytic solution and the higher the temperature, the higher the utilization rate can be obtained in a short period of time.
It also shows that the amount of dissolved CoO is effectively acting. This is due to the uniform dispersibility (more complete network formation) due to the dissolution and precipitation of the additive.

第6図に適切な放置条件下での各種水酸化ニッケルと活
物質利用率の関係を示した。活物質組成が水酸化ニッケ
ルのみから成るA〜Gは、比表面積と活物質利用率の間
に比例関係が存在する。この事実は、高い活物質利用率
を得るためには高い比表面積が必要であることを示して
いる。従って、前述の比表面積と細孔容積の関係より、
より高い活物質利用率を得るためには、より大きい細孔
容積を持つ、つまり低密度活物質の方が良いことを意味
しているから、究極として電極の高エネルギー密度化は
図れないことになる。活物質利用率が理論値に近いこと
から、要求される600mAh/ccのエネルギー密度を満たす
高密度活物質粉末の空孔容積は、0.05ml/g以下でなけれ
ばならず、そのとき空孔容積と相関関係にある比表面積
は15〜30m2/gである。しかしながら、水酸化ニッケルの
結晶中に少量のマグネシウムを添加したFは、比表面積
が小さいにも拘らず、従来粉末Gと変わらない高い利用
率を示している。従来粉末に比べ高密度粉末が、同一体
積基板により多く充填できるため極板単位体積あたりエ
ネルギー密度は、従来粉末Gが504mAh/cc、高密度粉末
Fが620mAh/ccと高密度粉末Fが従来粉末Gよりも20%
程度高い値を示している。
FIG. 6 shows the relationship between the various nickel hydroxides and the utilization rate of the active material under the proper standing condition. For A to G in which the composition of the active material is only nickel hydroxide, there is a proportional relationship between the specific surface area and the utilization rate of the active material. This fact indicates that a high specific surface area is required to obtain a high active material utilization rate. Therefore, from the relationship between the specific surface area and the pore volume,
In order to obtain a higher utilization rate of the active material, it means that a low-density active material having a larger pore volume, that is, a lower density active material is better. Ultimately, it is impossible to increase the energy density of the electrode. Become. Since the active material utilization rate is close to the theoretical value, the pore volume of the high-density active material powder satisfying the required energy density of 600 mAh / cc must be 0.05 ml / g or less, at which time the pore volume is The specific surface area correlated with is 15 to 30 m 2 / g. However, F in which a small amount of magnesium is added to the nickel hydroxide crystal shows a high utilization rate which is the same as that of the conventional powder G, although the specific surface area is small. Compared with conventional powder, high-density powder can be packed more in the same volume substrate, so the energy density per unit volume of electrode plate is 504 mAh / cc for conventional powder G, 620 mAh / cc for high-density powder F and conventional powder for high-density powder F. 20% more than G
It shows a high value.

活物質の高密度化による比表面積の減少により、電解液
から反応種プロトンの出入口が縮小するわけであるが、
マグネシウムを添加することで水酸化ニッケル結晶に歪
を持たせることにより、固相でのプロトン移動がスムー
ズになったものと考察される。即ち、利用率はプロトン
の移動量を意味していると言える。これは、粒子の比表
面積と結晶内部(固相)での拡散速度の二つの因子に支
配されており、結晶が同一の場合は、比表面積に支配さ
れ、結晶が異なる場合は内部歪に支配されるものと考察
される。活物質が反応するためには集電体から活物質粒
子表面にスムーズに電子を移動させる必要があり、上述
した如く遊離状態(水酸化ニッケルに固溶することなく
粒子表面に存在)にある導電性を持ったCoOOH粒子のネ
ットワークが不可欠である。第7図にCoO添加量と活物
質利用率、極板体積あたりのエネルギー密度との関係を
示した。このネットワークをつくるCoO添加剤について
は、添加剤量を増加させると、活物質利用率も増加す
る。しかし、添加剤そのものは、導電性に寄与するのみ
で実際には放電しないため、極板エネルギー密度は、15
%付近より低下する傾向を示している。
Due to the decrease in the specific surface area due to the high density of the active material, the inlet and outlet of the reactive species protons from the electrolytic solution are reduced.
It is considered that the addition of magnesium causes the nickel hydroxide crystal to have a strain, so that the proton transfer in the solid phase becomes smooth. That is, it can be said that the utilization rate means the amount of proton transfer. This is governed by two factors: the specific surface area of the particles and the diffusion rate inside the crystal (solid phase). When the crystals are the same, the specific surface area is dominant, and when the crystals are different, the internal strain is dominant. Is considered to be done. In order for the active material to react, it is necessary to smoothly move electrons from the current collector to the surface of the active material particle, and as described above, the conductive state in the free state (existing on the particle surface without solid solution in nickel hydroxide) A network of CoOOH particles with properties is essential. FIG. 7 shows the relationship between the amount of CoO added, the active material utilization rate, and the energy density per electrode plate volume. Regarding the CoO additive that forms this network, the active material utilization rate increases as the additive amount increases. However, since the additive itself contributes to conductivity but does not actually discharge, the electrode plate energy density is 15
%, It tends to decrease from around.

1Cの高電流密度で充電し、充電末期の極板におけるγ−
NiOOH生成量と活物質粉末の種類の相関関係をX線解析
により調べた。X線回析ピークを第8図に示す。
Charged at a high current density of 1C, γ − in the electrode plate at the end of charging
The correlation between the amount of NiOOH produced and the type of active material powder was examined by X-ray analysis. The X-ray diffraction peak is shown in FIG.

第9図に示す如く、水酸化ニッケルの結晶中にマグネシ
ウムを固溶状態で添加すれば、添加量の増加に伴いγ−
NiOOHの生成量が減少することがわかる。
As shown in FIG. 9, when magnesium is added in a solid solution state to nickel hydroxide crystals, γ-
It can be seen that the amount of NiOOH produced decreases.

マグネシウムのγ−NiOOHの生成を抑制する効果は、水
酸化ニッケルの製造方法、すなわち析出PHによっても影
響され、第10図に示される如く、従来法で作製した場合
と異なっている。特に本発明の場合、従来法に比較し充
填末期に存在している可逆性の悪いγ−NiOOHの内、30
〜50%が放電できることに特徴がある。このことによ
り、充放電の繰り返しによるγ−NiOOHの蓄積をより防
止でき、電極の長寿命化を図ることができる。このよう
に、固溶体化した添加剤の効果は、活物質析出条件によ
って変化する。しかし、少なくとも本発明のマグネシウ
ム添加においては、従来の高濃度アルカリ水溶液中で析
出させるよりも薄いアルカリ水溶液中で析出させる方が
優れていることがわかる。
The effect of suppressing the production of γ-NiOOH by magnesium is also influenced by the method for producing nickel hydroxide, that is, the precipitated PH, and is different from the case of the conventional method as shown in FIG. In particular, in the case of the present invention, among the less reversible γ-NiOOH present at the end of filling compared to the conventional method, 30
Characteristic is that ~ 50% can be discharged. As a result, accumulation of γ-NiOOH due to repeated charging and discharging can be further prevented, and the life of the electrode can be extended. Thus, the effect of the solid solution additive changes depending on the active material precipitation conditions. However, at least in the magnesium addition of the present invention, it is understood that precipitation in a thin alkaline aqueous solution is superior to precipitation in a conventional high-concentration alkaline aqueous solution.

第11図に過充電状態におけるγ−NiOOH生成率と電極の
厚み変化の関係を示した。γ−NiOOH生成率が高いほど
極板厚みが大きく増加している。つまり長寿命な電極を
得ようとすればγ−NiOOHの生成を抑える必要があり、
この点でもマグネシウム添加は非常に効果のあることが
わかる。
Figure 11 shows the relationship between the γ-NiOOH production rate and the change in electrode thickness in the overcharged state. The higher the γ-NiOOH production rate, the greater the plate thickness. In other words, in order to obtain a long-life electrode, it is necessary to suppress the production of γ-NiOOH,
Also in this respect, it can be seen that addition of magnesium is very effective.

また、従来法の場合は、マグネシウムを1wt%以上添加
すると水酸化ニッケルと遊離した水酸化マグネシウムの
層が出現したが、本発明であると3wt%程度まで遊離し
ないことが各種機器分析によって明らかになった。更
に、マグネシウムの多量添加は、第12図に示されるよう
に、水酸化ニッケルの酸化電位を貴にシフトし、酸素発
生電位との電位差を小さくするため、充電中における水
酸化ニッケルの酸化反応と酸素発生反応の競合反応が充
電初期から起こり易くなり、いわゆる充電受け入れ性能
が悪化する。更に遊離したマグネシウムは、Mg(OH)2
なり充放電反応をも阻害する。従って、第8,9,11図に示
されるように6〜8wt%添加におけるγ−NiOOH生成防止
効果が大きく見えるのは、活物質が充電されていないた
めであり、これを裏付けるように第13図において6wt%
以上の添加で活物質利用率の急激な低下がみられる。
In addition, in the case of the conventional method, when magnesium was added in an amount of 1 wt% or more, a layer of nickel hydroxide and liberated magnesium hydroxide appeared, but in the present invention, it was revealed by various instrumental analyzes that it does not liberate to about 3 wt%. became. Further, as shown in FIG. 12, the addition of a large amount of magnesium shifts the oxidation potential of nickel hydroxide to a noble level and reduces the potential difference from the oxygen generation potential, so that the oxidation reaction of nickel hydroxide during charging does not occur. The competitive reaction of the oxygen generation reaction easily occurs from the early stage of charging, so that the so-called charge acceptance performance deteriorates. Further, the released magnesium becomes Mg (OH) 2 and also inhibits the charge / discharge reaction. Therefore, as shown in FIGS. 8, 9 and 11, the large effect of preventing the production of γ-NiOOH by adding 6 to 8 wt% seems to be that the active material is not charged. 6 wt% in the figure
With the above addition, the utilization rate of the active material is drastically reduced.

γ−NiOOHを多量に生成する、マグネシウムを含まない
高密度粉末Aの場合、第14図のように2段放電となる
が、マグネシウム添加高密度粉末はγ−NiOOH生成が防
止されておりこのようなことはない。また、マグネシウ
ム添加により、充電の場合同様、活物質であるNiOOHの
還元電位が貴にシフトすることがわかる。過去、ニッケ
ル電極添加剤において酸化還元電位の貴な方向へのシフ
トはあまり報告された例がなく、これはマグネシウム添
加の大きな特徴であるといえる。このため、マグネシウ
ム添加高密度粉末を正極に用いた電池を作製した場合、
放電電圧の高い電池を得ることができる。
In the case of magnesium-free high-density powder A that produces a large amount of γ-NiOOH, a two-stage discharge is generated as shown in Fig. 14, but the magnesium-added high-density powder prevents γ-NiOOH production. There is no such thing. It is also found that the addition potential of magnesium shifts the reduction potential of NiOOH, which is an active material, to a noble value, as in the case of charging. In the past, there have been few reports of redox potential shifts in the noble direction of nickel electrode additives, and this can be said to be a major feature of magnesium addition. Therefore, when a battery using magnesium-added high-density powder for the positive electrode is produced,
A battery with a high discharge voltage can be obtained.

このような酸化還元電位のシフトについて詳しい検討は
なされていないが、前述のように、マグネシウムを添加
することで水酸化ニッケル結晶内に歪を起こし、プロト
ンの固相内拡散がスムーズになったものと考察される。
Although such a redox potential shift has not been studied in detail, as described above, the addition of magnesium causes strain in the nickel hydroxide crystal, resulting in smooth diffusion of protons in the solid phase. Is considered.

このマグネシウムの効果は、他の異種元素例えばコバル
トが固溶状態で共存していても同じ効果を有する。第15
図は、活物質、充放電温度及び活物質利用率の関係を示
したものである。マグネシウムとコバルトの両者を固溶
体添加したHにおいては、マグネシウム単独添加のFよ
り高温下(約45℃)での充電性能の向上が認められた。
また、第11図に示されるように、従来粉末に添加された
ことのあるカドミウムにもマグネシウム添加と同様γ−
NiOOH生成防止の効果があった。
The effect of magnesium has the same effect even if other different elements such as cobalt coexist in a solid solution state. 15th
The figure shows the relationship between the active material, the charge / discharge temperature, and the active material utilization rate. In H containing both magnesium and cobalt as a solid solution, an improvement in charging performance was observed at a higher temperature (about 45 ° C.) than in F containing magnesium alone.
Further, as shown in FIG. 11, γ-is similar to the addition of magnesium to cadmium which has been added to the conventional powder.
It was effective in preventing NiOOH generation.

第16図にCoOOHのネットワークを形成させる添加剤につ
いて、活物質利用率の関係を示した。
FIG. 16 shows the relationship between the active material utilization rates of the additives that form the CoOOH network.

活物質利用率の順位がCoO>a−Co(OH)2>β−Co(OH)2
になる理由は、電解液への溶解性に起因すると考えられ
る。即ち、β−Co(OH)2の場合、電解液注液後溶存酸素
で酸化され、褐色の溶解性の低いCo(OH)3〔もしくはCoH
O2であらわされる〕が形成され易く、一方、a−Co(OH)
2の場合、a−Co(OH)2→β−Co(OH)2を経由するためにC
o(OH)3がより形成されにくい。CoOの場合、Co(OH)3がま
ったく形成しないために最も優れた添加剤といえる。よ
り具体的には、溶解速度の見地より、β−Co(OH)2を出
発原料に200〜800℃の高温不活性雰囲気下にて加熱生成
させた結晶化度の低いものが望ましい。
The rank of the active material utilization rate is CoO> a-Co (OH) 2 > β-Co (OH) 2
It is considered that the reason for becoming is due to the solubility in the electrolytic solution. That is, in the case of β-Co (OH) 2 , it is oxidized by dissolved oxygen after injection of the electrolytic solution, and brown brown Co (OH) 3 with low solubility [or CoH
Easily be] is formed represented by O 2, whereas, a-Co (OH)
In the case of 2 , C is necessary because it goes through a-Co (OH) 2 → β-Co (OH) 2.
O (OH) 3 is more difficult to form. In the case of CoO, it can be said that it is the most excellent additive because Co (OH) 3 is not formed at all. More specifically, from the viewpoint of the dissolution rate, it is desirable that β-Co (OH) 2 is used as a starting material and heated and produced in a high temperature inert atmosphere at 200 to 800 ° C. to have low crystallinity.

水酸化ニッケルをHCoO2 -イオン中に浸漬し、表面に水酸
化コバルトを析出させた粉末をペースト充填した電極
は、CoO粉末を混合した電極よりも利用率が劣り、β−C
o(OH)2粉末を混合した電極程度であった。更に、オキシ
水酸化ニッケル粉末の表面に導電性のCoOOH層を形成さ
せた粉末(具体的には、CoO粉末を混合した電極を充放
電した後、電極から集電体であるニッケル繊維を除去し
たもの)を再度ペースト充填した電極は、利用率が悪
い。
HCoO 2 nickel hydroxide - was immersed in ion, electrode powder precipitated cobalt hydroxide and paste filling on the surface, even inferior utilization than the electrode obtained by mixing CoO powders, beta-C
It was about the electrode mixed with o (OH) 2 powder. Further, a powder in which a conductive CoOOH layer was formed on the surface of nickel oxyhydroxide powder (specifically, after charging and discharging an electrode mixed with CoO powder, nickel fiber as a current collector was removed from the electrode). The electrode that is filled with paste) has a poor utilization rate.

即ち、活物質粉末と集電体との導電性ネットワーク(Co
OOH)は、作製された電極中で形成されることが不可欠
である。つまり、予め活物質粒子表面に形成しても、粒
子間の接続が不完全になることを示している。従って、
電極を電池として組み立てた後にCoO粉末の溶解と再析
出をおこなわせる工程が必要である。
That is, the conductive network (Co
It is essential that OOH) be formed in the fabricated electrode. That is, even if it is formed on the surface of the active material particles in advance, the connection between the particles is incomplete. Therefore,
After assembling the electrode as a battery, a process of dissolving and re-precipitating CoO powder is necessary.

CoO添加剤を用いて本発明により作製された電極は、導
電性付加剤を用いずとも溶解−再析出工程によって理論
利用率に近い高い利用率に達することにより、例えば、
グラファイト粉末を導電性付加剤とする電極のように、
酸化分解にともなう有害な炭酸根の生成がなく、密度形
ニッケル−カドミウム電池の正極に用いることが出来
る。
The electrode produced by the present invention using the CoO additive reaches a high utilization rate close to the theoretical utilization rate by the dissolution-reprecipitation step without using a conductive additive, and thus, for example,
Like an electrode using graphite powder as a conductive additive,
It can be used for the positive electrode of a density-type nickel-cadmium battery without generation of harmful carbonic acid radicals due to oxidative decomposition.

尚、上記実施例において、基板として金属繊維焼結体を
示したが、これらに限定されるものではない。更に、マ
グネシウムの添加効果は、本発明の製法以外にも、結晶
性の高い水酸化ニッケル粒子に対しては、同様に認めら
れるものである。
In addition, although the metal fiber sintered body is shown as the substrate in the above embodiment, the substrate is not limited to these. Further, the effect of adding magnesium is similarly recognized for nickel hydroxide particles having high crystallinity, in addition to the production method of the present invention.

発明の効果 上述した如く、本発明は水酸化ニッケル粉末をより高密
度化し、更に高密度化に伴うγ−NiOOHの生成を毒性の
少ない添加剤によって防止し、長寿命化するとともに、
活物質の利用率を向上させ、且つ放電電位の高いニッケ
ル電極用活物質及びニッケル電極とこれを用いたアルカ
リ電池を提供することが出来るので、その工業的価値は
極めて大である。
EFFECTS OF THE INVENTION As described above, the present invention densifies nickel hydroxide powder more, preventing the formation of γ-NiOOH accompanying further densification with a less toxic additive, and prolonging the life,
Since it is possible to provide a nickel electrode active material having a high discharge potential and a nickel electrode and an alkaline battery using the same, the industrial value thereof is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は、コバルト化合物の溶解−析出機構のモデル図
である。 第2図は、析出溶液PHと粒子内部細孔容積及びγ−NiOO
Hの生成率との相関を示した図である。 第3図は、水酸化ニッケル粒子の比表面積と細孔容積の
関係を示した図である。 第4図は、従来の水酸化ニッケル粉末と本発明の高密度
水酸化ニッケル粉末の細孔径分布の曲線を示した図であ
る。 第5図は、放置条件と活物質利用率の関係を示した図で
ある。 第6図は、水酸化ニッケルの種類と活物質利用率の関係
を示した図である。 第7図は、CoO添加量と活物質利用率、極板体積あたり
のエネルギー密度との関係を示した図である。 第8図は、各種マグネシウム添加高密度粉末活物質の充
電末期のX線回析ピークである。 第9図は、マグネシウム添加量とγ−NiOOHの生成量の
関係を示したものである。 第10図は、各種水酸化ニッケルの充放電末期におけるγ
−NiOOHの生成比率を示した図である。 第11図は、各種添加剤を含む活物質を用いた電極を過充
電した時のγ−NiOOH生成率と電極厚み増加率を示した
図である。 第12図は、各種マグネシウム添加電極の充電電位特性で
ある。 第13図は、マグネシウム添加量と活物質利用率の関係を
示した図である。 第14図は、各種マグネシウム添加電極の放電電位特性で
ある。 第15図は、活物質、充放電温度及び活物質利用率の関係
を示した図である。 第16図は、各種コバルト化合物添加剤と活物質の利用率
との関係を示した図である。
FIG. 1 is a model diagram of a dissolution-precipitation mechanism of a cobalt compound. Fig. 2 shows the precipitation solution PH, the particle internal pore volume and γ-NiOO.
It is a figure showing the correlation with the generation rate of H. FIG. 3 is a diagram showing the relationship between the specific surface area of nickel hydroxide particles and the pore volume. FIG. 4 is a diagram showing curves of pore size distributions of the conventional nickel hydroxide powder and the high-density nickel hydroxide powder of the present invention. FIG. 5 is a diagram showing the relationship between the standing condition and the active material utilization rate. FIG. 6 is a diagram showing the relationship between the type of nickel hydroxide and the active material utilization rate. FIG. 7 is a diagram showing the relationship between the amount of CoO added, the active material utilization rate, and the energy density per electrode plate volume. FIG. 8 shows X-ray diffraction peaks at the end of charging of various magnesium-added high-density powder active materials. FIG. 9 shows the relationship between the amount of magnesium added and the amount of γ-NiOOH produced. Figure 10 shows γ at the end of charge and discharge of various nickel hydroxides.
It is a figure showing the generation ratio of -NiOOH. FIG. 11 is a diagram showing a γ-NiOOH production rate and an electrode thickness increase rate when an electrode using an active material containing various additives is overcharged. FIG. 12 shows charge potential characteristics of various magnesium-added electrodes. FIG. 13 is a graph showing the relationship between the magnesium addition amount and the active material utilization rate. FIG. 14 shows discharge potential characteristics of various magnesium-added electrodes. FIG. 15 is a diagram showing the relationship between the active material, the charge / discharge temperature and the active material utilization rate. FIG. 16 is a diagram showing the relationship between various cobalt compound additives and the utilization rate of the active material.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】1〜3wt%のマグネシウムを結晶中に固溶
状態で含有し、且つ内部細孔半径が30Å以下で、全細孔
容積が0.05ml/g以下である水酸化ニッケル粉末活物質を
主体としたニッケル電極用活物質。
1. A nickel hydroxide powder active material containing 1 to 3 wt% of magnesium in a crystal in a solid solution state, having an internal pore radius of 30 Å or less and a total pore volume of 0.05 ml / g or less. Active material for nickel electrode mainly composed of
【請求項2】水酸化ニッケル及び少量のマグネシウムの
硫酸塩水溶液を出発原料とし、苛性ソーダもしくは苛性
カリウム及び硫酸アンモニウムによりPH11〜13に制御さ
れた水溶液中で析出させることにより、1〜3wt%のマ
グネシウムを結晶中に固溶状態で含有し、且つ内部細孔
半径が30Å以下で、全細孔容積が0.05ml/g以下である水
酸化ニッケル粉末活物質を主体としたニッケル電極用活
物質の製造方法。
2. A nickel-hydroxide and a small amount of a magnesium sulfate aqueous solution are used as starting materials, and caustic soda or potassium caustic and ammonium sulfate are precipitated in an aqueous solution controlled to PH 11 to 13 to give 1 to 3 wt% of magnesium. A method for producing an active material for a nickel electrode mainly containing a nickel hydroxide powder active material, which is contained in a crystal in a solid solution state, and has an inner pore radius of 30Å or less and a total pore volume of 0.05 ml / g or less. .
【請求項3】1〜3wt%のマグネシウムを結晶中に固溶
状態で含有した水酸化ニッケル粉末活物質を主成分とす
るペーストを、耐アルカリ性金属多孔体に充填したニッ
ケル電極。
3. A nickel electrode in which an alkali-resistant metal porous body is filled with a paste containing a nickel hydroxide powder active material as a main component and containing 1 to 3 wt% of magnesium in a solid solution state in a crystal.
【請求項4】前記水酸化ニッケル粉末活物質に、アルカ
リ電解液に溶解してコバルト錯イオンを生成するコバル
ト化合物を5〜15wt%の範囲で添加し、且つそのコバル
ト化合物が該活物質と遊離状態にある請求項3記載のニ
ッケル電極。
4. A nickel compound which is dissolved in an alkaline electrolyte to form a cobalt complex ion is added to the nickel hydroxide powder active material in the range of 5 to 15 wt%, and the cobalt compound is liberated from the active material. The nickel electrode according to claim 3, which is in a state.
【請求項5】前記水酸化ニッケル粉末活物質に、マグネ
シウム以外に少量のコバルトが固溶状態で共存する請求
項3記載のニッケル電極。
5. The nickel electrode according to claim 3, wherein, in addition to magnesium, a small amount of cobalt coexists as a solid solution in the nickel hydroxide powder active material.
【請求項6】導電性付加剤を含まずコバルト化合物添加
剤によってのみ耐アルカリ性金属多孔体と活物質間の導
電性が保たれた請求項3記載のニッケル電極。
6. The nickel electrode according to claim 3, wherein the electroconductivity between the alkali-resistant metal porous body and the active material is maintained only by the cobalt compound additive without containing the electroconductive additive.
【請求項7】マグネシウムを結晶中に固溶状態で含有す
るとともにコバルト化合物を遊離状態で添加した水酸化
ニッケル粉末活物質を主成分とするペーストを、耐アル
カリ性金属多孔体に充填したニッケル電極を準備し、該
ニッケル電極を用いて化成することなく電池に組み立
て、電解液注液後一定時間放置し、該コバルト化合物を
完全に溶解−再析出させた後に初充電するアルカリ電池
の製造方法。
7. A nickel electrode in which an alkali-resistant metal porous body is filled with a paste containing a magnesium hydroxide in a solid solution state in a crystal as a solid solution and a cobalt compound added in a free state as a main component of a nickel hydroxide powder active material. A method for producing an alkaline battery, which is prepared, assembled into a battery using the nickel electrode without being formed, and allowed to stand for a certain period of time after injecting an electrolytic solution to completely dissolve and re-precipitate the cobalt compound and then charge the battery for the first time.
JP63262047A 1988-07-19 1988-10-18 Active material for nickel electrode, nickel electrode and alkaline battery using the same Expired - Lifetime JPH0685325B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63262047A JPH0685325B2 (en) 1988-10-18 1988-10-18 Active material for nickel electrode, nickel electrode and alkaline battery using the same
DE68917045T DE68917045T2 (en) 1988-07-19 1989-04-20 Nickel electrode for an alkaline battery.
EP89303952A EP0353837B1 (en) 1988-07-19 1989-04-20 A nickel electrode for an alkaline battery
US07/358,118 US4985318A (en) 1988-07-19 1989-05-30 Alkaline battery with a nickel electrode
US08/005,157 USRE34752E (en) 1988-07-19 1993-01-15 Alkaline battery with a nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262047A JPH0685325B2 (en) 1988-10-18 1988-10-18 Active material for nickel electrode, nickel electrode and alkaline battery using the same

Publications (2)

Publication Number Publication Date
JPH02109261A JPH02109261A (en) 1990-04-20
JPH0685325B2 true JPH0685325B2 (en) 1994-10-26

Family

ID=17370293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262047A Expired - Lifetime JPH0685325B2 (en) 1988-07-19 1988-10-18 Active material for nickel electrode, nickel electrode and alkaline battery using the same

Country Status (1)

Country Link
JP (1) JPH0685325B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69223116T2 (en) * 1991-06-14 1998-04-02 Yuasa Battery Co Ltd NICKEL ELECTRODE FOR ALKALINE BATTERIES
JP3738052B2 (en) * 1994-09-20 2006-01-25 三洋電機株式会社 Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
CN1233055C (en) 2000-06-16 2005-12-21 松下电器产业株式会社 Anode active material for alkali storage battery, anode including samd, and alkali storage battery
JP4330832B2 (en) 2001-12-07 2009-09-16 パナソニック株式会社 Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543836A (en) * 1977-06-10 1979-01-12 Denki Kagaku Kogyo Kk Dryyspray process
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPS61138458A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543836A (en) * 1977-06-10 1979-01-12 Denki Kagaku Kogyo Kk Dryyspray process
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPS61138458A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Alkaline battery

Also Published As

Publication number Publication date
JPH02109261A (en) 1990-04-20

Similar Documents

Publication Publication Date Title
JPH0724218B2 (en) Nickel electrode for alkaline battery and battery using the same
USRE34752E (en) Alkaline battery with a nickel electrode
JPH0777129B2 (en) Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JP2682162B2 (en) Nickel electrode active material for alkaline storage batteries
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP3296754B2 (en) Nickel electrode active material for alkaline storage battery and method for producing the same
US7147676B2 (en) Method of preparing a nickel positive electrode active material
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP4330832B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JPH0685325B2 (en) Active material for nickel electrode, nickel electrode and alkaline battery using the same
JP3324781B2 (en) Alkaline secondary battery
JP2679274B2 (en) Nickel-hydrogen battery
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JP3239410B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPH0568068B2 (en)
JPH04328257A (en) Paste type nickel pole
JPH0917429A (en) Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery
JP3454274B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH01267957A (en) Nickel electrode for alkaline battery and battery using it
JP4467504B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH0584026B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term