JPH02109261A - Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode - Google Patents

Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode

Info

Publication number
JPH02109261A
JPH02109261A JP63262047A JP26204788A JPH02109261A JP H02109261 A JPH02109261 A JP H02109261A JP 63262047 A JP63262047 A JP 63262047A JP 26204788 A JP26204788 A JP 26204788A JP H02109261 A JPH02109261 A JP H02109261A
Authority
JP
Japan
Prior art keywords
active material
nickel
nickel hydroxide
magnesium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63262047A
Other languages
Japanese (ja)
Other versions
JPH0685325B2 (en
Inventor
Keiichi Hasegawa
圭一 長谷川
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63262047A priority Critical patent/JPH0685325B2/en
Priority to EP89303952A priority patent/EP0353837B1/en
Priority to DE68917045T priority patent/DE68917045T2/en
Priority to US07/358,118 priority patent/US4985318A/en
Publication of JPH02109261A publication Critical patent/JPH02109261A/en
Priority to US08/005,157 priority patent/USRE34752E/en
Publication of JPH0685325B2 publication Critical patent/JPH0685325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent formation of gamma-NiOOH with a less-poisonous additive by adding a specified amount of magnesium to nickel hydroxide powder active material so as to meet a specific condition in the crystal of nickel hydroxide and to increase the density of nickel hydroxide. CONSTITUTION:When high density nickel hydroxide powder whose inner pore volume is minimized is used, a large amount of gamma-NiOOH is produced. If different kind of ions, especially magnesium ions exist in the crystal of nickel hydroxide, crystal distortion arises and the formation of gamma-NiOOH is decreased. When 1-3wt.% magnesium is added to nickel hydroxide powder active material, magnesium forms solid solution in the crystal of nickel hydroxide and the growth of internal transition pores having a pore radius of 30Angstrom or less is retarded, and the total pore volume is controlled to 0.05ml/g or less. The density of nickel hydroxide powder is increased, and the formation of high density gamma- NiOOH is prevented with a less-poisonous additive.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルw、極用活物質及びニッケル電極と
これを用いたアルカリ電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to nickel w, an electrode active material, a nickel electrode, and an alkaline battery using the same.

従来技術とその問題点 −aにニラクル電極を正極として用いたアルカリ電池は
、焼結式電池と称し、ニッケル粉末を穿孔鋼板等に焼結
した微孔基板に水酸化ニッケルを充填させたものである
。この方式の電極は、充填工程を何度も繰り返し非常に
煩雑であり、コストが高い。しかも、用いる基板の多孔
度が制限されるため、活物質の充填密度が低く、電極の
エネルギー密度40 D ”h/cc程度の[極しか製
造できない。
Prior art and its problems - A. An alkaline battery using a Niracle electrode as a positive electrode is called a sintered battery, and is made by filling a microporous substrate made by sintering nickel powder into a perforated steel plate or the like and filling it with nickel hydroxide. be. This type of electrode requires a very complicated filling process that requires repeated filling steps, and is expensive. Moreover, since the porosity of the substrate used is limited, the packing density of the active material is low, and only electrodes with an energy density of about 40 D''h/cc can be manufactured.

これを改良する試みとして、非焼結式電極の開発が広く
行われている。例えば、水酸化コバルト被覆水酸化ニッ
ケル粉末に導電性付加剤として、20awt%のグラフ
ァイト粉末を混合し、シー)状にした後、集電体である
ニッケル板に圧着して電極とする。この導電性付加剤そ
のものは電極の容量に寄与しないため、容量密度が低下
し、且つグラファイトの分解による炭酸根が多量に生成
する。このために、r/!!閉形ニッケルカドミウム電
池の如く、電解液量の少ない電池には使用できない。上
記欠点を克服するべく、95%の高多孔度の金属繊維基
板を用いたペースト式ニッケル電極が来月化されつつあ
る。該電極は、硫酸ニッケル地水溶液と水酸化す) I
Jウム水溶液から作製された水酸化ニラクル粉末活物質
に、活物質間導電性のネットワークを形成スるC00粉
末を添加し、カルボキシメチル七ルローズを水に溶解し
た粘調液を加えペースト状態で繊維基板に充填して作製
される。この方式の電極は、焼結式電極に比べ安価であ
り、エネルギー密度も500 ′Ah/ccと高い。
In an attempt to improve this, non-sintered electrodes are being widely developed. For example, nickel hydroxide powder coated with cobalt hydroxide is mixed with 20 awt% graphite powder as a conductive additive, formed into a sheet shape, and then pressed onto a nickel plate as a current collector to form an electrode. Since this conductive additive itself does not contribute to the capacitance of the electrode, the capacitance density decreases and a large amount of carbonate radicals are generated due to the decomposition of graphite. For this reason, r/! ! It cannot be used in batteries with a small amount of electrolyte, such as closed nickel-cadmium batteries. In order to overcome the above drawbacks, a paste-type nickel electrode using a metal fiber substrate with a high porosity of 95% is being developed. The electrode is hydrated with a nickel sulfate aqueous solution) I
C00 powder, which forms a conductive network between active materials, is added to Niracle hydroxide powder active material prepared from a Jium aqueous solution, and a viscous solution of carboxymethyl hexarurose dissolved in water is added to form a paste into fibers. It is manufactured by filling a substrate. This type of electrode is cheaper than a sintered type electrode, and has a high energy density of 500'Ah/cc.

しかし、近年のポータプルエレクトロニクス機器の軽量
化に伴い、市場ニーズとして600”h/cc稈度の高
エネルギー密度が要求されている。これに対応するため
には、基板の多孔度に限界があることから、水酸化ニッ
ケル粉末そのものを高密度化する必要がある。高密度水
酸化ニッケル粉末は、鉄板のパーカライジング処理の原
料の一部として用いられている。その製造法は硝酸ニッ
ケルあるいは硫酸ニッケルを弱埴基性のアンモニア水溶
液中に溶解させ、ニッケルアンミン錯イオンとして安定
化させ、水酸化ナトリウム水溶液を加えながら、粒子内
部に空孔が発達しないように徐々に水酸化ニッケルとし
て析出させるものである。
However, with the weight reduction of portable electronic devices in recent years, the market needs a high energy density of 600"h/cc. In order to meet this demand, there is a limit to the porosity of the substrate. Therefore, it is necessary to make the nickel hydroxide powder itself highly dense.High-density nickel hydroxide powder is used as part of the raw material for the parkerizing treatment of iron plates.The manufacturing method is to weaken nickel nitrate or nickel sulfate. It is dissolved in an ammonia aqueous solution containing a clay base, stabilized as a nickel ammine complex ion, and gradually precipitated as nickel hydroxide while adding an aqueous sodium hydroxide solution to prevent the development of pores inside the particles.

この方式では、従来の中和法の如き、無秩序な析出を行
なわないために、粒界が少なく、結晶性の高い(細孔容
積が少ない)高密度な水酸化ニッケルとなる。
In this method, unlike the conventional neutralization method, disordered precipitation is not performed, so that the resulting nickel hydroxide has fewer grain boundaries and has high crystallinity (small pore volume) and high density.

しかしこの特異な物性故に、この粉末をそのま\電池用
活物質材料として用いるには、いくつかの問題点を有し
ている。
However, due to its unique physical properties, there are several problems when using this powder as it is as an active material for batteries.

例えば、水酸化ニッケル[%の充放電反応は、水酸化ニ
ッケルの結晶内をプロトンが自由に移動することによっ
て起る。ところが、水酸化ニッケルの高密度化に伴って
結晶が緻密になるため、結晶内のプロトン移動の自由さ
が限定される。しかも比表面積の減少により電流密度が
増大し、高次酸化物γ−N100Hが多量に生成するよ
うになり、2段放電及び[Wlの膨潤と言った放電並び
に寿命特性の悪化あるいは利用率低下といった現象をひ
きおこす。電極の致命的因子であるニッケル電極のγ−
NiOO1(生成に伴う膨am*ti、高密度19−N
i0OH力ラa密度r −)JiOOHへの密度変化に
起因するものである。γ−Ni0OHの生成防止に有効
な手段として、本発明者は既に少量のカドミウムの水酸
化ニッケルへの固溶体添加を見い出したが、公害の見地
よりカドミウム以外の有効な添加剤が望まれている。
For example, the charge/discharge reaction of nickel hydroxide occurs due to the free movement of protons within the nickel hydroxide crystal. However, as the density of nickel hydroxide increases, the crystal becomes denser, which limits the freedom of proton movement within the crystal. Moreover, the current density increases due to the decrease in specific surface area, and a large amount of higher-order oxide γ-N100H is generated, resulting in two-stage discharge and discharge such as [Wl swelling], deterioration of life characteristics, or reduction in utilization rate. cause a phenomenon. γ− of nickel electrodes, which is a fatal factor for electrodes
NiOO1 (swelling am*ti due to formation, high density 19-N
This is due to the density change to i0OH force a density r −) JiOOH. The present inventor has already discovered the addition of a small amount of cadmium as a solid solution to nickel hydroxide as an effective means for preventing the formation of γ-Ni0OH, but from the standpoint of pollution, effective additives other than cadmium are desired.

発明の目的 本発明は、水酸化ニッケル粉末をより高密度化し、更に
高密度化に伴うγ−NiOOHの生成を毒性の少ない添
加剤によって防止し、長持命化すると共に、活物質の利
用率を向上させたニッケル電極用活物質及びニッケル電
極と、これを用いたアルカリ電池を提供することを目的
とする0 発明の#:J成 本発明は、水酸化ニッケル粉末活物質にマグネシウムを
1〜3wt%添加し、該マグネシウムが水酸化ニッケル
の結晶中で固溶状急にあり、且つ細孔半径が50Å以上
の粒子内部遷#細孔の発達を阻止し、更に全細孔容積を
0.05”/9以下に制御したことを特徴とするニッケ
ル電極用活物質である。
Purpose of the Invention The present invention aims to increase the density of nickel hydroxide powder, prevent the formation of γ-NiOOH due to the increased density using less toxic additives, extend its lifespan, and increase the utilization rate of active materials. The purpose of the present invention is to provide an improved active material for a nickel electrode, a nickel electrode, and an alkaline battery using the same. The magnesium is present in solid solution in the crystals of nickel hydroxide, inhibits the development of intraparticle pores with a pore radius of 50 Å or more, and further reduces the total pore volume to 0.05"/ This is an active material for a nickel electrode, characterized in that it is controlled to 9 or less.

又、多孔性の耐アルカリ性金属m維基板を集電体とし、
水酸化ニッケル粉末活物質にマグネシウムを1〜5wt
%添加し、該マグネシウムが水酸化ニッケルの結晶中で
固溶状態にあるニッケルWL極用活物質を主成分とする
ペーストを充填したことを特徴とするニッケA[極であ
る。
In addition, a porous alkali-resistant metal fiber substrate is used as a current collector,
1-5wt of magnesium in nickel hydroxide powder active material
% and the magnesium is in a solid solution state in the crystals of nickel hydroxide.It is a nickel A[pole] characterized by being filled with a paste containing a nickel WL electrode active material as a main component.

内部細孔容積を最小限にした高密度水酸化ニッケル粉末
の場合、高次酸化物γ−NiOOHが多量に生成する。
In the case of a high-density nickel hydroxide powder with a minimized internal pore volume, a large amount of higher order oxide γ-NiOOH is produced.

しかしながら異種金属イオン特にマグネシウムイオンを
水酸化ニッ+ルの結晶中に配置すると結晶に歪を生じる
ため、ブ算トンの動きに自由さが増し、利用率の向上及
びγ−Ni0OHの生成を減少する作用があることを見
いだした。
However, when dissimilar metal ions, especially magnesium ions, are placed in the nickel hydroxide crystal, distortion occurs in the crystal, which increases the freedom of movement of the nickel hydroxide, improving the utilization rate and reducing the formation of γ-NiOH. I found that it works.

一般にはマグネシウムの添加はニッケルを極に悪影譬を
及ぼすといわれていたが、1〜3wt%の微量添加であ
れば、非常に高性能な電極が得られることが明らかにな
った。
It was generally said that the addition of magnesium would have an adverse effect on nickel, but it has become clear that an extremely high-performance electrode can be obtained by adding a trace amount of 1 to 3 wt%.

一方、水酸化ニッケルの結晶外においては、コバル)化
合物添加剤を溶解させ、集電体と水酸化ニッケル粒子間
を1(CiO02−+β−Co(OH)2反応によって
接紐させた後に充電する。しかる後に、充電と言う電気
化学的酸化によってβ−C。
On the other hand, outside the crystal of nickel hydroxide, a cobal) compound additive is dissolved, and the current collector and the nickel hydroxide particles are bonded through a 1(CiO02-+β-Co(OH)2 reaction) and then charged. After that, β-C is produced by electrochemical oxidation called charging.

(OH)2→0oOOH反応によって、導電率の高いオ
キシ水酸化コバルトに変化し集電体ニッケル繊維と水酸
化ニッケル粒子間の電子の流れをスムーズにし、利用率
を増大させる作用がある。この反応メカニズムを第1図
にモデル化して示した。モデル図で示すように、この電
極の重要な点は添加剤を溶解させ、集電体ニッケル繊維
と活物質を接続させるところにある。
Through the (OH)2→0oOOH reaction, it changes to cobalt oxyhydroxide, which has high conductivity, smoothes the flow of electrons between the current collector nickel fibers and the nickel hydroxide particles, and has the effect of increasing the utilization rate. This reaction mechanism is modeled and shown in Figure 1. As shown in the model diagram, the important point of this electrode is to dissolve the additive and connect the current collector nickel fibers and the active material.

実施例 以下、本発明における詳細について実施例により説明す
る。
EXAMPLES Hereinafter, details of the present invention will be explained using examples.

硫酸ニッケルに少量の硫酸マグネシウムを加えた水溶液
に硫酸アンモニウムを添加し、ニッケ/l’及びマグネ
シウムのアンミン錨イオンを形成させる。
Ammonium sulfate is added to an aqueous solution of nickel sulfate and a small amount of magnesium sulfate to form nickel/l' and magnesium ammine anchor ions.

この液を水酸化ナトリウム水溶液中に滴下しながら激し
い攪拌を行い、徐々に錯イオンを分解させてマグネシウ
ムの固溶体化した水酸化ニッケル粒子を析出成長させる
。この時水酸化ナトリウム水溶液はPHII〜13程度
の薄いアルカリ濃度にし、温度は40〜50℃の範囲で
徐々に析出させる。析出溶液のPHによって、種々な物
性の水酸化ニッケル粒子が得られる。
This solution is dropped into an aqueous sodium hydroxide solution while being vigorously stirred to gradually decompose the complex ions and to precipitate and grow nickel hydroxide particles containing magnesium as a solid solution. At this time, the aqueous sodium hydroxide solution is made to have a low alkaline concentration of about PHII to 13, and the temperature is in the range of 40 to 50°C to gradually precipitate. Nickel hydroxide particles with various physical properties can be obtained depending on the pH of the precipitation solution.

第2図に組成が水酸化ニッケルのみからなる粉末の内部
細孔容積とγ−NiOOH生戒率のPH生存率の関係を
示した。
FIG. 2 shows the relationship between the internal pore volume of a powder consisting only of nickel hydroxide and the PH survival rate of γ-NiOOH.

内部細孔容積は低いFT(はど少なく、より高密度な粉
末になる。一方、γ−NiOOHは低いPI(はど生成
しやすい傾向にある。二つの因子を満足させる領域は、
各々の変曲点に挟まれたハツチングで示したPH11付
近から13付近に至る領域である。
The internal pore volume has a low FT (fewer FT), resulting in a denser powder. On the other hand, γ-NiOOH has a low PI (poor volume) and tends to form easily.
This is a region from around PH11 to around PH13 shown by hatching between each inflection point.

第6図に細孔容積と比表面積の関係を示した。FIG. 6 shows the relationship between pore volume and specific surface area.

析出溶液のPHを変えることによって水酸化ニッケルの
細孔容積が変化したが1同時に比表面積も変化した。A
−Eが水酸化ニッケルのみで、Fが3wt%のマグネシ
ウムな固溶状態で添加したものであり、Gは従来法によ
る水酸化ニッケルのみのものである。
By changing the pH of the precipitation solution, the pore volume of nickel hydroxide changed, but at the same time, the specific surface area also changed. A
-E is only nickel hydroxide, F is added in a solid solution state of 3 wt % magnesium, and G is only nickel hydroxide according to the conventional method.

尚、従来法とは、PH14以上の高濃度アルカリに水酸
化ニッケル粒子を析出したものである。
Note that the conventional method is one in which nickel hydroxide particles are precipitated in a highly concentrated alkali having a pH of 14 or higher.

いずれも比表面積の増大に伴い粒子内部の細孔容積が増
大する傾向を示している。即ち、比表面積と細孔容積の
間には相関々係があり、マグネシウム添加の有無に関係
なく細孔容積の少ない高密度活物質は、比表面積が少な
い。
All of them show a tendency for the pore volume inside the particles to increase as the specific surface area increases. That is, there is a correlation between the specific surface area and the pore volume, and a high-density active material with a small pore volume has a small specific surface area regardless of whether magnesium is added or not.

第4図に従来法による水酸化ニッケルと本発明によるマ
グネシウム添加高密度水酸化ニラクル活物質の細孔径分
布の比較を示した。
FIG. 4 shows a comparison of the pore size distributions of nickel hydroxide produced by the conventional method and the magnesium-added high-density Niracle hydroxide active material produced by the present invention.

従来法による水酸化ニッケルGは、硫酸ニッケル塩水溶
液を50℃、PH−14,5の高濃度アルカリ溶液中に
滴下し析出させたものである。
Nickel hydroxide G produced by the conventional method is obtained by dropping an aqueous nickel sulfate salt solution into a highly concentrated alkaline solution of pH-14.5 at 50° C. to precipitate it.

0粒子は、約66 rr17gの比表面積、細孔半径1
5〜100人の幅広い範囲に渡り多量に存在する。その
細孔容積は、o、 1b6zlyyと粒子容積(0,4
1鴫り)の30〜40%にも達し、かなり空隙の大きい
粒子である。一方、本発明のマグネシウム添加高密度水
酸化ニッケルFは、その容積が0.028”/9と小さ
く、0粒子の%程度にすぎない。これは、1粒子が0粒
子よりも20〜30%高密度であるということである。
0 particles have a specific surface area of approximately 66 rr17g and a pore radius of 1
They exist in large numbers, ranging from 5 to 100 people. Its pore volume is o, 1b6zlyy and particle volume (0,4
It is a particle with considerably large voids, reaching 30 to 40% of the total porosity. On the other hand, the magnesium-added high-density nickel hydroxide F of the present invention has a small volume of 0.028"/9, which is only about % of 0 particles. This means that 1 particle is 20 to 30% larger than 0 particles. This means that it is highly dense.

即ち、活物質粒子が高密度であるためには、できるがぎ
り比表面積、及び空孔容積が小さなものでなければなら
ないことを示している。これらの水酸化ニッケル粉末に
、アルカリ電解液に溶解しGo(1)錯イオンを生成す
る少量のコバルト化合物、Coo、a−Co(OH)2
、β−Go(OH)2あるいは酢酸コバルIIの粉末を
混合した。しかる後、1%のカルボキシメチルセルロー
ズの溶解した水溶液を加えて流動性のあるベース)2を
作製した。このペースト液を多孔度95%の耐アルカリ
繊維基板、例えばニッケル繊維基板等に所定量充填させ
、乾燥後ニッケル電極とした。
That is, in order for the active material particles to have high density, the specific surface area and pore volume must be as small as possible. These nickel hydroxide powders contain a small amount of cobalt compound, Coo, a-Co(OH)2, which dissolves in an alkaline electrolyte to form Go(1) complex ions.
, β-Go(OH) 2 or Kobal II acetate powder were mixed. Thereafter, an aqueous solution in which 1% carboxymethyl cellulose was dissolved was added to prepare a fluid base (2). A predetermined amount of this paste liquid was filled into an alkali-resistant fiber substrate having a porosity of 95%, such as a nickel fiber substrate, and after drying, a nickel electrode was prepared.

活物質利用率並びに充放電によるγ−NiOOHの生成
率を知るために、このニッケル電極を正極とし、対極と
してカドミウム電極をポリプロピレン不織布セパレータ
を介して組立て、比重1.27の水酸化カリウム水溶液
を電解液として注入した。電解液注入後、電池は添加剤
であるコバルト化合物を腐食電位で溶解させ、水酸化ニ
ッケル粉末間を接続させるために、各種条件で放置した
。第5図に添加剤としてCtoOを用い、比表面積66
rrl/9の水酸化ニッケル粉末を用いて作製した電池
についての放置条件と活物質利用率の関係を示した。導
電性ネットワーク形成の重要な過程である放置条件は、
高濃度電解液及び高温度はど短期間で高い利用率の得ら
れる事を示しており、且つ溶解した000量が有効に作
用していることを示している。これは添加剤の溶解析出
による均一分散性(より完全なネットワーク形成)に起
因している。
In order to know the active material utilization rate and the production rate of γ-NiOOH due to charging and discharging, this nickel electrode was used as a positive electrode, and a cadmium electrode was assembled as a counter electrode with a polypropylene nonwoven fabric separator interposed therebetween, and a potassium hydroxide aqueous solution with a specific gravity of 1.27 was electrolyzed. Injected as a liquid. After injecting the electrolyte, the batteries were left under various conditions in order to dissolve the cobalt compound as an additive at a corrosive potential and to form connections between the nickel hydroxide powders. Figure 5 shows a specific surface area of 66 using CtoO as an additive.
The relationship between the storage conditions and the active material utilization rate for a battery manufactured using nickel hydroxide powder of rrl/9 is shown. The leaving conditions, which are important processes for conductive network formation, are as follows:
It is shown that a high concentration electrolyte and high temperature can provide a high utilization rate in a short period of time, and that the amount of dissolved 000 is effective. This is due to the uniform dispersibility (more complete network formation) of the additives due to solution deposition.

第6図に適切な放置条件下での各種水酸化ニッケルと活
物質利用率の関係を示した。活物質組成が水酸化ニッケ
ルのみから成るA〜Gは、比表面積と活物質利用率の間
に比例関係が存在する。この事実は、高い活物質利用率
を得るためには高い比表面積が必要であることを示して
いる。従って、前述の比表面積と細孔容積の関係より、
より高い活物質利用率を得るためには、より大きい細孔
容積を持つ、つまり低密度活物質の方が良いことを意味
しているから、究極として電極の高エネルギー密度化は
図れないことになる。活物質利用率が理論値に近いこと
から、要求される600n′Ah/ccのエネルギー密
度を満たす高密度活物質粉末の空孔容積は、 0.05
’%以下でなければならず、そのとき空孔容積と相関関
係にある比表面積は15〜30 ’/9である。
Figure 6 shows the relationship between various types of nickel hydroxide and active material utilization under appropriate storage conditions. In A to G, the active material composition of which is only nickel hydroxide, there is a proportional relationship between the specific surface area and the active material utilization rate. This fact indicates that a high specific surface area is necessary to obtain a high active material utilization rate. Therefore, from the relationship between specific surface area and pore volume mentioned above,
In order to obtain a higher active material utilization rate, it is better to use a low-density active material with a larger pore volume, which means that it is ultimately impossible to achieve a higher energy density in the electrode. Become. Since the active material utilization rate is close to the theoretical value, the pore volume of the high-density active material powder that satisfies the required energy density of 600 n'Ah/cc is 0.05.
%, and the specific surface area, which correlates with the pore volume, is 15-30'/9.

しかしながら、水酸化ニッケルの結晶中に少量のマグネ
シウムを添加したFは、比表面積が小さいにも拘らず、
従来粉末Gと変わらない高い利用率を示している。従来
粉末に比べ高密度粉末が、同一体積基板により多く充填
できるため極板単位体積あたりのエネルギー密度は、従
来粉末Gが504 Ah/ct: 、高密度粉末Fが6
20″IA、h/ccと高密度粉末Fが従来粉末Gより
も20%程度高い値を示している。
However, F, which is made by adding a small amount of magnesium to nickel hydroxide crystals, has a small specific surface area;
It shows the same high utilization rate as conventional powder G. Compared to conventional powder, more high-density powder can be filled into the same volume of substrate, so the energy density per unit volume of the electrode plate is 504 Ah/ct for conventional powder G and 6 for high-density powder F.
The high-density powder F has a value of 20''IA, h/cc that is about 20% higher than that of the conventional powder G.

活物質の高密度化による比表面積の減少により、電解液
から反応種プロトンの出入口が縮小するわけであるが、
マグネシウムを添加することで水酸化ニッケル結晶に歪
を持たせることにより、固相でのプロトン移動がスムー
ズになったものと考察される。即ち、利用率はプロトン
の移動量を意味していると言える。これは、粒子の比表
面積と結晶内部(固相)での拡散速度の二つの因子に支
配されており、結晶が同一の場合は、比表面積に支配さ
れ、結晶が異なる場合は内部歪に支配されるものと考察
される。活物質が反応するためには集電体から活物質粒
子表面にスムーズに電子を移動させる必要があり、上述
した如く遊離状態(水酸化ニッケルに固溶することなく
粒子表面に存在)にある導電性を持ったCooOH粒子
のネットワークが不可欠である。このネットワークをつ
くるcoo B加削については、添加剤量を増加させる
と、活物質利用率も増加する。しかし、添加剤そのもの
は、導電性に寄与するのみで実際には放電しないため、
極板エネルギー密度は、15%付近より低下する傾向を
示している。
As the specific surface area decreases due to the high density of the active material, the entrance and exit for reactive species protons from the electrolyte decreases.
It is thought that the addition of magnesium creates strain in the nickel hydroxide crystal, which makes proton transfer in the solid phase smoother. In other words, the utilization rate can be said to mean the amount of proton movement. This is controlled by two factors: the specific surface area of the particles and the diffusion rate inside the crystal (solid phase).If the crystals are the same, it is controlled by the specific surface area, and if the crystals are different, it is controlled by the internal strain. It is considered that it will be done. In order for the active material to react, it is necessary to smoothly move electrons from the current collector to the surface of the active material particles, and as mentioned above, the conductivity in the free state (existing on the particle surface without being dissolved in nickel hydroxide) A network of CooOH particles with properties is essential. Regarding the coo B machining that creates this network, increasing the amount of additive also increases the active material utilization rate. However, since the additive itself only contributes to conductivity and does not actually discharge,
The plate energy density shows a tendency to decrease from around 15%.

1Cの高電流密度で充電し、充1*期の極板におけるγ
−NiOOH生威量と活物質粉末の11@の相関関係を
X線解析により調べた。X線回折ピークを第8図に示す
Charging at a high current density of 1C, γ at the plate in the 1* charging period
The correlation between -NiOOH yield and 11@ of the active material powder was investigated by X-ray analysis. The X-ray diffraction peaks are shown in FIG.

第9図に示す如く、水酸化ニッケルの結晶中にマグネシ
ウムな固溶状態で添加すれば、添加量の増加に伴いγ−
NiOOHの生成量が減少することがわかる。
As shown in Figure 9, if magnesium is added as a solid solution in the crystals of nickel hydroxide, as the amount added increases, γ-
It can be seen that the amount of NiOOH produced decreases.

マグネシウムのγ−NiOOHの生成を抑制する効果は
、水酸化ニッケルの製造方法、すなわち析出PHによっ
ても影響され、第10図に示される如く、従来法で作製
した場合と異なっている。特に本発明の場合、従来法に
比較し充填末期に存在している可逆性の悪いγ−NiO
OHの内、60〜50%が放電できることに特徴がある
The effect of magnesium in suppressing the production of γ-NiOOH is also influenced by the method of producing nickel hydroxide, that is, the precipitation pH, and as shown in FIG. 10, it is different from that produced by the conventional method. In particular, in the case of the present invention, γ-NiO, which has poor reversibility, exists at the end of filling compared to the conventional method.
The feature is that 60 to 50% of OH can be discharged.

このことにより、充放電の繰り返しによるγ−NiOO
Hの蓄積をより防止でき、電極の長寿命化を図ることが
できる。このように、固溶体化した添加剤の効果は、活
物質析出条件によって変化する。しかし、少なくとも本
発明のマグネシウム添加においては、従来の高濃度アル
カリ水溶液中で析出させるよりも薄いアルカリ水溶液中
で析出させる方が優れていることがわかる。
By this, γ-NiOO due to repeated charging and discharging
Accumulation of H can be further prevented, and the life of the electrode can be extended. In this way, the effect of the solid solution additive changes depending on the active material precipitation conditions. However, it can be seen that at least in the case of adding magnesium according to the present invention, precipitation in a dilute aqueous alkaline solution is better than precipitation in a conventional high concentration aqueous alkaline solution.

第11図に過充電状態におけるγ−NiOO)(生成率
と電極の厚み変化の関係を示した。γ−NiOOH生成
率が高いほど極板厚みが大きく増加している。つまり長
寿命な電極を得ようとすればγ−NiOOHの生成を抑
える必要があり、この点でもマグネシウム添加は非常に
効果のあることがわかる。
Figure 11 shows the relationship between the γ-NiOOH production rate and changes in electrode thickness in an overcharged state. The higher the γ-NiOOH production rate, the greater the electrode plate thickness. In order to obtain this, it is necessary to suppress the formation of γ-NiOOH, and it can be seen that addition of magnesium is very effective in this respect as well.

また、従来法の場合は、マグネシウムを1wt%以上添
加すると水酸化ニッケルと遊離した水酸化マグネシウム
の層が出現したが、本発明であると3wt%程度まで遊
離しないことが各種機器分析によって明らかになった。
In addition, in the case of the conventional method, when 1 wt% or more of magnesium was added, a layer of nickel hydroxide and free magnesium hydroxide appeared, but various instrumental analyzes revealed that with the present invention, the separation does not occur up to about 3 wt%. became.

更に、マグネシウムの多1添加は、第12図に示される
ように、水酸化ニッケルの酸化電位をj!lにシフトし
、酸素発生電位との電位差を小さくするため、充電中に
おける水酸化ニッケルの酸化反応と酸素発生反応の競合
反応が充電初期から起こり易くなり、いわゆる充電受は
入れ性能が悪化する。
Furthermore, the addition of a large amount of magnesium increases the oxidation potential of nickel hydroxide to j!, as shown in FIG. In order to reduce the potential difference with the oxygen generation potential by shifting to 1, a competitive reaction between the oxidation reaction of nickel hydroxide and the oxygen generation reaction during charging tends to occur from the early stage of charging, and the so-called charging performance deteriorates.

更に遊離したマグネシウムは、a9(OH)2となり充
放電反応をも阻害する。従って、第8.9゜11図に示
されるように6〜8wt%添加におけるγ−NiOOH
生成防止効果が大きく見えるのは、活物質が充電されて
い1よいためであり、これを裏付けるように第16図に
おいて6wt%以上の添加で活物質利用率の急激な低下
がみられる。
Furthermore, the liberated magnesium becomes a9(OH)2 and also inhibits the charge/discharge reaction. Therefore, as shown in FIG.
The reason why the formation prevention effect appears to be large is because the active material is well charged.As evidence of this, in FIG. 16, a rapid decrease in the active material utilization rate is seen when 6 wt% or more is added.

1− Ni0OHを多量に生成する、マグネシウムを含
まない高密度粉末Aの場合、第14図のように2段放電
となるが、マグネシウム添加高密度粉末は1− Ni0
OH生成が防止されておりこのようなことはない。また
、マグネシウム添加により、充電の場合同様、活物質で
あるNi0OHの還元電位が責にシフトすることがわか
る。過失、ニッケ/l/電極添加剤において酸化還元電
位の責な方向へのシフトはあまり報告された例がなく、
これはマグネシウム添加の大きな特徴であるといえる。
In the case of high-density powder A that does not contain magnesium and produces a large amount of 1-Ni0OH, a two-stage discharge occurs as shown in Fig. 14, but in the case of high-density powder with magnesium addition, 1-Ni0
This does not occur because OH generation is prevented. Furthermore, it can be seen that by adding magnesium, the reduction potential of Ni0OH, which is an active material, shifts to the negative side, as in the case of charging. There have been few reports of a shift in the redox potential in the negative direction with Nickel/L/electrode additives due to negligence.
This can be said to be a major feature of magnesium addition.

このため、マグネシウム添加高密度粉末を正極に用いた
電池を作製した場合、放電電圧の高い電池を得ることが
できる。
Therefore, when a battery is manufactured using the magnesium-added high-density powder as a positive electrode, a battery with a high discharge voltage can be obtained.

このような酸化還元電位のシフトについて詳しい検討は
なされていないが、前述のように、マグネシウムを添加
することで水酸化ニッケル結晶内に歪を起こし、プロト
ンの固相内拡散がスムースになったものと考察される。
Although detailed studies have not been conducted on this shift in redox potential, as mentioned above, the addition of magnesium causes strain in the nickel hydroxide crystal, resulting in smoother diffusion of protons within the solid phase. It is considered that.

このマグネシウムの効果は、他の異種元素例えばコバル
トが固溶状態で共存していても同じ効果を有する。第1
5図は、活物質、充放電温度及び活物質利用率の関係を
示したものである。
This effect of magnesium is the same even if other different elements such as cobalt coexist in a solid solution state. 1st
Figure 5 shows the relationship among active materials, charge/discharge temperatures, and active material utilization rates.

マグネシウムとコバルトの両者を固溶体添加したHにお
いては、マグネシウム単独添加のFより高温下(約45
℃)での充電性能の向上が認められた。また、第11図
に示されるように、従来粉末に添加されたことのあるカ
ドミウムにもマグネシウム添加と同様γ−NiO01(
生成防止の効果があった。
In H, in which both magnesium and cobalt are added as a solid solution, the temperature at a higher temperature (approximately 45
An improvement in charging performance was observed at temperatures (℃). Furthermore, as shown in Figure 11, γ-NiO01 (
It was effective in preventing generation.

第16図tこCo0OHのネットワークを形成させる添
加剤について、活物質利用率の関係を示した。
FIG. 16 shows the relationship between active material utilization rates for additives that form a Co0OH network.

活物質利用率の順位がCoo>β−Co(OH)2〉β
−Co(OH)2になる理由は、電解液への溶解性に起
因すると考えられる。卵ち、β−Co(OH)2の場合
、W、#液注液後溶存酸素で酸化され、褐色の溶解性の
低いCo(OH)3 (もしくはC10HO2であられ
される〕が形成され易く、一方、a −CO(OH)2
の場合、(1−00(OH)2→β−00(OH)2を
経由するためにC1o(OH)3がより形成されにくい
The order of active material utilization rate is Coo>β-Co(OH)2>β
The reason why it becomes -Co(OH)2 is thought to be due to its solubility in the electrolytic solution. In the case of β-Co(OH)2, it is easily oxidized by dissolved oxygen after injection of the W and # solution, and brown, less soluble Co(OH)3 (or oxidized with C10HO2) is easily formed. On the other hand, a -CO(OH)2
In the case of (1-00(OH)2→β-00(OH)2), C1o(OH)3 is more difficult to form.

COOの場合、Co(Ol()x がまったく形成しな
いために最も優れた添加剤といえる。より具体的には、
溶l!i¥速度の見地より、β−Co(OH)2を出発
原料に200〜800℃の高温不活性雰囲気下にて加熱
生成させた結晶化度の低いものが望ましい。
In the case of COO, it can be said to be the most excellent additive because Co(Ol()x is not formed at all.More specifically,
Melt! From the viewpoint of i\ rate, it is desirable to use β-Co(OH)2 as a starting material by heating it in an inert atmosphere at a high temperature of 200 to 800°C and have a low degree of crystallinity.

水酸化ニッケルなHo2O3イオン中に浸漬し、表面に
水酸化コバルトを析出させた粉末をペースト充填した1
c極は、000粉末を混合した電極よりも利用率が劣り
、β−Co(OR)2粉末を混合した電極程度であった
。更に、オキシ水酸化ニッケル粉末の表面に導電性の0
oOOH層を形成させた粉末(具体的には、C00粉末
を混合した!極を充放電した後、電極から集電体である
ニッケル繊維を除去したもの)を再度ペースト充填した
t極は、利用率が悪い。
1 Filled with a paste of powder that is immersed in nickel hydroxide Ho2O3 ions and has cobalt hydroxide precipitated on the surface.
The c-electrode had a lower utilization rate than the electrode mixed with 000 powder, and was comparable to the electrode mixed with β-Co(OR)2 powder. Furthermore, conductive 0 is applied to the surface of the nickel oxyhydroxide powder.
The t-pole, which is filled with paste again with the powder that formed the oOOH layer (specifically, the nickel fiber that is the current collector is removed from the electrode after charging and discharging the electrode mixed with C00 powder), cannot be used. Bad rate.

即ち、活物質粉末と集電体との導電性ネットワーク(C
oOOl()は、作製された!極中で形成されることが
不可欠である。つまり、予め活物質粒子表面に形成して
も、粒子間の接続が不完全になることを示している。従
って、電極を電池として組み立てた後K coo粉末の
溶解と再析出をおこなわせる工程が必要である。
That is, a conductive network (C
oOOl() has been created! It is essential that it be formed in the poles. In other words, this indicates that even if they are formed on the surfaces of the active material particles in advance, the connections between the particles are incomplete. Therefore, after assembling the electrode as a battery, a process of dissolving and redepositing the K coo powder is required.

Coo添加剤を用いて本発明により作製された電極は、
導電性付加剤を用いすとも溶解−再析出工程によって理
論利用率に近い高い利用率に達することにより、例えは
、グラファイト粉末を導電性付加剤とする電極のように
、酸化分解にともなう有害な炭酸根の生成がなく、密閉
形ニッケルーカドミウム電池の正極に用いることか出来
る。
Electrodes made according to the present invention using Coo additives are
Even if a conductive additive is used, a high utilization rate close to the theoretical one can be reached through the dissolution-re-precipitation process. It does not produce carbonate radicals and can be used as the positive electrode of sealed nickel-cadmium batteries.

尚、上記実施例において、基板として金属繊維焼結体を
示したが、これらをこ限定されるものではない。更に、
マグネシウムの添加効果は、本発明の製法以外にも、結
晶性の高い水酸化ニラ+by・子に対しては、同様1こ
しめられるものである。
In the above embodiments, a metal fiber sintered body is used as the substrate, but the present invention is not limited thereto. Furthermore,
In addition to the production method of the present invention, the effect of adding magnesium is also great for chive hydroxide with high crystallinity.

発明の効果 上述した如く、本発明は水酸化ニッケル粉末をより高密
度化し、更に高密度化に伴うγ−NiOO)lの生成を
毒性の少ない添加剤によって防止し、長寿命化するとと
もに、活物質の利用率を向上させ、且つ放tt位の高い
ニッケル11Ei用活物質及びニッケル電極とこれを用
いたアルカリ電池を提供することが出来るので、その工
業的価値は極めて大である。
Effects of the Invention As described above, the present invention increases the density of nickel hydroxide powder, prevents the formation of γ-NiOO) due to the increase in density using additives with low toxicity, extends the life of the powder, and increases its activity. Since it is possible to improve the utilization rate of materials and provide a nickel 11Ei active material and a nickel electrode with a high tt level and an alkaline battery using the same, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、コバルト化合物の溶解−析出機構のモデル図
である。 第2図は、析出溶液PHと粒子内部細孔容積及びγ−N
iOOHの生成率との相関を示した図である。 第5図は、水酸化ニッケル粒子の比表面積と細孔容積の
関係を示した図である。 第4図は、従来の水酸化ニッケル粉末と本発明の高密度
水酸化ニッケル粉末の細孔径分布の曲線を示した図であ
る。 第5図は、放置条件と活物質利用率の関係を示した図で
ある。 第6図は、水酸化ニッケルの種類と活物質利用率の関係
を示した図である。 第7図は、Coo添加量と活物質利用率、極板体積あた
りのエネルギー密度との関係を示した図である。 第8図は、各種マグネシウム添加高密度粉末活物質の充
電末期のX線回折ピークである。 第9図は、マグネシウム添加量とγ−N±○○Hの生成
量の関係を示したものである。 第10図は、各種水酸化ニッケルの充放電末期における
γ−NiOOHの生成比率を示した図である。 第11図は、各種添加剤を含む活物質を用いた電極を過
充電した時の7−− Ni0OH生成率と電極厚み増加
率を示した図である。 第12図は、各種マグネシウム添加電極の充電電位特性
である。 第13図は、マグネシウム添加量と活物質利用率の関係
を示した図である。 第14図は、各種マグネシウム添加電極の放電電位特性
である。 第15図は、活物質、充放電温度及び活物質利用率の関
係を示した図である。 第16図は、各種コバルト化合物添加剤と活物質の利用
率との関係を示した図である。
FIG. 1 is a model diagram of the dissolution-precipitation mechanism of a cobalt compound. Figure 2 shows the precipitation solution PH, particle internal pore volume, and γ-N.
FIG. 3 is a diagram showing the correlation with the production rate of iOOH. FIG. 5 is a diagram showing the relationship between the specific surface area and pore volume of nickel hydroxide particles. FIG. 4 is a diagram showing pore size distribution curves of a conventional nickel hydroxide powder and a high-density nickel hydroxide powder of the present invention. FIG. 5 is a diagram showing the relationship between storage conditions and active material utilization rate. FIG. 6 is a diagram showing the relationship between the type of nickel hydroxide and the active material utilization rate. FIG. 7 is a diagram showing the relationship between the amount of Coo added, the active material utilization rate, and the energy density per electrode plate volume. FIG. 8 shows the X-ray diffraction peaks of various magnesium-added high-density powder active materials at the end of charging. FIG. 9 shows the relationship between the amount of magnesium added and the amount of γ-N±○○H produced. FIG. 10 is a diagram showing the production ratio of γ-NiOOH at the final stage of charging and discharging of various nickel hydroxides. FIG. 11 is a diagram showing the 7--Ni0OH production rate and electrode thickness increase rate when an electrode using an active material containing various additives is overcharged. FIG. 12 shows charging potential characteristics of various magnesium-added electrodes. FIG. 13 is a diagram showing the relationship between the amount of magnesium added and the active material utilization rate. FIG. 14 shows the discharge potential characteristics of various magnesium-added electrodes. FIG. 15 is a diagram showing the relationship among active materials, charge/discharge temperatures, and active material utilization rates. FIG. 16 is a diagram showing the relationship between various cobalt compound additives and the utilization rate of the active material.

Claims (7)

【特許請求の範囲】[Claims] (1)水酸化ニッケル粉末活物質にマグネシウム1〜3
wt%添加し、該マグネシウムが水酸化ニッケルの結晶
中で固溶状態にあり、且つ細孔半径が30Å以上の内部
遷移細孔の発達を阻止し、更に全細孔容積を0.05m
l/g以下に制御したことを特徴とするニッケル電極用
活物質。
(1) Magnesium 1 to 3 in nickel hydroxide powder active material
wt%, the magnesium is in a solid solution state in the crystal of nickel hydroxide, inhibits the development of internal transition pores with a pore radius of 30 Å or more, and further reduces the total pore volume to 0.05 m
An active material for a nickel electrode, characterized in that it is controlled to 1/g or less.
(2)多孔性の耐アルカリ性金属繊維基板を集電体とし
、水酸化ニッケル粉末活物質にマグネシウムを1〜3w
t%添加し、該マグネシウムが水酸化ニッケルの結晶中
で固溶状態にあるニッケル電極用活物質を主成分とする
ペーストを充填したことを特徴とするニッケル電極。
(2) A porous alkali-resistant metal fiber substrate is used as a current collector, and 1 to 3 w of magnesium is added to the nickel hydroxide powder active material.
A nickel electrode characterized in that it is filled with a paste whose main component is an active material for a nickel electrode in which magnesium is added in a solid solution state in crystals of nickel hydroxide.
(3)水酸化ニッケル及び少量のマグネシウムを含む活
物質粉末が、それらの硫酸塩水溶液を出発原料とし、苛
性ソーダもしくは苛性カリウム及び硫酸アンモニウムに
よりPH11〜13に制御された水溶液中で析出させた
特許請求の範囲第1項記載のニッケル電極用活物質。
(3) A patent claim in which an active material powder containing nickel hydroxide and a small amount of magnesium is precipitated in an aqueous solution whose pH is controlled to 11 to 13 with caustic soda or caustic potassium and ammonium sulfate, using an aqueous sulfate solution thereof as a starting material. The active material for a nickel electrode according to item 1.
(4)マグネシウムを固溶状態で含有する水酸化ニッケ
ル活物質粉末に、アルカリ電解液に溶解しコバルト錯イ
オンを生成するコバルト化合物を5〜15wt%の範囲
で添加し、且つそのコバルト化合物粉末が活物質粉末と
遊離状態にある特許請求の範囲第2項記載のニッケル電
極。
(4) A cobalt compound that dissolves in an alkaline electrolyte to generate cobalt complex ions is added to a nickel hydroxide active material powder containing magnesium in a solid solution state in a range of 5 to 15 wt%, and the cobalt compound powder is The nickel electrode according to claim 2, which is in a free state with the active material powder.
(5)マグネシウム以外に少量のコバルトが固溶状態で
共存する特許請求の範囲第2項記載のニッケル電極。
(5) The nickel electrode according to claim 2, in which a small amount of cobalt in addition to magnesium coexists in a solid solution state.
(6)導電性付加剤を含まずコバルト化合物添加剤によ
ってのみニッケル繊維と活物質間の導電性が保たれた特
許請求の範囲第2項記載のニッケル電極。
(6) The nickel electrode according to claim 2, in which the conductivity between the nickel fiber and the active material is maintained only by the cobalt compound additive without containing a conductive additive.
(7)特許請求の範囲第2項記載のニッケル電極を用い
化成することなく電池に組み立て、電解液注液後1日以
上放置しコバルト化合物添加剤を完全に溶解−再析出さ
せた後に初充電することを特徴とするアルカリ電池。
(7) Assemble a battery using the nickel electrode described in claim 2 without chemical conversion, and leave it for at least one day after pouring the electrolyte to completely dissolve and reprecipitate the cobalt compound additive before charging it for the first time. An alkaline battery characterized by:
JP63262047A 1988-07-19 1988-10-18 Active material for nickel electrode, nickel electrode and alkaline battery using the same Expired - Lifetime JPH0685325B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63262047A JPH0685325B2 (en) 1988-10-18 1988-10-18 Active material for nickel electrode, nickel electrode and alkaline battery using the same
EP89303952A EP0353837B1 (en) 1988-07-19 1989-04-20 A nickel electrode for an alkaline battery
DE68917045T DE68917045T2 (en) 1988-07-19 1989-04-20 Nickel electrode for an alkaline battery.
US07/358,118 US4985318A (en) 1988-07-19 1989-05-30 Alkaline battery with a nickel electrode
US08/005,157 USRE34752E (en) 1988-07-19 1993-01-15 Alkaline battery with a nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63262047A JPH0685325B2 (en) 1988-10-18 1988-10-18 Active material for nickel electrode, nickel electrode and alkaline battery using the same

Publications (2)

Publication Number Publication Date
JPH02109261A true JPH02109261A (en) 1990-04-20
JPH0685325B2 JPH0685325B2 (en) 1994-10-26

Family

ID=17370293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63262047A Expired - Lifetime JPH0685325B2 (en) 1988-07-19 1988-10-18 Active material for nickel electrode, nickel electrode and alkaline battery using the same

Country Status (1)

Country Link
JP (1) JPH0685325B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022934A1 (en) * 1991-06-14 1992-12-23 Yuasa Corporation Nickel electrode for alkali storage batteries
EP0716462A1 (en) * 1994-09-20 1996-06-12 SANYO ELECTRIC Co., Ltd. Nickel electrode active material; a nickel electrode and a nickel alkali storage cell using such nickel electrode active material; and production methods of such material, electrode and cell
US6783892B2 (en) 2000-06-16 2004-08-31 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for alkaline storage batteries, and positive electrode and alkaline storage battery using the same
US7335445B2 (en) 2001-12-07 2008-02-26 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543836A (en) * 1977-06-10 1979-01-12 Denki Kagaku Kogyo Kk Dryyspray process
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPS61138458A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543836A (en) * 1977-06-10 1979-01-12 Denki Kagaku Kogyo Kk Dryyspray process
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPS61138458A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Alkaline battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022934A1 (en) * 1991-06-14 1992-12-23 Yuasa Corporation Nickel electrode for alkali storage batteries
US5366831A (en) * 1991-06-14 1994-11-22 Yuasa Corporation Nickel electrode for alkaline battery
EP0716462A1 (en) * 1994-09-20 1996-06-12 SANYO ELECTRIC Co., Ltd. Nickel electrode active material; a nickel electrode and a nickel alkali storage cell using such nickel electrode active material; and production methods of such material, electrode and cell
US5629111A (en) * 1994-09-20 1997-05-13 Sanyo Electric Co. Ltd. Nickel electrode active material; a nickel electrode and a nickel alkali storage cell using such nickel electrode active material; and production methods of such material, electrode, and cell
US6783892B2 (en) 2000-06-16 2004-08-31 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for alkaline storage batteries, and positive electrode and alkaline storage battery using the same
US7335445B2 (en) 2001-12-07 2008-02-26 Matsushita Electric Industrial Co., Ltd. Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery

Also Published As

Publication number Publication date
JPH0685325B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
JPH0724218B2 (en) Nickel electrode for alkaline battery and battery using the same
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
US5691086A (en) Nickel active material for use in alkali storage cells and its manufactuiring method
JPH0230061A (en) Nickel electrode active material, and nickel electrode and alkaline battery using same
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JP2000113904A (en) Alkaline storage battery
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
US7147676B2 (en) Method of preparing a nickel positive electrode active material
JP3296754B2 (en) Nickel electrode active material for alkaline storage battery and method for producing the same
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
JP4330832B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JPH02109261A (en) Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
KR100205136B1 (en) Active material for anode of nickel series cell and method manufacturing it
JP2679274B2 (en) Nickel-hydrogen battery
JP3744317B2 (en) Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH0613075A (en) Nickel electrode for alkaline storage battery
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP3454274B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH02234356A (en) Sealed-type alkali battery
JPH0584026B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term