JP3744317B2 - Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same - Google Patents

Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same Download PDF

Info

Publication number
JP3744317B2
JP3744317B2 JP2000184177A JP2000184177A JP3744317B2 JP 3744317 B2 JP3744317 B2 JP 3744317B2 JP 2000184177 A JP2000184177 A JP 2000184177A JP 2000184177 A JP2000184177 A JP 2000184177A JP 3744317 B2 JP3744317 B2 JP 3744317B2
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
storage battery
alkaline storage
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000184177A
Other languages
Japanese (ja)
Other versions
JP2002008649A (en
Inventor
弘之 坂本
秀勝 泉
徹 稲垣
陽一 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000184177A priority Critical patent/JP3744317B2/en
Priority to PCT/JP2001/004242 priority patent/WO2001097305A1/en
Priority to CNB018017185A priority patent/CN1233055C/en
Priority to US10/040,184 priority patent/US6783892B2/en
Publication of JP2002008649A publication Critical patent/JP2002008649A/en
Application granted granted Critical
Publication of JP3744317B2 publication Critical patent/JP3744317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の従属する技術分野】
本発明は、アルカリ蓄電池用正極およびアルカリ蓄電池に関する。
【0002】
【従来の技術】
近年、アルカリ蓄電池用正極は、基板形状、活物質形状、活物質組成および添加物などの改良により、容量密度が飛躍的に向上し、現在では容量密度600mAh/cc程度の正極が実用化されている。
【0003】
しかしながら、機器側からは一層の高出力化が求められ、高率放電時のエネルギー密度の向上が強く求められている。高率放電特性の向上を図るためには、従来から、電極の集電性を高める方法(または、抵抗を下げる方法)や活物質の充放電効率を高める方法が検討されてきた。これに対して、放電電位そのものを高い方向(貴な方向)へシフトさせることができれば、飛躍的な高出力化が期待できる。我々は、これまでに異種金属を固溶させることで水酸化ニッケルの改質を図ってきた。そのなかで、マグネシウムを固溶した水酸化ニッケルは放電電位が高いことに注目し、電極材料としての物性の適正化を検討してきた。
【0004】
このマグネシウムを固溶した水酸化ニッケルに関しては、従来から広く提案されており、以下のようなものがある。
【0005】
(1)特開平2−109261号公報では、マグネシウムを1〜3重量%固溶させた水酸化ニッケルにおいて、内部細孔半径が30Å以下で、全細孔容積が0.05ml/g以下であるものを正極活物質とすることが提案されている。これは、水酸化ニッケル粉末をより高密度化し、更に、マグネシウムの添加によってγ−NiOOHの生成を防止することで長寿命化するとともに、活物質の利用率を向上させたニッケル電極用活物質を提供することを目的とするものである。
【0006】
(2)特開平5−21064号公報では、正極作成時にマグネシウム等を1〜7重量%水酸化ニッケル粉末中に含有させ、球状または球状に類似した粒子と非球状粒子との混合物からなるものを正極活物質とすることが提案されている。これは、水酸化ニッケルの充填密度を向上させ、かつ、マグネシウムを含む異種金属群を添加することで、過充電時にγ−NiOOHの生成を抑制しサイクル寿命特性を向上させることを目的とするものである。
【0007】
(3)特開平5−41212号公報では、マグネシウム等を1〜7重量%水酸化ニッケル粉末中に含有させ、0.1μm以下の一次粒子が無数に集合した粒子であり、30Å以上の細孔半径を有する空間体積が全空間体積に対して20〜70%である水酸化ニッケルを正極活物質とすることが提案されている。これは、電解液の粒子内部への浸入を容易にすることで、電解液の粒子内部での偏在によるγ−NiOOHの生成を抑制し、更に、充放電初期の活物質利用率を向上させることを目的とするものである。なお、マグネシウムを含む異種金属群の添加は、前記(2)の提案と同様に、γ−NiOOHの生成を抑制しサイクル寿命特性を向上させることを目的とするものである。
【0008】
(4)特開平5−182662号公報では、内部細孔容積が0.14ml/g以下で、結晶格子が添加元素により一部置換された組織を有する水酸化ニッケル粉末を正極活物質とすることが提案されている。特に、水酸化ニッケルに固溶添加元素としては、活物質としての水酸化ニッケルの特性を損なう物であってはならないという条件から、Zn、Mg、Cd、Baが選ばれる。これは、内部細孔容積が小さい高密度水酸化ニッケル粉末において、マグネシウムを含む異種元素でニッケルの一部を置換することによって、水酸化ニッケル結晶格子に格子欠陥を形成し、プロトン移動の自由度を増加させることで、γ−NiOOHの生成を抑制しサイクル寿命特性を向上させることを目的とするものである。
【0009】
(5)特開平5−182663号公報では、内部細孔容積が0.14ml/gで、結晶格子がCo及びその他の添加元素により複合的に一部置換された組織を有する水酸化ニッケルを正極活物質とすることが提案されている。とくに、水酸化ニッケルに固溶される添加元素としては、Zn、Mg、Cd、Baが選ばれる。これは、Co及びその他のマグネシウムを含む異種元素でニッケルの一部を置換することによって、高温における充電効率を向上させ、同時に、γ−NiOOHの抑制しサイクル寿命特性を向上させることを目的としている。しかしながら、この技術は高率放電時に利用率が低下しやすいという課題が改善されておらず、高率放電特性と高温充電効率とを両立することは困難であった。
【0010】
(6)特開平11−219703号公報には、マグネシウムを水酸化ニッケルに固溶させかつ水酸化ニッケル中のニッケルに対してマグネシウムを0.5重量%〜0.5重量%含有させたマグネシウム固溶水酸化ニッケル粒子からなる基体粒子に、ナトリウムを含有したコバルト化合物からなる被覆層を形成させた複合粒子と、イットリウム金属及び/又はイットリウム化合物からなる活物質であって、前記基体粒子中のニッケルに対して、前記イットリウム金属及び/又はイットリウム化合物が、イットリウム元素換算で0.05重量%〜5.0重量%含有させるアルカリ蓄電池用正極活物質、およびそれを用いた非焼結式ニッケル極が提案されている。これにより、マグネシウムを固溶することでγ−NiOOHの生成を抑制しサイクル寿命特性を向上させることができ、さらに、ナトリウムを含有したコバルト化合物からなる被覆層を形成させ、イットリウム金属及び/またはイットリウム化合物を添加することで、充電受け入れ性を向上させることが可能であることを開示している。
【0011】
【発明が解決しようとする課題】
しかしながら、上記の提案は、いずれも充放電効率の向上、サイクル寿命特性の向上を狙いとしており、本発明者らのようにマグネシウムを固溶状態で含む水酸化ニッケルの高い放電電位を利用して、一層の高出力化を図ることを目的としたものではなかった。事実、上記提案に基づいて電池を試作したところ、目標とする満足な高率充放電特性を示す電池を得ることはできなかった。
【0012】
さらに、マグネシウムを固溶状態で含む水酸化ニッケルは高温における充電効率が低下するという問題がある。上記(5)の提案において、高温充電効率を向上させる技術が開示されているが、高率放電時に利用率が低下しやすいという課題が改善されていないため、高率放電特性と高温充電効率とを両立することは困難であった。
【0013】
従って、本発明は、放電電圧が高く、かつ、高率放電時に高い利用率を発現する(高率放電特性の優れた)アルカリ蓄電池用ニッケル正極およびそれを用いたアルカリ蓄電池を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、マグネシウムを固溶状態で含む水酸化ニッケルは高率放電時に利用率が低下しやすいことを見出した。この原因として、マグネシウムを固溶することで、水酸化ニッケルの結晶内に硫酸根が取り込まれやすくなると共に、マグネシウム固溶水酸化ニッケルの結晶構造が乱れやすくなり、高率放電時の分極が大きくなるとともに、導電性も著しく低下するため、高率放電特性が著しく低下するものと考えている。尚、結晶が乱れる(結晶性が低くなる)ことによって高率放電時の分極が大きくなる現象は、プロトン移動の自由度が低下するためと考えている。上記提案では、このような課題を改善する技術は開示されておらず、従って、高出力化のための活物質およびニッケル正極を得ることができなかったものと考えられる。
【0015】
この観点より、本発明者らの目的を達成すべく、本発明のマグネシウムを固溶した水酸化ニッケルを主成分とするニッケル正極は、水酸化ニッケルを、第1にマグネシウムの含有割合を水酸化ニッケル中の全金属元素に対して2モル%以上7モル%以下とし、第2に粉末のタップ密度を1.9g/cm3以上とし、第3にCuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピークの半価幅が0.7゜以上1.2゜以下の範囲となるようにし、第4に結晶内に含まれる硫酸根が0.5重量%以下となるようにすることを特徴とし、かつ、前記水酸化ニッケルとともに正極中にY、Yb、Lu、Ti、Caからなる群より選ばれた少なくとも1種を含む酸化物粉末を含有させるものである。
【0016】
まず、水酸化ニッケルに固溶する異種元素として選択すると、放電電位が高くなるため高出力な電池を得るには好ましい。但し、マグネシウムの含有量が2モル%より少ないと放電電位が高くなる効果が乏しく、逆に7モル%より多い場合は低率放電時においても利用率が低下するとともに、活物質である水酸化ニッケルの量が少なくなるため十分な電池容量が得られなくなる。
【0017】
水酸化ニッケルに固溶する異種元素としてマグネシウムを選択し、その含有量を2〜7モル%とするのみでは、目的とする高出力な正極は得られず、以下のように水酸化ニッケルの諸物性を適正化することで尚一層の飛躍的な高出力化を達成することができる。
【0018】
タップ密度としては1.9g/cm3以上が好ましく、さらに、2.1g/cm3以上であると特に好ましい。これは、1.9g/cm3より小さい場合では電極への充填密度が低下し高エネルギー密度化を図ることが困難であるとともに、異種固溶元素がマグネシウムで、硫酸根が結晶内に取り込まれやすいことから、活物質粉末の空隙が硫酸根との間で何らかの原因として関与しているものと考えられる。
【0019】
CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピークの半価幅が0.7゜以上1.2゜以下であることが望ましい。この数値範囲にあると、多少の硫酸根では結晶構造が乱れにくくなり、従ってプロトン移動の自由度が低下することがない。
【0020】
また、結晶内に含まれる硫酸根は0.5重量%以下であることが望ましい。特定のピークの半価幅が特定の値になるように水酸化ニッケルを作製しても、硫酸根が多すぎると、サイクルに伴い結晶構造が乱れてしまうからである。従って、上記結晶構造の適正化によりあまりに低い値を求める必要はないものの、通常、マグネシウム固溶の水酸化ニッケルを合成した場合の硫酸根量よりもわずかに低い値に設定するとよい。
【0021】
なお、マグネシウムを固溶状態で含む水酸化ニッケルにおいて、結晶が乱れる(結晶性が低くなる)ことによって高率放電時の分極が大きくなる現象は、プロトン移動の自由度が低下するためと考えている。
【0022】
さらに、正極活物質である上記水酸化ニッケルの適正化のみならず、正極に次のような技術を取り入れることで、高率放電特性の低下及び高温充電効率の低下の両課題を同時に改善できる。すなわち、前記活物質粉末を主成分とするニッケル正極には、Y、Yb、Lu、Ti、Caからなる群より選ばれた少なくとも一種を含む酸化物粉末を含むことが好ましい。これらの金属酸化物粉末は充電末期の酸素発生過電圧を上昇させ、高温充電効率を向上させることが可能となる。
【0023】
この本発明のニッケル正極を用いて、アルカリ蓄電池を構成すると、放電電圧の向上、高率放電特性の向上及び高温充電効率の向上を図ることができる。
【0024】
また、上記水酸化ニッケルを主成分とするニッケル正極と、負極と、電解液とからなるアルカリ蓄電池において、電解液中に水酸化ナトリウムを添加することで、充電末期の酸素発生過電圧が著しく上昇し高温充電効率も向上させることが可能となる。また、上記水酸化ニッケルを使用していることから同時に高出力化を図ることもできる。
【0025】
【発明の実施の形態】
また、Y、Yb、Lu、Ti、Caからなる群より選ばれた少なくとも一種を含む酸化物粉末の含有量は、水酸化ニッケルに対して0.5重量%以上3重量%以下であると好ましい。0.5重量%より少ないと酸素発生過電圧がほとんど上昇しないため、高温充電効率向上の効果が乏しい。また、3重量%より多いと放電反応が阻害され高率放電特性が低下する。
【0026】
また、本発明の水酸化ニッケル粉末は、CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピークAに対する、2θ=18〜21゜付近に位置する(001)面のピーク強度Bの比B/Aが1.1以上であると好ましい。前記ピーク強度比B/Aが1.1より大きい場合、すなわち、水酸化ニッケルの結晶におけるC軸方向の配向性が高い場合、高率放電時の分極を更に抑制することができ、高率放電特性を一層向上させることができる。これは、結晶において結晶面方向の結晶成長が優れており結晶面方向の結晶の均一性を示すものであり、結晶の乱れが少なくプロトン移動の自由度が一層向上したものと考えている。
【0027】
また、本発明の水酸化ニッケルは、コバルト酸化物により、その表面が被覆されていると好ましい。これにより、導電材としてのコバルト化合物の分布が均一になり導電性が向上することから、導電材の充填量を減らすことが可能となる。また、導電性の向上により、高率放電特性を一層向上させることができる。
【0028】
前記コバルト酸化物のコバルトの平均価数が3価より大きいと特に好ましい。コバルトの平均価数が3価より大きいことでコバルト化合物の導電性が著しく向上し、高率放電特性を一層向上させることができる。
【0029】
電解液中には、水酸化ナトリウムを含むことが望ましい。これは、先述したように、充電末期の酸素発生過電圧が著しく上昇し高温充電効率も上記電池よりもさらに向上させることが可能となるからである。水酸化ナトリウムの含有量が、電解液に対して1mol/l以上5mol/l以下であることが望ましい。1mol/lより少ないと、酸素発生過電圧がほとんど上昇しないため高温充電効率の向上の効果が乏しくなる。また、5mol/lより多いと、高率放電時の利用率が低下する。
【0030】
【実施例】
次に、本発明の実施例を説明する。
【0031】
(実施例1)
まず、活物質粒子の合成方法について説明する。
【0032】
硫酸ニッケルと硫酸マグネシウムを含む混合水溶液、水酸化ナトリウム水溶液、アンモニア水溶液を準備し、40℃に保持された反応装置内に、それぞれ0.5ml/minの流量で連続的に供給した。ここで、硫酸ニッケルと硫酸マグネシウムからなる混合水溶液の濃度を2.4mol/lとし、そのうち硫酸ニッケルと硫酸マグネシウムの混合比を、ニッケルとマグネシウムの総モル数に対するマグネシウムのモル数が5モル%になるようにした。また、アンモニア水溶液の濃度は5mol/lとし、水酸化ナトリウム水溶液の濃度は5mol/lとした。
【0033】
続いて、反応装置内のpHが一定となり、金属塩濃度と金属水酸化物粒子濃度のバランスが一定となり、定常状態になったところで、オーバーフローにて得られた懸濁液を採取し、デカンテーションにより沈殿物を分離した。これをpH13〜14の水酸化ナトリウム水溶液でアルカリ処理し、金属水酸化物粒子中の硫酸イオン等のアニオンを除去し、水洗し、乾燥した。このようにして、平均粒径10μmの粉末を得た。なお、前記pH13〜14の水酸化ナトリウム水溶液でアルカリ処理を行う時間や回数により、金属水酸化物中の硫酸イオン(硫酸根)含有量をコントロールすることができる。とくに、マグネシウムを固溶した水酸化ニッケルは硫酸根が取り込まれやすいため、温度を高温(60℃)とし、処理を行う回数を多くすることで、硫酸根の含有量が少なくなるようにした。
【0034】
組成分析を実施した結果、得られた金属水酸化物中のマグネシウム固溶量は、合成に用いた水溶液の混合比と同様に、5モル%であった。また、硫酸根量は0.3重量%であった。また、CuKα線を用いたX線回折パターンを記録したところ、β−Ni(OH)2型の単相であることが確かめられ、マグネシウムは水酸化ニッケルに固溶していることが確認された。また、2θ=37〜40゜付近の(101)面のピーク半価幅は0.892゜であった。また、タップ密度を測定したところ、2.03g/cm3を示し、高エネルギー密度化のために適した材料(電極支持体への充填性に優れた材料)であることが確かめられた。
【0035】
次に、上記方法にて得られた活物質を用いたニッケル正極の作製方法について説明する。
【0036】
上記のような製造条件で得られた金属水酸化物粉末100gに、10gの水酸化コバルト粉末、2gのY23粉末、30gの水を加え、混練してペースト状にした。このペーストを多孔度95%の発泡ニッケル基板に充填し、乾燥後、加圧成形することによって、ニッケル正極板を得た。このようにして得られた正極板を切断し、電極リードをスポット溶接し、理論容量1200mAhのニッケル正極を得た。ただし、ここで示すニッケル電極の容量密度は、活物質中のニッケルが一電子反応をするものとして計算したものである。
【0037】
ここでは、Y23粉末を含むニッケル正極の作製方法を示したが、同様にして、Yb23粉末、Lu23粉末、TiO2粉末、CaO粉末を含むニッケル正極も作製した。
【0038】
次に、アルカリ蓄電池の作製方法について説明する。
【0039】
負極には、公知のアルカリ蓄電池用負極を用いた。ここでは、約30μmの水素吸蔵合金MmNi3.55Co0.75Mn0.4Al0.3粉末からなる負極を用いた。これに水と結着剤のカルボキシメチルセルロースを加えてペースト状に混練した。このペーストを電極支持体に加圧充填して、水素吸蔵合金負極板を得た。この負極板を切断し、容量1920mAhの負極とした。前記の正極と負極を厚さ0.15mmのスルフォン化ポリプロピレン不織布からなるセパレータを間に介して渦巻状の電極群を構成した。この電極群を電池ケース内に挿入し、7mol/lの水酸化カリウム水溶液を2.2ml注入した後、作動弁圧約2.0MPaの安全弁を持つ封口板により電池ケースの開口部を密閉し、AAサイズの円筒密閉型ニッケル水素蓄電池を作製した。
【0040】
(比較例1)
実施例1に記載のニッケル正極作製方法において、Y23粉末を添加しないでペーストを調製した以外は実施例1と同様にして、ニッケル正極、および、それを用いた円筒密閉電池を作製した。
【0041】
実施例1および比較例1の円筒密閉電池を用い、それらの電池特性を評価した。20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、平均放電電圧と活物質の利用率A(20℃充電時)を算出した。また、次のサイクルでは、45℃において、120mAの電流で15時間充電し、20℃において、240mAの電流で電池電圧1.0Vまで放電し、その放電容量から活物質の利用率B(45℃充電時)を算出した。(表1)に、それらの結果を示す。なお、実施例1において、Y23を添加したニッケル正極を用いた電池を(A)とし、同様に、Yb23、Lu23、TiO2、CaOを添加したニッケル正極を用いた電池をそれぞれ(B)〜(E)とした。また、比較例1の電池を(F)とした。
【0042】
【表1】

Figure 0003744317
【0043】
(表1)から明らかなように、Y、Yb、Lu、Ti、Caからなる群より選ばれた少なくとも1種を含む酸化物粉末を含むことによって、高温における充電効率が著しく向上することがわかる。なお、放電電圧に関しては、マグネシウムを固溶した水酸化ニッケルを用いたことにより、いずれも高い値を示した。なお、ここでは、Y23、Yb23、Lu23、TiO2、CaOの組成からなる粉末を用いたが、これ以外の酸化物、または、水酸化物、または、それらの混合粉末に関しても同様な効果が認められた。
【0044】
(実施例2)
実施例1に記載のニッケル正極作製方法において、Y23粉末を水酸化ニッケルに対して0〜5重量%となるように添加した。それ以外は実施例1と同様にして、Y23粉末の含有量が異なるニッケル正極、および、それを用いた円筒密閉電池を作製し、それらの電池特性を評価した。評価方法は、20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、45℃において、120mAの電流で15時間充電し、20℃において、240mAの電流で電池電圧1.0Vまで放電し、その放電容量から活物質の利用率Bを算出した。また、次のサイクルでは、20℃において、120mAの電流で15時間充電し、20℃において、3600mAの電流で電池電圧1.0Vまで放電し、その放電容量から活物質の利用率Cを算出した。
【0045】
図1は、前記実験の結果を表す図であって、Y23粉末の含有量と45℃で充電した際の利用率および3600mA放電時の利用率との関係を示す特性図である。この図から、Y23粉末の含有量が0.5重量%以上で高温充電(45℃)時に高い利用率を示し、かつ、3重量%以下で高率放電(3600mA)時に高い利用率を示すことがわかる。従って、高温充電効率および高率放電特性を高めるためには、Y23粉末の含有量が0.5重量%以上3重量%以下であることが好ましい。なお、ここではY23粉末を用いた例を示したが、これ以外のY、Yb、Lu、Ti、Caからなる群より選ばれた少なくとも1種を含む酸化物粉末においても、同様な傾向が認められた。
【0046】
(実施例3)
実施例1に記載の活物質粒子合成条件において、硫酸ニッケルと硫酸マグネシウムからなる混合水溶液中の硫酸ニッケルと硫酸マグネシウムの混合比を、ニッケルとマグネシウムの総モル数に対するマグネシウムのモル数が0.5〜10モル%の範囲になるようにした。それ以外は実施例1と同様にして金属水酸化物粉末を得た。
【0047】
得られた金属水酸化物粉末は、いずれも平均粒径10μmの球状粉末であり、タップ密度は1.9g/cm3以上であった。組成分析を実施した結果、得られた金属水酸化物中のマグネシウム固溶量は、合成に用いた水溶液の混合比と同様に、0.5〜10モル%であった。また、硫酸根量は0.3±0.01重量%の範囲であった。また、CuKα線を用いたX線回折パターンを記録したところ、β−Ni(OH)2型の単相であることが確かめられ、マグネシウムは水酸化ニッケルに固溶していることが確認された。また、2θ=37〜40゜付近の(101)面のピーク半価幅は0.9±0.02゜であった。
【0048】
前記マグネシウム固溶量の異なるサンプルを正極活物質として、実施例1と同様にしてニッケル正極、および、それを用いた円筒密閉電池を作製し、それらの電池特性を評価した。評価方法は、20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、平均放電電圧と活物質の利用率を算出した。なお、利用率は、活物質中のニッケルが一電子反応したときの理論電気量に対して算出した。
【0049】
図2は、これらの実験の結果を表す図であって、マグネシウム固溶量に対する利用率と平均放電電圧との関係を示す特性図である。この図から、マグネシウム固溶量が2モル%以上で平均放電電圧が顕著に上昇する傾向があることがわかる。また、マグネシウム固溶量が7モル%より多くなると利用率が低下する傾向があることがわかる。従って、マグネシウム固溶量としては、2モル%以上7モル%以下が適切であると考えられる。なお、前記範囲の正極活物質を用いた場合においても、実施例1と同様に、ニッケル正極中Y23を含むことで、いずれも高温充電効率に優れていた。
【0050】
(実施例4)
実施例1に記載の活物質粒子合成条件において、結晶性の異なるサンプルを得ることを目的として、水酸化ナトリウム水溶液の濃度を4.2〜6mol/lとした。なお、前記水酸化ナトリウム濃度の違いにより、pH値は11〜12.5の範囲で異なる値を示した。これ以外は実施例1と同様にして金属水酸化物粉末を得た。
【0051】
得られた金属水酸化物粉末は、いずれも平均粒径10μmの球状粉末であり、タップ密度は1.9g/cm3以上であった。また、いずれもβ−Ni(OH)2型の単相であり、マグネシウム固溶量は5モル%であった。また、硫酸根量は0.3±0.01重量%の範囲であった。また、CuKα線を用いたX線回折パターンを記録したところ、前記水酸化ナトリウムの濃度の違い(pH値の違い)により、2θ=37〜40゜付近の(101)面のピーク半価幅が異なり、0.63〜1.31゜であった。
【0052】
前記の半価幅が異なるサンプルを活物質として、実施例1と同様にして円筒密閉電池を作製し、それらの電池特性を評価した。評価方法は、20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、利用率A(240mA放電時)を算出した。また、次のサイクルでは、120mAの電流で15時間充電し、3600mAで放電し、その放電容量から利用率C(3600mA放電時)を算出した。
【0053】
図3は、前記実験の結果を表す図であって、(101)面の半価幅と前記240mA放電時および3600mA放電時の利用率との関係を示す特性図である。この図から、(101)面の半価幅が0.7゜以上で低率放電(240mA)時に高い利用率を示し、かつ、1.2゜以下で高率放電(3600mA)時に高い利用率を示すことがわかる。従って、高利用率で、かつ、高率放電特性を高めるためには、CuKα線を使用するX線回折の2θ=37〜40゜付近の(101)面のピーク半価幅0.7以上1.2以下であることが好ましい。なお、前記範囲の正極活物質を用いた場合においても、実施例1と同様に、ニッケル正極中にY23を含むことで、いずれも高温充電効率に優れていた。
【0054】
(実施例5)
実施例1に記載の活物質粒子合成条件において、沈殿物を分離した後、アルカリ処理を行う時間や回数を変えることで、金属水酸化物中の硫酸イオン(硫酸根)含有量の異なる活物質粉末を得た。これ以外は実施例1と同様にして金属水酸化物粉末を得た。
【0055】
得られた金属水酸化物粉末は、いずれも平均粒径10μmの球状粉末であり、タップ密度は1.9g/cm3以上であった。また、いずれもβ−Ni(OH)2型の単相であり、マグネシウム固溶量は5モル%であった。また、硫酸根量は0.05〜1.0重量%の範囲であった。また、CuKα線を用いたX線回折パターンを記録したところ、2θ=37〜40゜付近の(101)面のピーク半価幅は0.9±0.1゜であった。
【0056】
前記の硫酸根含有量が異なるサンプルを活物質として、実施例1と同様にして円筒密閉電池を作製し、それらの電池特性を評価した。評価方法は、20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、120mAの電流で15時間充電し、3600mAで放電し、その放電容量から利用率(3600mA放電時)を算出した。
【0057】
図4は、前記実験の結果を表す図であって、硫酸根の含有量と3600mA放電時の利用率との関係を示す特性図である。この図から、硫酸根量が0.5重量%以下で高率放電(3600mA)時に高い利用率を示すことがわかる。従って、高率放電特性を高めるためには、結晶内に含まれる硫酸根が0.5重量%以下であることが好ましい。なお、前記範囲の正極活物質を用いた場合においても、実施例1と同様に、ニッケル正極中にY23を含むことで、いずれも高温充電効率に優れていた。
【0058】
(実施例6)
実施例1に記載の活物質粒子合成条件において、結晶の配向性の異なるサンプルを得ることを目的として、反応装置内の温度を20〜70℃の範囲内で変化させて合成した。これ以外は実施例1と同様にして金属水酸化物粉末を得た。
【0059】
得られた金属水酸化物粉末は、いずれも平均粒径10μmの球状粉末であり、タップ密度は1.9g/cm3以上であった。また、いずれもβ−Ni(OH)2型の単相であり、マグネシウム固溶量は5モル%であった。また、硫酸根量は0.3±0.01重量%の範囲であった。また、CuKα線を用いたX線回折パターンを記録したところ、2θ=37〜40゜付近の(101)面のピーク半価幅は0.9±0.1゜であった。また、反応装置内の温度の違いにより、2θ=37〜40゜付近の(101)面のピーク強度Aに対する、2θ=37〜40゜付近の(001)面のピーク強度Bの比B/Aが1.0〜1.3の範囲となった。
【0060】
前記のピーク強度比が異なるサンプルを活物質として、実施例1と同様にして円筒密閉電池を作製し、それらの電池特性を評価した。評価方法は、20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、利用率A(240mA放電時)を算出した。また、次のサイクルでは、120mAの電流で15時間充電し、3600mAで放電し、その放電容量から利用率C(3600mA放電時)を算出した。
【0061】
図5は、前記実験の結果を表す図であって、(101)面のピーク強度Aに対する、(001)面のピーク強度Bの比B/Aと3600mA放電時の利用率との関係を示す特性図である。この図から、B/Aの値が1.1以上で高率放電(3600mA)時に高い利用率を示すことがわかる。従って、高率放電特性を更に高めるためには、CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピークAに対する、2θ=18〜21゜付近に位置する(001)面のピーク強度Bの比B/Aが1.1以上であることが好ましい。なお、前記範囲の正極活物質を用いた場合においても、実施例1と同様に、ニッケル正極中にY23を含むことで、いずれも高温充電効率に優れていた。
【0062】
(実施例7)
実施例1に記載の活物質粒子合成条件において、得られた金属酸化物粉末を硫酸コバルト水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、35℃でpHが12を維持するように調整しながら攪拌を続けて、金属酸化物粒子表面に水酸化コバルトを析出させて、水酸化コバルト被覆マグネシウム固溶水酸化ニッケル粉末とした。ここで水酸化コバルトの被覆量については、粒子総重量に対する被覆層重量比率が10重量%となるように調整した。作製した水酸化コバルト被覆粉末は水洗した後、真空乾燥を行った。ここで得られた水酸化コバルト被覆粉末は、平均粒径10μmの球状粉末であり、タップ密度は1.9g/cm3であった。
【0063】
次に、前記水酸化コバルト被覆粉末の改質処理を以下の手順により行った。まず、水酸化コバルト被覆粉末に45重量%の水酸化カリウム水溶液の適量を含浸させ、これをマイクロ波加熱の機能を備えた乾燥装置内に投入して加熱し、酸素を送りながら粒子を完全乾燥まで導いた。この操作によって、粒子表面の水酸化コバルト被覆層は酸化を受け、粒子は藍色に変化した。得られたコバルト酸化物被覆粉末を水洗した後、真空乾燥を行った。
【0064】
ヨードメトリー法により全金属のトータル価数を求め、その値よりコバルトの平均価数を算出したところ、被覆層中のコバルトの平均価数は3.2価を示した。
【0065】
なお、前記水酸化コバルト被覆粉末に含浸させる溶液としては、高濃度の水酸化カリウム水溶液を用いたが、同様にして高濃度の水酸化ナトリウム水溶液を用いても、被覆層中のコバルトの平均価数は3.0価より大きい値を示した。
【0066】
このコバルト酸化物被覆粉末を活物質として、実施例1と同様にして円筒密閉電池を作製し、それらの電池特性を評価した。評価方法は、20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、120mAの電流で15時間充電し、3600mAで放電し、その放電容量から利用率(3600mA放電時)を算出した。
【0067】
その結果、利用率90%と高い値を示したことから、コバルト酸化物により表面が被覆されている活物質においても、同様に、高率放電特性に優れることがわかる。なお、前記活物質を用いた場合においても、実施例1と同様に、ニッケル正極中にY23を含むことで高温充電効率に優れていた。
【0068】
(実施例8)
実施例7記載の活物質粒子合成条件において、水酸化カリウムの濃度、酸化時間を変えて酸化処理を実施した。その結果、コバルト酸化物被覆層中のコバルト平均価数は3価前後でばらついた。このコバルト酸化物被覆粉末を活物質として、実施例7と同様にして、3600mAでの放電容量から利用率(3600mA放電時)を算出した。
【0069】
その結果、コバルト平均価数が3価より小さいと高率放電特性が著しく劣ることがわかった。従って、コバルト酸化物被覆層中のコバルトの平均価数は、3価より大きいことが好ましい。
【0070】
(実施例9)
実施例1に記載のニッケル正極、円筒密閉電池作製方法において、Y23粉末を添加しないでペーストを調製した以外は、実施例1と同様にして作製したニッケル正極を用い、電解液に5mol/lの水酸化カリウムと2mol/lの水酸化ナトリウムの混合液を用いた以外は、実施例1と同様にして円筒型密閉電池を作製した。
【0071】
実施例9と比較例1の円筒型密閉電池を用い、それらの電池特性を評価した。なお、これらの電池は電解液組成のみが異なる。20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、平均放電電圧と活物質の利用率A(20℃充電時)を算出した。また、次のサイクルでは、45℃において、120mAの電流で15時間充電し、20℃において、240mAの電流で電池電圧1.0Vまで放電し、その放電容量から活物質の利用率B(45℃充電時)を算出した。(表2)に、それらの結果を示す。
【0072】
【表2】
Figure 0003744317
【0073】
(表2)から明らかなように、電解液が水酸化ナトリウムを含むことによって、高温における充電効率が著しく向上することがわかる。なお、放電電圧に関しては、マグネシウムを固溶した水酸化ニッケルを用いたことにより、いずれも高い値を示した。
【0074】
なお、ここでは実施例1で合成した活物質を用いたが、実施例3〜8で合成した活物質においても、同様に水酸化ナトリウムを含む電解液を用いることによって高温充電効率が向上する効果が認められた。従って、高率放電特性および高温充電効率の向上を図ることができた。
【0075】
(実施例10)
実施例9に記載のアルカリ蓄電池作製方法において、水酸化ナトリウム含有量が、電解液に対して0〜7mol/lとなるようにした。なお、その際、全アルカリ金属水酸化物濃度が7mol/lとなるように水酸化カリウムを混合した。それ以外は実施例1と同様にして、水酸化ナトリウム含有量が異なる円筒密閉電池を作製し、それらの電池特性を評価した。評価方法は、20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、45℃において、120mAの電流で15時間充電し、20℃において、240mAの電流で電池電圧1.0Vまで放電し、その放電容量から活物質の利用率Bを算出した。また、次のサイクルでは、20℃において、120mAの電流で15時間充電し、20℃において、3600mAの電流で電池電圧1.0Vまで放電し、その放電容量から活物質の利用率Cを算出した。
【0076】
図6は、前記実験の結果を表す図であって、水酸化ナトリウム含有量と45℃で充電した際の利用率および3600mA放電時の利用率との関係を示す特性図である。この図から、水酸化ナトリウム含有量が1mol/l以上で高温充電(45℃)時に高い利用率を示し、かつ、5mol/l以下で高率放電(3600mA)時に高い利用率を示すことがわかる。従って、高温充電効率および高率放電特性を高めるためには、1mol/l以上5mol/l以下であることが好ましい。
【0077】
(実施例11)
実施例1に記載のアルカリ蓄電池作製方法において、電解液に5mol/lの水酸化カリウムと2mol/lの水酸化ナトリウムの混合液を用いた以外は、実施例1と同様にして円筒型密閉電池を作製した。評価方法は、20℃において、120mAの電流で15時間充電し、240mAの電流で電池電圧1.0Vまで放電する充放電サイクルを繰り返し、放電容量が安定した後、45℃において、120mAの電流で15時間充電し、20℃において、240mAの電流で電池電圧1.0Vまで放電し、その放電容量から活物質の利用率Bを算出した。また、次のサイクルでは、20℃において、120mAの電流で15時間充電し、20℃において、3600mAの電流で電池電圧1.0Vまで放電し、その放電容量から活物質の利用率Cを算出した。その結果、45℃充電での利用率Bは80%となり、高温充電効率の著しい向上が認められた。また、3600mA放電での利用率Cは90%となり、高率放電特性においても優れることが確認された。なお、Y以外に、Yb、Lu、Ti、Caからなる群から選ばれた少なくとも1種を含む酸化物を含む場合においても同等の効果が確認された。
【0078】
以上により、本発明の活物質を用い、さらに、酸化物を正極に含み、電解液が水酸化ナトリウムを含むことで、高率放電特性に優れ、かつ、高温充電効率に優れたニッケル正極が得られることを確認することができた。
【0079】
【発明の効果】
以上のように、本発明によれば、放電電圧が高く、かつ、高率放電時に高い利用率を発現する出力特性に優れ、かつ、高温充電効率に優れたアルカリ蓄電池用ニッケル正極およびアルカリ蓄電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例によるニッケル正極中のY23含有量に対する高温充電時の利用率、高率放電時の利用率の変化を示す図
【図2】本発明の実施例によるニッケル正極中の活物質のマグネシウム固溶量に対する利用率、平均放電電圧の変化を示す図
【図3】本発明の実施例によるニッケル正極中の活物質のCuKα線を使用するX線回折の2θ=37〜40゜付近の(101)面のピーク半価幅に対する低率放電時の利用率、高率放電時の利用率の変化を示す図
【図4】本発明の実施例によるニッケル正極中の活物質の硫酸根含有量に対する高率放電時の利用率の変化を示す図
【図5】本発明の実施例によるニッケル正極中の活物質のCuKα線を使用するX線回折の2θ=37〜40゜付近の(101)面のピーク強度Aに対する、2θ=37〜40゜付近の(001)面のピーク強度Bの比B/Aに対する高率放電時の利用率の変化を示す図
【図6】本発明の実施例によるアルカリ蓄電池の電解液中の水酸化ナトリウム含有量に対する高温充電時の利用率、高率放電時の利用率の変化を示す図[0001]
Dependent technical field of the invention
The present invention relates to a positive electrode for an alkaline storage battery and an alkaline storage battery.
[0002]
[Prior art]
In recent years, the positive electrode for alkaline storage batteries has drastically improved capacity density due to improvements in the substrate shape, active material shape, active material composition, and additives, and a positive electrode with a capacity density of about 600 mAh / cc is now in practical use. Yes.
[0003]
However, further higher output is demanded from the equipment side, and improvement in energy density during high rate discharge is strongly demanded. In order to improve the high rate discharge characteristics, conventionally, a method for increasing the current collecting property of the electrode (or a method for decreasing the resistance) and a method for increasing the charge / discharge efficiency of the active material have been studied. On the other hand, if the discharge potential itself can be shifted in a high direction (noble direction), a dramatic increase in output can be expected. We have been working on the modification of nickel hydroxide by solid solution of dissimilar metals. Among them, attention has been paid to the fact that nickel hydroxide having a solid solution with magnesium has a high discharge potential, and the optimization of physical properties as an electrode material has been studied.
[0004]
The nickel hydroxide in which magnesium is dissolved is widely proposed and includes the following.
[0005]
(1) In Japanese Patent Laid-Open No. 2-109261, nickel hydroxide in which 1 to 3% by weight of magnesium is solid-solved has an internal pore radius of 30 mm or less and a total pore volume of 0.05 ml / g or less. It has been proposed to use a positive electrode active material. This is a nickel electrode active material that has a higher density of nickel hydroxide powder and has a longer life by preventing the formation of γ-NiOOH by the addition of magnesium and an improved active material utilization rate. It is intended to provide.
[0006]
(2) In Japanese Patent Application Laid-Open No. 5-21064, magnesium or the like is contained in a nickel hydroxide powder at the time of producing a positive electrode, and a mixture of spherical or spherically similar particles and non-spherical particles is used. It has been proposed to use a positive electrode active material. The purpose of this is to improve the packing density of nickel hydroxide and to suppress the generation of γ-NiOOH during overcharge and improve cycle life characteristics by adding a dissimilar metal group containing magnesium. It is.
[0007]
(3) In Japanese Patent Application Laid-Open No. 5-41212, magnesium or the like is contained in 1 to 7 wt% nickel hydroxide powder, and is a particle in which countless primary particles of 0.1 μm or less are aggregated, and pores of 30 μm or more It has been proposed to use nickel hydroxide whose space volume having a radius is 20 to 70% of the total space volume as the positive electrode active material. This facilitates the penetration of the electrolyte into the particles, thereby suppressing the formation of γ-NiOOH due to the uneven distribution of the electrolyte in the particles, and further improving the active material utilization rate in the early stage of charge and discharge. It is intended. The addition of the heterogeneous metal group containing magnesium is intended to improve the cycle life characteristics by suppressing the formation of γ-NiOOH, as in the proposal (2).
[0008]
(4) In Japanese Patent Laid-Open No. Hei 5-182626, nickel hydroxide powder having an internal pore volume of 0.14 ml / g or less and having a structure in which the crystal lattice is partially substituted by an additive element is used as a positive electrode active material. Has been proposed. In particular, Zn, Mg, Cd, and Ba are selected as a solid solution additive element in nickel hydroxide from the condition that it should not impair the characteristics of nickel hydroxide as an active material. This is because high density nickel hydroxide powder with small internal pore volume forms a lattice defect in the nickel hydroxide crystal lattice by substituting a part of nickel with a different element including magnesium, and the degree of freedom of proton transfer. The purpose is to suppress the generation of γ-NiOOH and improve the cycle life characteristics.
[0009]
(5) In JP-A-5-182663, nickel hydroxide having a structure in which the internal pore volume is 0.14 ml / g and the crystal lattice is partially partially substituted by Co and other additive elements is used as the positive electrode It has been proposed to be an active material. In particular, Zn, Mg, Cd, and Ba are selected as additive elements that are dissolved in nickel hydroxide. This is intended to improve the charging efficiency at high temperature by replacing part of nickel with different elements including Co and other magnesium, and at the same time, suppress γ-NiOOH and improve cycle life characteristics. . However, this technique has not improved the problem that the utilization rate tends to decrease during high rate discharge, and it has been difficult to achieve both high rate discharge characteristics and high temperature charge efficiency.
[0010]
(6) Japanese Patent Application Laid-Open No. 11-219703 discloses a magnesium solid solution in which magnesium is dissolved in nickel hydroxide and magnesium is contained in an amount of 0.5 wt% to 0.5 wt% with respect to nickel in the nickel hydroxide. A composite particle in which a coating layer composed of a cobalt compound containing sodium is formed on a base particle composed of dissolved nickel hydroxide particles, and an active material composed of yttrium metal and / or an yttrium compound, wherein nickel in the base particle On the other hand, a positive electrode active material for an alkaline storage battery in which the yttrium metal and / or yttrium compound is contained in an amount of 0.05 to 5.0% by weight in terms of yttrium element, and a non-sintered nickel electrode using the same Proposed. Thereby, it is possible to improve the cycle life characteristics by suppressing the production of γ-NiOOH by dissolving magnesium, and further, forming a coating layer made of a cobalt compound containing sodium, and yttrium metal and / or yttrium. It is disclosed that the charge acceptability can be improved by adding a compound.
[0011]
[Problems to be solved by the invention]
However, all of the above proposals are aimed at improving charge / discharge efficiency and cycle life characteristics, and using the high discharge potential of nickel hydroxide containing magnesium in a solid solution state as in the present inventors. It was not intended to further increase the output. In fact, when a battery was prototyped based on the above proposal, it was not possible to obtain a battery exhibiting the desired satisfactory high rate charge / discharge characteristics.
[0012]
Furthermore, nickel hydroxide containing magnesium in a solid solution state has a problem that charging efficiency at high temperatures is lowered. In the above proposal (5), a technique for improving the high-temperature charging efficiency is disclosed. However, since the problem that the utilization rate tends to decrease during high-rate discharge is not improved, the high-rate discharge characteristics and the high-temperature charge efficiency It was difficult to achieve both.
[0013]
Accordingly, an object of the present invention is to provide a nickel positive electrode for an alkaline storage battery that has a high discharge voltage and exhibits a high utilization rate at the time of high rate discharge (excellent in high rate discharge characteristics), and an alkaline storage battery using the same. And
[0014]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, it has been found that nickel hydroxide containing magnesium in a solid solution state is likely to have a lower utilization factor during high rate discharge. The cause of this is that solid solution of magnesium makes it easier for sulfate radicals to be taken into the crystal of nickel hydroxide, and the crystal structure of magnesium solid solution nickel hydroxide is likely to be disturbed, resulting in large polarization during high rate discharge. At the same time, the conductivity is also significantly reduced, so that the high rate discharge characteristics are considered to be significantly reduced. Note that the phenomenon that the polarization during high rate discharge increases due to disorder of the crystal (lowering of crystallinity) is considered to be due to a decrease in the degree of freedom of proton movement. In the above proposal, a technique for improving such a problem is not disclosed. Therefore, it is considered that an active material for increasing the output and a nickel positive electrode could not be obtained.
[0015]
From this point of view, in order to achieve the object of the present inventors, the nickel positive electrode mainly composed of nickel hydroxide in which magnesium of the present invention is dissolved is composed of nickel hydroxide, and first, the magnesium content is hydroxylated. 2 mol% or more and 7 mol% or less with respect to all metal elements in nickel, and secondly, the tap density of the powder is 1.9 g / cm 2. Three Third, in the X-ray diffraction using CuKα rays, the half width of the peak of the (101) plane located in the vicinity of 2θ = 37-40 ° is in the range of 0.7 ° to 1.2 °. Fourthly, the sulfate radical contained in the crystal is 0.5% by weight or less, and from the Y, Yb, Lu, Ti, and Ca in the positive electrode together with the nickel hydroxide. An oxide powder containing at least one selected from the group consisting of the above is included.
[0016]
First, selection as a different element that dissolves in nickel hydroxide is preferable for obtaining a high-power battery because the discharge potential is increased. However, when the magnesium content is less than 2 mol%, the effect of increasing the discharge potential is poor. Conversely, when the magnesium content is more than 7 mol%, the utilization rate decreases even during low rate discharge, and the active material is hydroxylated. Since the amount of nickel decreases, sufficient battery capacity cannot be obtained.
[0017]
If magnesium is selected as a different element that dissolves in nickel hydroxide and its content is only 2 to 7 mol%, the intended high output positive electrode cannot be obtained. By optimizing the physical properties, it is possible to achieve a much higher output.
[0018]
The tap density is 1.9 g / cm Three The above is preferable, and further 2.1 g / cm Three The above is particularly preferable. This is 1.9 g / cm Three If it is smaller, it is difficult to achieve high energy density because the packing density of the electrode is reduced, and the dissimilar solid solution element is magnesium and the sulfate radical is easily taken into the crystal. Is considered to be involved for some reason with the sulfate radical.
[0019]
It is desirable that the half width of the peak of the (101) plane located in the vicinity of 2θ = 37 to 40 ° of X-ray diffraction using CuKα rays is 0.7 ° or more and 1.2 ° or less. If it is in this numerical range, the crystal structure is less likely to be disturbed with some sulfate groups, and therefore the degree of freedom of proton transfer does not decrease.
[0020]
Further, the sulfate group contained in the crystal is desirably 0.5% by weight or less. This is because even if nickel hydroxide is produced so that the half width of a specific peak becomes a specific value, if there are too many sulfate radicals, the crystal structure is disturbed with the cycle. Therefore, although it is not necessary to obtain a very low value by optimizing the crystal structure, it is usually preferable to set it to a value slightly lower than the sulfate radical amount in the case of synthesizing magnesium solid solution nickel hydroxide.
[0021]
In nickel hydroxide containing magnesium in a solid solution state, the phenomenon that the polarization during high-rate discharge increases due to disorder of the crystal (lower crystallinity) is thought to be due to a decrease in the degree of freedom of proton transfer. Yes.
[0022]
Furthermore, not only the above-mentioned nickel hydroxide, which is a positive electrode active material, is optimized, but the following techniques can be incorporated into the positive electrode to simultaneously improve both the problems of high rate discharge characteristics and high temperature charging efficiency. That is, the nickel positive electrode mainly composed of the active material powder preferably contains an oxide powder containing at least one selected from the group consisting of Y, Yb, Lu, Ti, and Ca. These metal oxide powders can increase the oxygen generation overvoltage at the end of charging and improve high temperature charging efficiency.
[0023]
When an alkaline storage battery is configured using the nickel positive electrode of the present invention, it is possible to improve the discharge voltage, the high rate discharge characteristics, and the high temperature charge efficiency.
[0024]
In addition, in an alkaline storage battery composed of the nickel positive electrode mainly composed of nickel hydroxide, a negative electrode, and an electrolytic solution, the addition of sodium hydroxide to the electrolytic solution significantly increases the oxygen generation overvoltage at the end of charging. High temperature charging efficiency can also be improved. Moreover, since the said nickel hydroxide is used, high output can also be achieved simultaneously.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The content of the oxide powder containing at least one selected from the group consisting of Y, Yb, Lu, Ti, and Ca is preferably 0.5 wt% or more and 3 wt% or less with respect to nickel hydroxide. . If the amount is less than 0.5% by weight, the oxygen generation overvoltage hardly rises, so the effect of improving the high-temperature charging efficiency is poor. On the other hand, if the amount is more than 3% by weight, the discharge reaction is inhibited and the high rate discharge characteristic is lowered.
[0026]
Further, the nickel hydroxide powder of the present invention is located in the vicinity of 2θ = 18 to 21 ° with respect to the peak A of the (101) plane located in the vicinity of 2θ = 37 to 40 ° of X-ray diffraction using CuKα rays ( The ratio B / A of the peak intensity B on the (001) plane is preferably 1.1 or more. When the peak intensity ratio B / A is greater than 1.1, that is, when the orientation in the C-axis direction in the nickel hydroxide crystal is high, polarization during high rate discharge can be further suppressed, and high rate discharge The characteristics can be further improved. This is because the crystal growth in the crystal plane direction is excellent in the crystal and shows the uniformity of the crystal in the crystal plane direction, and it is considered that the degree of freedom of proton movement is further improved with less crystal disturbance.
[0027]
Moreover, it is preferable that the surface of the nickel hydroxide of the present invention is coated with cobalt oxide. Thereby, since the distribution of the cobalt compound as the conductive material becomes uniform and the conductivity is improved, the filling amount of the conductive material can be reduced. In addition, the high-rate discharge characteristics can be further improved by improving the conductivity.
[0028]
It is particularly preferable that the average valence of cobalt of the cobalt oxide is greater than trivalence. When the average valence of cobalt is larger than trivalent, the conductivity of the cobalt compound is remarkably improved, and the high rate discharge characteristics can be further improved.
[0029]
It is desirable that the electrolyte contains sodium hydroxide. This is because, as described above, the oxygen generation overvoltage at the end of charging is remarkably increased, and the high-temperature charging efficiency can be further improved as compared with the battery. The content of sodium hydroxide is desirably 1 mol / l or more and 5 mol / l or less with respect to the electrolytic solution. If it is less than 1 mol / l, the oxygen generation overvoltage hardly rises, so the effect of improving the high-temperature charging efficiency becomes poor. On the other hand, when it is more than 5 mol / l, the utilization factor at the time of high rate discharge decreases.
[0030]
【Example】
Next, examples of the present invention will be described.
[0031]
Example 1
First, a method for synthesizing active material particles will be described.
[0032]
A mixed aqueous solution containing nickel sulfate and magnesium sulfate, an aqueous sodium hydroxide solution, and an aqueous ammonia solution were prepared, and each was continuously fed into a reactor maintained at 40 ° C. at a flow rate of 0.5 ml / min. Here, the concentration of the mixed aqueous solution composed of nickel sulfate and magnesium sulfate is 2.4 mol / l, and the mixing ratio of nickel sulfate and magnesium sulfate is set so that the number of moles of magnesium is 5 mol% with respect to the total number of moles of nickel and magnesium. It was made to become. The concentration of the aqueous ammonia solution was 5 mol / l, and the concentration of the aqueous sodium hydroxide solution was 5 mol / l.
[0033]
Subsequently, when the pH in the reaction apparatus becomes constant, the balance between the metal salt concentration and the metal hydroxide particle concentration becomes constant, and when it reaches a steady state, the suspension obtained by overflow is collected and decanted. Separated the precipitate. This was alkali-treated with an aqueous sodium hydroxide solution having a pH of 13 to 14 to remove anions such as sulfate ions in the metal hydroxide particles, washed with water, and dried. In this way, a powder having an average particle size of 10 μm was obtained. The content of sulfate ions (sulfate radicals) in the metal hydroxide can be controlled by the time and number of times of alkali treatment with the aqueous sodium hydroxide solution having a pH of 13 to 14. In particular, since nickel hydroxide in which magnesium is dissolved, the sulfate radicals are easily taken in, so the temperature is set to a high temperature (60 ° C.) and the number of treatments is increased so that the sulfate radical content is reduced.
[0034]
As a result of conducting the composition analysis, the amount of magnesium solid solution in the obtained metal hydroxide was 5 mol%, similar to the mixing ratio of the aqueous solution used in the synthesis. The sulfate radical amount was 0.3% by weight. Further, when an X-ray diffraction pattern using CuKα rays was recorded, β-Ni (OH) 2 It was confirmed that it was a single phase of the mold, and it was confirmed that magnesium was dissolved in nickel hydroxide. Further, the peak half width of the (101) plane near 2θ = 37 to 40 ° was 0.892 °. Moreover, when the tap density was measured, it was 2.03 g / cm. Three It was confirmed that this is a material suitable for increasing the energy density (a material excellent in filling property to the electrode support).
[0035]
Next, a method for producing a nickel positive electrode using the active material obtained by the above method will be described.
[0036]
To 100 g of the metal hydroxide powder obtained under the above production conditions, 10 g of cobalt hydroxide powder, 2 g of Y 2 O Three Powder and 30 g of water were added and kneaded to make a paste. This paste was filled in a foamed nickel substrate having a porosity of 95%, dried and then pressure-molded to obtain a nickel positive electrode plate. The positive electrode plate thus obtained was cut, and the electrode lead was spot welded to obtain a nickel positive electrode having a theoretical capacity of 1200 mAh. However, the capacity density of the nickel electrode shown here is calculated on the assumption that nickel in the active material undergoes a one-electron reaction.
[0037]
Here, Y 2 O Three A method for producing a nickel positive electrode containing powder was shown. 2 O Three Powder, Lu 2 O Three Powder, TiO 2 A nickel positive electrode containing powder and CaO powder was also produced.
[0038]
Next, a method for producing an alkaline storage battery will be described.
[0039]
A known negative electrode for an alkaline storage battery was used as the negative electrode. Here, a hydrogen storage alloy MmNi of about 30 μm 3.55 Co 0.75 Mn 0.4 Al 0.3 A negative electrode made of powder was used. Water and a binder carboxymethylcellulose were added thereto and kneaded into a paste. This paste was pressure filled into the electrode support to obtain a hydrogen storage alloy negative electrode plate. This negative electrode plate was cut into a negative electrode having a capacity of 1920 mAh. A spiral electrode group was formed by interposing a separator made of a sulfonated polypropylene nonwoven fabric having a thickness of 0.15 mm between the positive electrode and the negative electrode. After inserting this electrode group into the battery case and injecting 2.2 ml of a 7 mol / l potassium hydroxide aqueous solution, the opening of the battery case was sealed with a sealing plate having a safety valve with an operating valve pressure of about 2.0 MPa, and AA A cylindrical sealed nickel-metal hydride storage battery of a size was produced.
[0040]
(Comparative Example 1)
In the nickel positive electrode preparation method described in Example 1, Y 2 O Three A nickel positive electrode and a cylindrical sealed battery using the same were prepared in the same manner as in Example 1 except that the paste was prepared without adding the powder.
[0041]
Using the cylindrical sealed batteries of Example 1 and Comparative Example 1, their battery characteristics were evaluated. At 20 ° C., the battery was charged with a current of 120 mA for 15 hours, and a charge / discharge cycle of discharging to a battery voltage of 1.0 V with a current of 240 mA was repeated. After the discharge capacity was stabilized, the average discharge voltage and the active material utilization ratio A (20 C. charge) was calculated. In the next cycle, the battery was charged at a current of 120 mA at 45 ° C. for 15 hours, discharged at a current of 240 mA to a battery voltage of 1.0 V at 20 ° C., and the active material utilization rate B (45 ° C. from the discharge capacity). (When charging) was calculated. Table 1 shows the results. In Example 1, Y 2 O Three A battery using a nickel positive electrode to which A is added is referred to as (A), and similarly, Yb 2 O Three , Lu 2 O Three TiO 2 Batteries using nickel positive electrodes added with CaO were designated as (B) to (E), respectively. The battery of Comparative Example 1 was designated as (F).
[0042]
[Table 1]
Figure 0003744317
[0043]
As is clear from Table 1, it can be seen that charging efficiency at high temperatures is remarkably improved by including an oxide powder containing at least one selected from the group consisting of Y, Yb, Lu, Ti, and Ca. . In addition, regarding discharge voltage, all showed the high value by using the nickel hydroxide which made the solid solution of magnesium. Here, Y 2 O Three , Yb 2 O Three , Lu 2 O Three TiO 2 Although the powder which consists of a composition of CaO was used, the same effect was recognized also about the oxide other than this, a hydroxide, or those mixed powder.
[0044]
(Example 2)
In the nickel positive electrode preparation method described in Example 1, Y 2 O Three Powder was added so that it might become 0 to 5 weight% with respect to nickel hydroxide. Otherwise, the same as in Example 1, Y 2 O Three Nickel positive electrodes with different powder contents and cylindrical sealed batteries using the same were prepared, and their battery characteristics were evaluated. The evaluation method is that charging is performed at 120 ° C. for 15 hours at 20 ° C., and a charge / discharge cycle in which the battery voltage is discharged to 1.0 V at 240 mA is repeated. After the discharge capacity is stabilized, the current is 120 mA at 45 ° C. The battery was charged for 15 hours, discharged at 20 ° C. with a current of 240 mA to a battery voltage of 1.0 V, and the utilization rate B of the active material was calculated from the discharge capacity. In the next cycle, the battery was charged with a current of 120 mA at 20 ° C. for 15 hours, discharged at 20 ° C. with a current of 3600 mA to a battery voltage of 1.0 V, and the utilization factor C of the active material was calculated from the discharge capacity. .
[0045]
FIG. 1 is a diagram showing the results of the experiment, 2 O Three It is a characteristic view which shows the relationship between the content rate of a powder, the utilization factor at the time of charging at 45 degreeC, and the utilization factor at the time of 3600 mA discharge. From this figure, Y 2 O Three It can be seen that when the content of the powder is 0.5% by weight or more, a high utilization rate is exhibited during high-temperature charging (45 ° C.), and when the content is 3% by weight or less, a high utilization rate is exhibited during high-rate discharge (3600 mA). Therefore, to increase the high temperature charging efficiency and high rate discharge characteristics, 2 O Three The content of the powder is preferably 0.5% by weight or more and 3% by weight or less. Here, Y 2 O Three Although the example using the powder was shown, the same tendency was recognized also in the oxide powder containing at least 1 sort (s) chosen from the group which consists of Y, Yb, Lu, Ti, and Ca other than this.
[0046]
Example 3
In the active material particle synthesis conditions described in Example 1, the mixing ratio of nickel sulfate and magnesium sulfate in the mixed aqueous solution composed of nickel sulfate and magnesium sulfate was set such that the number of moles of magnesium relative to the total number of moles of nickel and magnesium was 0.5. It was made to become the range of -10 mol%. Otherwise, a metal hydroxide powder was obtained in the same manner as in Example 1.
[0047]
The obtained metal hydroxide powders are all spherical powders having an average particle size of 10 μm, and the tap density is 1.9 g / cm. Three That was all. As a result of conducting the composition analysis, the magnesium solid solution amount in the obtained metal hydroxide was 0.5 to 10 mol%, similarly to the mixing ratio of the aqueous solution used in the synthesis. The sulfate radical amount was in the range of 0.3 ± 0.01% by weight. Further, when an X-ray diffraction pattern using CuKα rays was recorded, β-Ni (OH) 2 It was confirmed that it was a single phase of the mold, and it was confirmed that magnesium was dissolved in nickel hydroxide. Further, the peak half width of the (101) plane near 2θ = 37 to 40 ° was 0.9 ± 0.02 °.
[0048]
A nickel positive electrode and a cylindrical sealed battery using the same were prepared in the same manner as in Example 1 using samples having different magnesium solid solution amounts as the positive electrode active material, and their battery characteristics were evaluated. The evaluation method consists of charging and discharging at 20 ° C. with a current of 120 mA for 15 hours and discharging to a battery voltage of 1.0 V with a current of 240 mA. After the discharge capacity has stabilized, the average discharge voltage and use of the active material The rate was calculated. In addition, the utilization factor was calculated with respect to the theoretical amount of electricity when nickel in the active material reacted with one electron.
[0049]
FIG. 2 is a diagram showing the results of these experiments, and is a characteristic diagram showing the relationship between the utilization rate with respect to the magnesium solid solution amount and the average discharge voltage. From this figure, it can be seen that the average discharge voltage tends to increase remarkably when the magnesium solid solution amount is 2 mol% or more. Moreover, it turns out that there exists a tendency for a utilization factor to fall, when the amount of magnesium solid solution exceeds 7 mol%. Accordingly, it is considered that the magnesium solid solution amount is suitably 2 mol% or more and 7 mol% or less. Even in the case where the positive electrode active material in the above range was used, Y in the nickel positive electrode was obtained as in Example 1. 2 O Three In any case, the high-temperature charging efficiency was excellent.
[0050]
(Example 4)
In the active material particle synthesis conditions described in Example 1, the concentration of the aqueous sodium hydroxide solution was 4.2 to 6 mol / l for the purpose of obtaining samples with different crystallinity. In addition, the pH value showed the different value in the range of 11-12.5 by the difference in the said sodium hydroxide density | concentration. Except for this, a metal hydroxide powder was obtained in the same manner as in Example 1.
[0051]
The obtained metal hydroxide powders are all spherical powders having an average particle size of 10 μm, and the tap density is 1.9 g / cm. Three That was all. In both cases, β-Ni (OH) 2 It was a single phase of the mold, and the magnesium solid solution amount was 5 mol%. The sulfate radical amount was in the range of 0.3 ± 0.01% by weight. Moreover, when an X-ray diffraction pattern using CuKα rays was recorded, the peak half-value width of the (101) plane near 2θ = 37 to 40 ° was found due to the difference in the concentration of sodium hydroxide (difference in pH value). The difference was 0.63 to 1.31 °.
[0052]
Cylindrical sealed batteries were produced in the same manner as in Example 1 using the samples having different half widths as active materials, and their battery characteristics were evaluated. The evaluation method is charging at a current of 120 mA at 20 ° C. for 15 hours, repeating a charge / discharge cycle of discharging to a battery voltage of 1.0 V at a current of 240 mA, and after the discharge capacity is stabilized, the utilization rate A (at 240 mA discharge) Was calculated. In the next cycle, the battery was charged with a current of 120 mA for 15 hours, discharged at 3600 mA, and the utilization factor C (at the time of 3600 mA discharge) was calculated from the discharge capacity.
[0053]
FIG. 3 is a characteristic diagram showing the relationship between the half-value width of the (101) plane and the utilization factor during the 240 mA discharge and the 3600 mA discharge. From this figure, the half-width of the (101) plane is 0.7 ° or more, showing high utilization at low rate discharge (240 mA), and below 1.2 °, high utilization at high rate discharge (3600 mA). It can be seen that Therefore, in order to enhance the high utilization factor and the high rate discharge characteristic, the peak half-value width of 0.7 or more of the (101) plane in the vicinity of 2θ = 37 to 40 ° of X-ray diffraction using CuKα rays is 1 .2 or less is preferable. Even in the case of using the positive electrode active material in the above range, as in Example 1, Y in the nickel positive electrode was used. 2 O Three In any case, the high-temperature charging efficiency was excellent.
[0054]
(Example 5)
In the active material particle synthesis conditions described in Example 1, active materials having different sulfate ion (sulfate radical) contents in the metal hydroxide are obtained by changing the time and number of times of alkali treatment after separating the precipitate. A powder was obtained. Except for this, a metal hydroxide powder was obtained in the same manner as in Example 1.
[0055]
The obtained metal hydroxide powders are all spherical powders having an average particle size of 10 μm, and the tap density is 1.9 g / cm. Three That was all. In both cases, β-Ni (OH) 2 It was a single phase of the mold, and the magnesium solid solution amount was 5 mol%. The amount of sulfate radical was in the range of 0.05 to 1.0% by weight. Further, when an X-ray diffraction pattern using CuKα rays was recorded, the peak half width of the (101) plane near 2θ = 37 ° to 40 ° was 0.9 ± 0.1 °.
[0056]
Cylindrical sealed batteries were produced in the same manner as in Example 1 using the samples having different sulfate radical contents as active materials, and their battery characteristics were evaluated. The evaluation method is to charge at 120 ° C. for 15 hours at a current of 20 mA, repeat the charge / discharge cycle of discharging to a battery voltage of 1.0 V at a current of 240 mA, and after the discharge capacity has stabilized, charge for 15 hours at a current of 120 mA. The battery was discharged at 3600 mA, and the utilization factor (at the time of 3600 mA discharge) was calculated from the discharge capacity.
[0057]
FIG. 4 is a characteristic diagram showing the relationship between the content of sulfate radicals and the utilization rate during 3600 mA discharge, showing the results of the experiment. From this figure, it can be seen that when the sulfate radical amount is 0.5% by weight or less, a high utilization rate is exhibited during high rate discharge (3600 mA). Therefore, in order to improve the high rate discharge characteristics, it is preferable that the sulfate radical contained in the crystal is 0.5% by weight or less. Even in the case of using the positive electrode active material in the above range, as in Example 1, Y in the nickel positive electrode was used. 2 O Three In any case, the high-temperature charging efficiency was excellent.
[0058]
(Example 6)
In the active material particle synthesis conditions described in Example 1, synthesis was performed by changing the temperature in the reaction apparatus within a range of 20 to 70 ° C. in order to obtain samples having different crystal orientations. Except for this, a metal hydroxide powder was obtained in the same manner as in Example 1.
[0059]
The obtained metal hydroxide powders are all spherical powders having an average particle size of 10 μm, and the tap density is 1.9 g / cm. Three That was all. In both cases, β-Ni (OH) 2 It was a single phase of the mold, and the magnesium solid solution amount was 5 mol%. The sulfate radical amount was in the range of 0.3 ± 0.01% by weight. Further, when an X-ray diffraction pattern using CuKα rays was recorded, the peak half width of the (101) plane near 2θ = 37 ° to 40 ° was 0.9 ± 0.1 °. Further, the ratio B / A of the peak intensity B of the (001) plane near 2θ = 37 to 40 ° to the peak intensity A of the (101) plane near 2θ = 37 to 40 ° due to the temperature difference in the reactor. Was in the range of 1.0 to 1.3.
[0060]
Cylindrical sealed batteries were produced in the same manner as in Example 1 using samples having different peak intensity ratios as active materials, and their battery characteristics were evaluated. The evaluation method is charging at a current of 120 mA at 20 ° C. for 15 hours, repeating a charge / discharge cycle of discharging to a battery voltage of 1.0 V at a current of 240 mA, and after the discharge capacity is stabilized, the utilization rate A (at 240 mA discharge) Was calculated. In the next cycle, the battery was charged with a current of 120 mA for 15 hours, discharged at 3600 mA, and the utilization factor C (at the time of 3600 mA discharge) was calculated from the discharge capacity.
[0061]
FIG. 5 is a diagram showing the results of the experiment, and shows the relationship between the ratio (B / A) of the peak intensity B of the (001) plane to the peak intensity A of the (101) plane and the utilization rate during 3600 mA discharge. FIG. From this figure, it can be seen that when the B / A value is 1.1 or more, a high utilization rate is exhibited during high rate discharge (3600 mA). Therefore, in order to further enhance the high rate discharge characteristics, the X-ray diffraction using CuKα rays is located near 2θ = 18-21 ° with respect to the peak A of the (101) plane located near 2θ = 37-40 °. The ratio (B / A) of the peak intensity B on the (001) plane is preferably 1.1 or more. Even in the case of using the positive electrode active material in the above range, as in Example 1, Y in the nickel positive electrode was used. 2 O Three In any case, the high-temperature charging efficiency was excellent.
[0062]
(Example 7)
Under the active material particle synthesis conditions described in Example 1, the obtained metal oxide powder was put into an aqueous cobalt sulfate solution, and an aqueous sodium hydroxide solution was gradually added to adjust the pH to be maintained at 35 ° C. Then, stirring was continued to deposit cobalt hydroxide on the surface of the metal oxide particles to obtain a cobalt hydroxide-coated magnesium solid solution nickel hydroxide powder. Here, the coating amount of cobalt hydroxide was adjusted so that the coating layer weight ratio to the total particle weight was 10% by weight. The prepared cobalt hydroxide-coated powder was washed with water and then vacuum-dried. The cobalt hydroxide-coated powder obtained here is a spherical powder having an average particle size of 10 μm, and the tap density is 1.9 g / cm. Three Met.
[0063]
Next, the modification treatment of the cobalt hydroxide-coated powder was performed according to the following procedure. First, impregnating the cobalt hydroxide-coated powder with an appropriate amount of 45% by weight potassium hydroxide aqueous solution, putting it in a drying device equipped with a microwave heating function, heating it, and completely drying the particles while sending oxygen Led to. By this operation, the cobalt hydroxide coating layer on the particle surface was oxidized, and the particles changed to indigo. The obtained cobalt oxide-coated powder was washed with water and then vacuum-dried.
[0064]
When the total valence of all metals was calculated | required by the iodometry method and the average valence of cobalt was computed from the value, the average valence of cobalt in the coating layer showed 3.2 valence.
[0065]
As the solution to be impregnated into the cobalt hydroxide-coated powder, a high-concentration potassium hydroxide aqueous solution was used. However, even if a high-concentration sodium hydroxide aqueous solution was used in the same manner, the average value of cobalt in the coating layer was The number showed a value greater than 3.0.
[0066]
Using this cobalt oxide-coated powder as an active material, cylindrical sealed batteries were produced in the same manner as in Example 1, and their battery characteristics were evaluated. The evaluation method is to charge at 120 ° C. for 15 hours at a current of 20 mA, repeat the charge / discharge cycle of discharging to a battery voltage of 1.0 V at a current of 240 mA, and after the discharge capacity has stabilized, charge for 15 hours at a current of 120 mA. The battery was discharged at 3600 mA, and the utilization factor (at the time of 3600 mA discharge) was calculated from the discharge capacity.
[0067]
As a result, since the utilization factor was as high as 90%, it can be understood that the active material whose surface is coated with cobalt oxide is similarly excellent in high-rate discharge characteristics. Even in the case of using the active material, as in Example 1, Y in the nickel positive electrode was used. 2 O Three It was excellent in high-temperature charging efficiency.
[0068]
(Example 8)
Under the active material particle synthesis conditions described in Example 7, the oxidation treatment was performed by changing the concentration of potassium hydroxide and the oxidation time. As a result, the average valence number of cobalt in the cobalt oxide coating layer varied around around 3. Using this cobalt oxide-coated powder as an active material, the utilization factor (at the time of 3600 mA discharge) was calculated from the discharge capacity at 3600 mA in the same manner as in Example 7.
[0069]
As a result, it was found that when the average cobalt valence is less than trivalent, the high rate discharge characteristics are remarkably inferior. Therefore, it is preferable that the average valence of cobalt in the cobalt oxide coating layer is greater than 3.
[0070]
Example 9
In the nickel positive electrode and cylindrical sealed battery manufacturing method described in Example 1, Y 2 O Three A nickel positive electrode prepared in the same manner as in Example 1 was used except that the paste was prepared without adding powder, and a mixed solution of 5 mol / l potassium hydroxide and 2 mol / l sodium hydroxide was used as the electrolyte. Except for the above, a cylindrical sealed battery was produced in the same manner as in Example 1.
[0071]
Using the cylindrical sealed batteries of Example 9 and Comparative Example 1, their battery characteristics were evaluated. These batteries differ only in the electrolyte composition. At 20 ° C., the battery was charged with a current of 120 mA for 15 hours, and a charge / discharge cycle of discharging to a battery voltage of 1.0 V with a current of 240 mA was repeated. After the discharge capacity was stabilized, the average discharge voltage and the active material utilization ratio A (20 C. charge) was calculated. In the next cycle, the battery was charged at a current of 120 mA at 45 ° C. for 15 hours, discharged at a current of 240 mA to a battery voltage of 1.0 V at 20 ° C., and the active material utilization rate B (45 ° C. from the discharge capacity). (When charging) was calculated. Table 2 shows the results.
[0072]
[Table 2]
Figure 0003744317
[0073]
As is clear from Table 2, it can be seen that the charging efficiency at high temperatures is remarkably improved when the electrolytic solution contains sodium hydroxide. In addition, regarding discharge voltage, all showed the high value by using the nickel hydroxide which made the solid solution of magnesium.
[0074]
In addition, although the active material synthesize | combined in Example 1 was used here, also in the active material synthesize | combined in Examples 3-8, the effect that a high temperature charge efficiency improves similarly by using the electrolyte solution containing sodium hydroxide. Was recognized. Therefore, it was possible to improve the high rate discharge characteristics and the high temperature charging efficiency.
[0075]
(Example 10)
In the alkaline storage battery manufacturing method described in Example 9, the sodium hydroxide content was adjusted to 0 to 7 mol / l with respect to the electrolytic solution. At that time, potassium hydroxide was mixed so that the total alkali metal hydroxide concentration was 7 mol / l. Other than that was carried out similarly to Example 1, the cylindrical sealed battery from which sodium hydroxide content differs was produced, and those battery characteristics were evaluated. The evaluation method is that charging is performed at 120 ° C. for 15 hours at 20 ° C., and a charge / discharge cycle in which the battery voltage is discharged to 1.0 V at 240 mA is repeated. After the discharge capacity is stabilized, the current is 120 mA at 45 ° C. The battery was charged for 15 hours, discharged at 20 ° C. with a current of 240 mA to a battery voltage of 1.0 V, and the utilization rate B of the active material was calculated from the discharge capacity. In the next cycle, the battery was charged with a current of 120 mA at 20 ° C. for 15 hours, discharged at 20 ° C. with a current of 3600 mA to a battery voltage of 1.0 V, and the utilization factor C of the active material was calculated from the discharge capacity. .
[0076]
FIG. 6 is a characteristic diagram showing the relationship between the sodium hydroxide content, the utilization rate when charged at 45 ° C., and the utilization rate during 3600 mA discharge. From this figure, it can be seen that when the sodium hydroxide content is 1 mol / l or more, a high utilization rate is exhibited during high temperature charging (45 ° C.), and when the sodium hydroxide content is 5 mol / l or less, a high utilization rate is exhibited during high rate discharge (3600 mA) . Therefore, in order to improve the high temperature charging efficiency and the high rate discharge characteristic, it is preferably 1 mol / l or more and 5 mol / l or less.
[0077]
(Example 11)
Cylindrical sealed battery in the same manner as in Example 1 except that a mixed solution of 5 mol / l potassium hydroxide and 2 mol / l sodium hydroxide was used as the electrolyte in the alkaline storage battery manufacturing method described in Example 1. Was made. The evaluation method is that charging is performed at 120 ° C. for 15 hours at 20 ° C., and a charge / discharge cycle in which the battery voltage is discharged to 1.0 V at 240 mA is repeated. After the discharge capacity is stabilized, the current is 120 mA at 45 ° C. The battery was charged for 15 hours, discharged at 20 ° C. with a current of 240 mA to a battery voltage of 1.0 V, and the utilization rate B of the active material was calculated from the discharge capacity. In the next cycle, the battery was charged with a current of 120 mA at 20 ° C. for 15 hours, discharged at 20 ° C. with a current of 3600 mA to a battery voltage of 1.0 V, and the utilization factor C of the active material was calculated from the discharge capacity. . As a result, the utilization rate B at 45 ° C. charge was 80%, and a marked improvement in high-temperature charge efficiency was recognized. Moreover, the utilization factor C in 3600 mA discharge became 90%, and it was confirmed that it is excellent also in a high rate discharge characteristic. In addition to Y, the same effect was confirmed even when an oxide containing at least one selected from the group consisting of Yb, Lu, Ti, and Ca was included.
[0078]
As described above, by using the active material of the present invention, and further including an oxide in the positive electrode and the electrolytic solution including sodium hydroxide, a nickel positive electrode excellent in high-rate discharge characteristics and excellent in high-temperature charging efficiency is obtained. We were able to confirm that
[0079]
【The invention's effect】
As described above, according to the present invention, a nickel positive electrode for alkaline storage batteries and an alkaline storage battery having a high discharge voltage, excellent output characteristics expressing a high utilization rate during high-rate discharge, and excellent high-temperature charging efficiency are provided. Can be provided.
[Brief description of the drawings]
FIG. 1 shows Y in a nickel positive electrode according to an embodiment of the present invention. 2 O Three Figure showing changes in utilization rate during high-temperature charging and utilization rate during high-rate discharging with respect to content
FIG. 2 is a graph showing changes in utilization rate and average discharge voltage with respect to magnesium solid solution amount of an active material in a nickel positive electrode according to an embodiment of the present invention.
FIG. 3 is a diagram showing an X-ray diffraction using an active material of CuKα ray in a nickel positive electrode according to an embodiment of the present invention, which is used at a low rate discharge with respect to a peak half width of (101) plane near 2θ = 37 to 40 ° Of change in utilization rate at high rate and high rate discharge
FIG. 4 is a graph showing a change in utilization rate at a high rate discharge with respect to a sulfate radical content of an active material in a nickel positive electrode according to an embodiment of the present invention.
FIG. 5 shows 2θ = 37 to 40 ° with respect to peak intensity A of (101) plane in the vicinity of 2θ = 37 to 40 ° of X-ray diffraction using CuKα ray of an active material in a nickel positive electrode according to an embodiment of the present invention. The figure which shows the change of the utilization factor at the time of high rate discharge with respect to ratio B / A of peak intensity B of the (001) plane of the vicinity
FIG. 6 is a graph showing changes in utilization rate at high temperature charge and utilization rate at high rate discharge with respect to sodium hydroxide content in the electrolyte of an alkaline storage battery according to an embodiment of the present invention.

Claims (10)

少なくともマグネシウムを固溶状態で含む水酸化ニッケルであって、マグネシウムの含有割合は、水酸化ニッケル中の全金属元素に対して2モル%以上7モル%以下であり、タップ密度が1.9g/cm3以上の粉末であって、CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピークの半価幅が0.7゜以上1.2゜以下の範囲にあり、CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピーク強度Aに対する2θ=18〜21゜付近に位置する(001)面のピーク強度Bの比B/Aが1.1以上であり、結晶内に含まれる硫酸根が0.5重量%以下である粉末を主成分とするニッケル正極であって、Y、Yb、Lu、Ti、Caからなる群より選ばれた少なくとも1種を含む酸化物粉末を、水酸化ニッケルに対して0.5重量%以上3重量%以下含むことを特徴とするアルカリ蓄電池用ニッケル正極。Nickel hydroxide containing at least magnesium in a solid solution state, wherein the magnesium content is 2 mol% or more and 7 mol% or less with respect to all metal elements in the nickel hydroxide, and the tap density is 1.9 g / a cm 3 or more powder, located in the vicinity of 2 [Theta] = 37 to 40 ° in X-ray diffraction using a CuKα ray (101) half width of the peak of the surface is less than 1.2 ° to 0.7 ° The peak intensity B of the (001) plane located in the vicinity of 2θ = 18-21 ° relative to the peak intensity A of the (101) plane located in the vicinity of 2θ = 37-40 ° of X-ray diffraction using the CuKα ray. The nickel positive electrode whose main component is a powder whose ratio B / A is 1.1 or more and whose sulfate radical contained in the crystal is 0.5% by weight or less, wherein Y, Yb, Lu, Ti, Ca At least one selected from the group consisting of A nickel positive electrode for an alkaline storage battery , wherein the oxide powder is contained in an amount of 0.5 wt% to 3 wt% with respect to nickel hydroxide . 前記水酸化ニッケル粉末は、コバルト酸化物により、その表面が被覆されている請求項1記載のアルカリ蓄電池用ニッケル正極。  The nickel positive electrode for an alkaline storage battery according to claim 1, wherein the surface of the nickel hydroxide powder is coated with cobalt oxide. 前記コバルト酸化物のコバルトの平均価数は、3価より大きいことを特徴とする請求項記載のアルカリ蓄電池用ニッケル正極。The nickel positive electrode for an alkaline storage battery according to claim 2, wherein an average valence of cobalt of the cobalt oxide is larger than trivalence. ニッケル正極、負極、電解液を具備するアルカリ蓄電池において、前記ニッケル正極は、少なくともマグネシウムを固溶状態で含む水酸化ニッケルであって、マグネシウムの含有割合は、水酸化ニッケル中の全金属元素に対して2モル%以上7モル%以下であり、タップ密度が1.9g/cm3以上の粉末であって、CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピークの半価幅が0.7゜以上1.2゜以下の範囲にあり、CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピーク強度Aに対する2θ=18〜21゜付近に位置する(001)面のピーク強度Bの比B/Aが1.1以上であり、結晶内に含まれる硫酸根が0.5重量%以下である粉末を主成分とするニッケル正極であって、かつ、Y、Yb、Lu、Ti、Caからなる群より選ばれた少なくとも1種を含む酸化物粉末を、水酸化ニッケルに対して0.5重量%以上3重量%以下含むことを特徴とするアルカリ蓄電池。In an alkaline storage battery comprising a nickel positive electrode, a negative electrode, and an electrolytic solution, the nickel positive electrode is nickel hydroxide containing at least magnesium in a solid solution state, and the magnesium content is based on the total metal elements in the nickel hydroxide. 2 mol% or more and 7 mol% or less, a powder having a tap density of 1.9 g / cm 3 or more, and located in the vicinity of 2θ = 37 ° to 40 ° of X-ray diffraction using CuKα rays (101) The peak half-width of the peak of the surface is in the range of 0.7 ° to 1.2 °, and the peak intensity A of the (101) surface located in the vicinity of 2θ = 37-40 ° of X-ray diffraction using CuKα rays A powder having a ratio (B / A) of peak intensity B of (001) plane located in the vicinity of 2θ = 18 to 21 ° to 1.1 is 1.1 or more and the sulfate radical contained in the crystal is 0.5 wt% or less. Nickel as main component An oxide powder that is a positive electrode and contains at least one selected from the group consisting of Y, Yb, Lu, Ti, and Ca is included in an amount of 0.5 wt% to 3 wt% with respect to nickel hydroxide. An alkaline storage battery characterized by that. 前記水酸化ニッケル粉末は、コバルト酸化物により、その表面が被覆されている請求項記載のアルカリ蓄電池。The alkaline storage battery according to claim 4 , wherein a surface of the nickel hydroxide powder is coated with cobalt oxide. 前記コバルト酸化物のコバルトの平均価数は、3価より大きいことを特徴とする請求項記載のアルカリ蓄電池。6. The alkaline storage battery according to claim 5, wherein an average valence of cobalt of the cobalt oxide is larger than trivalence. ニッケル正極、負極、電解液を具備するアルカリ蓄電池において、前記ニッケル正極は、少なくともマグネシウムを固溶状態で含む水酸化ニッケルであって、マグネシウムの含有割合は、水酸化ニッケル中の全金属元素に対して2モル%以上7モル%以下であり、タップ密度が1.9g/cc以上の粉末であって、CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピークの半価幅が0.7゜以上1.1゜以下の範囲にあり、CuKα線を使用するX線回折の2θ=37〜40゜付近に位置する(101)面のピーク強度Aに対する2θ=18〜21゜付近に位置する(001)面のピーク強度Bの比B/Aが1.1以上であり、結晶内に含まれる硫酸根が0.5重量%以下である粉末を主成分とし、かつ、Y、Yb、Lu、Ti、Caからなる群より選ばれた少なくとも1種を含む酸化物粉末を、水酸化ニッケルに対して0.5重量%以上3重量%以下含むニッケル正極であり、前記電解液は少なくとも水酸化ナトリウムを含むことを特徴とするアルカリ蓄電池。In an alkaline storage battery comprising a nickel positive electrode, a negative electrode, and an electrolytic solution, the nickel positive electrode is nickel hydroxide containing at least magnesium in a solid solution state, and the content of magnesium is based on the total metal elements in the nickel hydroxide. (101) plane that is 2 mol% or more and 7 mol% or less and has a tap density of 1.9 g / cc or more and is located in the vicinity of 2θ = 37 to 40 ° of X-ray diffraction using CuKα rays. The half-value width of the peak is in the range of 0.7 ° to 1.1 °, and the X-ray diffraction using CuKα ray corresponds to the peak intensity A of the (101) plane located near 2θ = 37-40 °. Mainly a powder having a ratio (B / A) of peak intensity B of (001) plane located in the vicinity of 2θ = 18 to 21 ° is 1.1 or more and the sulfate radical contained in the crystal is 0.5% by weight or less. and components, and, Y Yb, Lu, Ti, an oxide powder containing at least one selected from the group consisting of Ca, a nickel positive electrode containing 3 wt% 0.5 wt% or more of nickel hydroxide, the electrolyte An alkaline storage battery comprising at least sodium hydroxide. 前記水酸化ナトリウムの含有量が、電解液に対して1mol/l以上5mol/l以下であることを特徴とする請求項記載のアルカリ蓄電池。The alkaline storage battery according to claim 7, wherein a content of the sodium hydroxide is 1 mol / l or more and 5 mol / l or less with respect to the electrolytic solution. 前記ニッケル酸化物粉末は、コバルト酸化物により、その表面が被覆されている請求項記載のアルカリ蓄電池。The alkaline storage battery according to claim 7 , wherein a surface of the nickel oxide powder is coated with cobalt oxide. 前記コバルト酸化物のコバルトの平均価数は、3価より大きいことを特徴とする請求項記載のアルカリ蓄電池。The alkaline storage battery according to claim 9, wherein an average valence of cobalt of the cobalt oxide is larger than trivalence.
JP2000184177A 2000-06-16 2000-06-20 Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same Expired - Lifetime JP3744317B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000184177A JP3744317B2 (en) 2000-06-20 2000-06-20 Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same
PCT/JP2001/004242 WO2001097305A1 (en) 2000-06-16 2001-05-21 Anode active material for alkali storage battery, anode including the same, and alkali storage battery
CNB018017185A CN1233055C (en) 2000-06-16 2001-05-21 Anode active material for alkali storage battery, anode including samd, and alkali storage battery
US10/040,184 US6783892B2 (en) 2000-06-16 2002-01-04 Positive electrode active material for alkaline storage batteries, and positive electrode and alkaline storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184177A JP3744317B2 (en) 2000-06-20 2000-06-20 Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JP2002008649A JP2002008649A (en) 2002-01-11
JP3744317B2 true JP3744317B2 (en) 2006-02-08

Family

ID=18684652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184177A Expired - Lifetime JP3744317B2 (en) 2000-06-16 2000-06-20 Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP3744317B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117725A (en) * 2006-11-08 2008-05-22 Matsushita Electric Ind Co Ltd Cylindrical nickel-hydrogen storage battery
JPWO2014049966A1 (en) * 2012-09-26 2016-08-22 パナソニックIpマネジメント株式会社 Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery for alkaline storage battery containing the same, and nickel metal hydride storage battery
CN113972352B (en) * 2020-07-07 2023-04-07 巴斯夫杉杉电池材料有限公司 Positive electrode active material of lithium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JP2002008649A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
US6261720B1 (en) Positive electrode active material for alkaline storage batteries
JP3489960B2 (en) Alkaline storage battery
WO2006011430A1 (en) Alkali battery positive electrode active material, alkali battery positive electrode, alkali battery, and method for manufacturing alkali battery positive electrode active material
JP2000113904A (en) Alkaline storage battery
JP3518975B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP4403594B2 (en) Cathode active material for alkaline storage battery and method for producing the same
US6783892B2 (en) Positive electrode active material for alkaline storage batteries, and positive electrode and alkaline storage battery using the same
US10651459B2 (en) Nickel hydroxide composite material for alkaline rechargeable battery
JP4330832B2 (en) Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
US7147676B2 (en) Method of preparing a nickel positive electrode active material
JP2011071125A (en) Manufacturing method of positive electrode active material for alkaline storage battery
JP3744317B2 (en) Nickel positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3744316B2 (en) Positive electrode active material for alkaline storage battery, nickel positive electrode, and alkaline storage battery
JP4320521B2 (en) Nickel electrode active material for alkaline storage battery, nickel electrode and alkaline storage battery.
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
KR100288472B1 (en) Nickel electrode active material, nickel electrode using same, nickel alkaline storage battery and manufacturing method thereof
JP2001043856A (en) Non-sintered nickel electrode for alkali storage battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R151 Written notification of patent or utility model registration

Ref document number: 3744317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

EXPY Cancellation because of completion of term