JP3953550B2 - Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery - Google Patents

Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery Download PDF

Info

Publication number
JP3953550B2
JP3953550B2 JP17340796A JP17340796A JP3953550B2 JP 3953550 B2 JP3953550 B2 JP 3953550B2 JP 17340796 A JP17340796 A JP 17340796A JP 17340796 A JP17340796 A JP 17340796A JP 3953550 B2 JP3953550 B2 JP 3953550B2
Authority
JP
Japan
Prior art keywords
ion
active material
chemical composition
positive electrode
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17340796A
Other languages
Japanese (ja)
Other versions
JPH1021901A (en
Inventor
正治 綿田
政彦 押谷
純一 今泉
豊志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP17340796A priority Critical patent/JP3953550B2/en
Publication of JPH1021901A publication Critical patent/JPH1021901A/en
Application granted granted Critical
Publication of JP3953550B2 publication Critical patent/JP3953550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル金属水素化物電池、ニッケルカドミウム電池、ニッケル亜鉛電池等のアルカリ蓄電池に用いられる正極活物質、及びその製造方法、並びにその正極活物質を用いた正極に関するものである。
【0002】
【従来技術及びその課題】
ニッケル水素電池やニッケルカドミウム電池の高エネルギー密度化を図る技術として、近年では、正極であるニッケル電極に、従来の焼結式電極に代えてペースト式(非焼結式)電極を用いることが行なわれている。ペースト式ニッケル電極は、電極基板として95%以上の高多孔体を用いているので、活物質である水酸化ニッケルを従来電極よりも多量に充填でき、その結果、高容量且つ高エネルギー密度を可能とするものである。
【0003】
しかしながら、ペースト式ニッケル電極において、活物質である水酸化ニッケル粒子を単に充填しただけでは、活物質利用率は60%程度しかなく、実用に至らない。そこで、活物質利用率を高めるために、各種の導電付加剤、例えば、ニッケル粉末、黒鉛粉末、コバルト化合物等の添加が行なわれており、中でも、コバルト酸化物の添加が最も効果的であると言われている。
【0004】
しかし、コバルト酸化物の全てが、活物質利用率を高めるための添加剤として有効ではなく、その効果はコバルト酸化物の結晶構造によって大きく左右されることが知られている。例えば、Coには効果が認められないが、Co(OH) 、CoO等のアルカリに可溶なコバルト酸化物には効果が認められている。
【0005】
このような有効なコバルト酸化物の作用機構は、次の通りである。即ち、コバルト酸化物がアルカリ水溶液中に溶解して2価のコバルト錯イオンが生成し、この錯イオンが水酸化ニッケル粒子や集電体の表面に水酸化コバルトとして析出し、析出した水酸化コバルトが初充電過程で導電性のオキシ水酸化コバルト(CoOOH)に変化することによって活物質粒子間及び集電体間を接続する導電性ネットワークが形成され、これによって高い活物質利用率が可能となる。このことからわかるように、高い活物質利用率を得るためには、コバルト酸化物のアルカリ水溶液中での溶解析出過程が重要であり、導電性ネットワークが十分に形成される必要がある。
【0006】
導電性ネットワークを十分に形成するために、従来では、ペースト式ニッケル電極を用いた電池にアルカリ電解液を注液して封口した後に、長時間放置し、その間にコバルト添加剤を溶解・分散させて活物質表面全体に均一に水酸化コバルト層を形成させることが行なわれている。しかし、放置時間が長いため、電池組立の後工程、例えば化成工程等を、円滑に進めることができないという問題があった。
【0007】
そこで、放置時間を短縮するために、水酸化ニッケル粒子の表面に予め水酸化コバルト層を被覆した活物質粒子を作製することが、例えば特開昭62−234867号公報等で提案されている。更に、被覆する水酸化コバルトの結晶構造を変えることによって、アルカリ電解液への溶解性を高めることも行なわれている。例えば、水酸化コバルトの結晶構造を通常のβ型(層間:4.65Å)からα型(層間:〜8Å)とすることによって、溶解過程の促進が図られている。
【0008】
ところで、高濃度アルカリ電解液中では、β型水酸化コバルトは、安定しており、その溶解速度は遅い。これに対し、α型水酸化コバルトは、不安定であり、コバルト錯イオンを経て安定なβ型水酸化コバルトに変化する。それ故、強固な導電性ネットワークの形成には、α型構造のコバルト酸化物が望ましいとされている。しかし、純粋なα型の水酸化コバルトの合成は非常に困難であり、一般にα型と言われている水酸化コバルト粉末は、例えば特開昭62−234867号公報のX線回折図に開示されているように、β型とα型とが共存したものであって、本来の特性が未だ十分に引き出されていないものである。この点が更に改良すべき課題として残されている。
【0009】
一方、添加剤には、上述した導電性の付与を目的としたもの以外にも、ニッケル電極の充電効率の向上のために、希土類元素や2族元素の酸化物等を複合添加することが行なわれている。これらの化合物は、ニッケル電極の酸素発生電位を貴とし、酸素過電圧を増大させて高温時での充電効率を向上させる作用を有することが知られている。
【0010】
しかしながら、このように、目的を別とする複数の添加剤を主活物質である水酸化ニッケル粒子に添加することは、電極基板への活物質の均一な充填を非常に困難としたり、活物質利用率を低下させたりして、製造面及び品質面で安定した生産ができないという問題があった。
【0011】
本発明は、上記問題点等に鑑みてなされたものであり、ニッケル水酸化物の粒子表面に被覆させるコバルト化合物の組成及び結晶構造を所定のものに設定することにより、導電性ネットワークの形成を容易なものにできる、アルカリ蓄電池用正極活物質を提供すること、及びそのような活物質の製造方法を提供すること、並びにそのような活物質を用いたアルカリ蓄電池用正極を提供することを、目的とする。
【0012】
【課題を解決するための手段】
本発明のアルカリ蓄電池用正極活物質及びその製造方法並びにアルカリ蓄電池用正極は、以下の通りである。但し、その全てにおける化学組成式において、AはZn(亜鉛)であり、EはAl(アルミニウム)又はYb(イッテルビウム)であり、B及びDは、硫酸イオン、硝酸イオン、炭酸イオン、ホウ酸イオン、及びリン酸イオンのいずれかであり、xは0.05〜0.5であり、yは{(元素Eの価数)−2}×x÷(イオンDの価数)であり、zは0〜0.5であり、wは{(元素Aの価数)−2}×z÷(イオンBの価数)である。
【0013】
【0014】
【0015】
請求項記載のアルカリ蓄電池用正極活物質は、化学組成がNi1−z(OH)であるニッケル水酸化物の粒子の表面に、化学組成がCo1−x OOHであるコバルト酸化物からなる層が形成されていることを特徴としている。
【0016】
請求項記載の発明においては、ニッケル水酸化物の粒子の表面にコバルト酸化物からなる層が形成されているので、導電性ネットワークの形成が容易となり、電池組立後の放置時間が短縮される。しかも、コバルト酸化物は導電性に優れているので、導電性ネットワークは高効率のものとなり、活物質利用率が向上する。また、コバルト酸化物に元素がドープされているので、アルカリ電解液の酸化分解反応が抑制され、電極とした場合の高温時での充電効率が向上する。
【0017】
請求項記載のアルカリ蓄電池用正極活物質は、請求項1記載の構成に加えて、ニッケル水酸化物に対するコバルト酸化物の割合が、3〜15重量%である。
【0018】
請求項記載の発明においては、満足できる活物質利用率及び電池容量が得られる。なぜなら、3重量%未満の場合では、導電性ネットワークによる充分な導電性が確保されず、活物質利用率の低下が生じ、15重量%を超える場合では、活物質であるニッケル水酸化物の量が減少し、電池容量が小さくなるからである。
【0019】
請求項記載のアルカリ蓄電池用正極活物質は、請求項記載の構成において、化学組成がCo1−x OOHであるコバルト酸化物が、化学組成がCo1−x (OH) であるコバルト水酸化物を化学酸化して得られたものである。
【0020】
請求項記載の発明においては、コバルト水酸化物を得た後、容易にコバルト酸化物が得られる。
【0021】
【0022】
請求項記載のアルカリ蓄電池用正極活物質の製造方法は、化学組成がNi 1−z ( OH ) であるニッケル水酸化物の粒子を反応槽に入れ、コバルトと陰イオンDとからなる塩及び元素Eと陰イオンDとからなる塩を含む水溶液を、アンモニア又はアンモニウムイオン供給体とアルカリ金属水酸化物とを含む水溶液中に、pH8〜13に制御しながら滴下して、ニッケル水酸化物の粒子表面に、化学組成がCo 1−x ( OH ) であるコバルト水酸化物を析出させ、その後、コバルト水酸化物を化学酸化処理して化学組成がCo1−x OOHであるコバルト酸化物とすることを特徴としている。
【0023】
化学酸化処理に用いる酸化剤としては、過酸化水素、過硫酸カリウム、次亜塩素酸塩等が、用いられる。
【0024】
請求項記載の発明においては、アンモニア又はアンモニウムイオン供給体が存在しているため、単一結晶構造のコバルト水酸化物が安定して生成される。
【0025】
また、請求項記載の発明においては、コバルト酸化物が容易に得られる。
【0026】
【0027】
【0028】
請求項記載のアルカリ蓄電池用正極は、ペースト式電極であって、化学組成がNi1−z(OH)であるニッケル水酸化物の粒子の表面に、化学組成がCo1−x OOHであるコバルト酸化物からなる層が形成されているニッケル活物質が、多孔性基板に充填されて構成されていることを特徴としている。
【0029】
請求項記載の発明においては、強固且つ高効率の導電性ネットワークが形成されるので、更なる高容量及び高エネルギー密度が可能となる。
【0030】
請求項の多孔性基板としては、穿孔鋼板、金属メッシュ、発泡状金属多孔体、繊維状金属多孔体等が、用いられる。
【0031】
【発明の実施の形態】
以下に、本発明の基本的な実施形態について説明するが、本発明はこれに限るものではない。
【0032】
[ニッケル活物質粒子の作製]
(1) ニッケル水酸化物粒子の作製:
硫酸ニッケルと硫酸亜鉛とを所定の比率で溶解した水溶液に、硫酸アンモニウムを添加してアンミン金属錯体を生成した後、水酸化ナトリウム水溶液を激しく撹拌しながら且つpH10〜13に制御しながら滴下し、亜鉛を5モル%固溶した球状のニッケル水酸化物粒子を得た。その化学組成は、Ni0.95Zn0.05(OH)であった。
【0033】
(2) コバルト水酸化物で被覆されたニッケル水酸化物粒子の作製:
(1) で得たニッケル水酸化物粒子を、硫酸アンモニウムと水酸化ナトリウム水溶液とでpH8〜13に制御した水溶液中に投入し、これに、硫酸コバルトと硫酸アルミニウムとを所定の比率で混合した水溶液及び水酸化ナトリウム水溶液を、撹拌しながら且つpH8〜13に制御しながら滴下した。この際、所定のpHにて10分間〜2時間保持するのが好ましい。
【0034】
次いで、ろ過、水洗、真空乾燥して、コバルト水酸化物で被覆されたニッケル水酸化物粒子(以下、ニッケル活物質a粒子と称する)を得た。
【0035】
なお、コバルト水酸化物中のアルミニウム量の設定は、水溶液に溶解させるニッケル塩(硫酸ニッケル)とアルミニウム塩(硫酸アルミニウム)の比率を調整して行なった。コバルト水酸化物の被覆量は5重量%であり、コバルト水酸化物の化学組成は、Co0.8Al0.2(OH)(SO)0.1であった。このコバルト水酸化物は、図1のX線回折図が示すように、純粋なα型構造をとっており、アルカリ電解液(6M−KOH水溶液)への溶解速度は、従来のβ型/α型のCo(OH)に比較して大きな値を示した。
【0036】
(3) コバルト酸化物で被覆されたニッケル水酸化物粒子の作製:
(2) で得たニッケル活物質a粒子を、次亜塩素酸水溶液で化学酸化処理して、被覆しているコバルト水酸化物を高次のコバルト酸化物であるCo0.8Al0.2OOHに変換させた。即ち、コバルト酸化物で被覆されたニッケル水酸化物粒子(以下、ニッケル活物質b粒子と称する)を得た。このニッケル活物質b粒子の導電率は、オキシ水酸化ニッケルよりも高いものであった。
【0037】
[ペースト式正極の作製]
(1) ニッケル活物質a粒子を用いた正極の作製:
ニッケル活物質a粒子80重量部に、カルボキシメチルセルロース等の増粘剤を溶解した水溶液20重量部を加え、混練してペースト状とし、これを95%のニッケル多孔体基板に充填し、乾燥後にプレスして正極(以下、正極aと称する)を作製した。
【0038】
(2) ニッケル活物質b粒子を用いた正極の作製:
ニッケル活物質a粒子に代えてニッケル活物質b粒子を用い、(1) と同様にして正極(以下、正極bと称する)を作製した。
【0039】
[アルカリ電解液へのコバルトの溶解性]
ニッケル活物質a粒子について、アルカリ電解液中でのコバルトの溶解性を調べた。図2は、コバルト水酸化物中のコバルト/アルミニウムのモル比と、KOH電解液中に一定時間放置した後のコバルト溶解量の相対値との関係を示す。溶解速度は、異種元素(ここではアルミニウム)のドープ量の増加と共に増大し、モル比0.3で最大となり、0.5でも高い値を維持した。一方、ドープ量の増加は、導電性ネットワークの形成に必要なコバルト量の減少を招く。従って、異種元素のドープ量のモル比は0.05〜0.5が好ましい。
【0040】
[活物質利用率]
ニッケル活物質a粒子について、コバルト水酸化物の被覆量と活物質利用率との関係を調べた。図3はその結果を示す。図3からわかるように、被覆量が3重量%以上の場合に、95%以上の高い活物質利用率が得られている。一方、実用的見地から、被覆量を15重量%を超える値とすることは、電池容量を小さくすることとなるので、好ましくない。従って、被覆量は3〜15重量%であるのが好ましい。
【0041】
[アルカリ電解液中での浸漬時間と活物質利用率との関係]
(1) 正極aについて、アルカリ電解液中での浸漬時間と活物質利用率との関係を調べた。一方、β型水酸化コバルトで被覆された水酸化ニッケル粒子を活物質として用いた正極(比較電極1と称する)と、一酸化コバルト粉末を混合添加した水酸化ニッケル粒子を活物質として用いた正極(比較電極2と称する)とについても、同様に調べた。
【0042】
図4はその結果を示す。正極aでは、比較電極1,2である従来電極とは異なり、アルカリ電解液への浸漬時間が短時間であっても、高い活物質利用率が得られた。
【0043】
このように、正極aでは、ニッケル活物質a粒子のコバルト水酸化物に、異種元素をドープしているので、コバルト水酸化物にα型構造をとらせることができ、アルカリ電解液への溶解性が向上する。その結果、電池組立後の放置時間が従来よりも大きく短縮されることとなる。
【0044】
(2) 正極bについても、同様に、アルカリ電解液中での浸漬時間と活物質利用率との関係を調べたところ、アルカリ電解液への浸漬時間に殆んど依存することなく、高い活物質利用率が得られた。
【0045】
[高温時での充電効率]
ニッケル活物質a粒子のコバルト水酸化物のアルミニウムがイッテルビウムに置換されてなる正極cを作製して、高温40℃での充電効率を調べた。即ち、このニッケル活物質粒子は、化学組成がNi0.95Zn0.05(OH)であるニッケル水酸化物の粒子表面が化学組成がCo0.8Yb0.2(OH)(SO)0.1であるコバルト水酸化物により被覆されてなるものであり、被覆量は5重量%である。
【0046】
一方、上記比較電極2及び酸化イッテルビウム粉末を混合添加した水酸化ニッケル粒子を活物質として用いた正極(比較電極3と称する)についても、同様に調べた。なお、酸化イッテルビウムは、ニッケル電極の充電効率を高める作用を有することが知られている。
【0047】
図5はその結果を示す。図5からわかるように、正極cは、比較電極3と同様に、高温時での充電効率が優れている。
【0048】
【発明の効果】
【0049】
【0050】
)請求項記載のアルカリ蓄電池用正極活物質によれば、ニッケル水酸化物の粒子の表面にコバルト酸化物からなる層を形成しているので、導電性ネットワークの形成を容易なものにでき、従って、電池組立後の放置時間を短縮でき、電池の製造工程の短縮化を図ることができる。
【0051】
しかも、コバルト酸化物は導電性に優れているので、導電性ネットワークを高効率なものにでき、活物質利用率を向上できる。
【0052】
また、コバルト酸化物に元素をドープしているので、アルカリ電解液の酸化分解反応を抑制でき、電極とした場合の高温時での充電効率を向上できる。
【0053】
)請求項記載のアルカリ蓄電池用正極活物質によれば、満足できる活物質利用率及び電池容量を得ることができる。
【0054】
)請求項記載のアルカリ蓄電池用正極活物質によれば、コバルト水酸化物を得た後、容易にコバルト酸化物を得ることができる。
【0055】
【0056】
)請求項記載のアルカリ蓄電池用正極活物質の製造方法によれば、アンモニア又はアンモニウムイオン供給体が存在しているため、単一結晶構造のコバルト水酸化物を安定して生成でき、それ故、コバルト酸化物も安定して生成できる。しかも、コバルト酸化物はコバルト水酸化物を化学酸化処理するだけで得られるので、容易である。従って、請求項記載の活物質を確実且つ容易に得ることができる。
【0057】
【0058】
)請求項記載のアルカリ蓄電池用正極によれば、更なる高容量及び高エネルギー密度を可能にできる。
【図面の簡単な説明】
【図1】 本発明の実施形態で作製したコバルト水酸化物のX線回折図である。
【図2】 本発明の実施形態で作製したコバルト水酸化物で被覆されたニッケル水酸化物粒子に関して、コバルト水酸化物中の異種元素の量とアルカリ電解液中でのコバルトの溶解性との関係を示す図である。
【図3】 本発明の実施形態で作製したコバルト水酸化物で被覆されたニッケル水酸化物粒子に関して、コバルト水酸化物の被覆量と活物質利用率との関係を示す図である。
【図4】 本発明の実施形態で作製したコバルト水酸化物で被覆されたニッケル水酸化物粒子を用いて構成した正極に関して、アルカリ電解液中での浸漬時間と活物質利用率との関係を示す図である。
【図5】 本発明の実施形態で作製した別の例のコバルト水酸化物で被覆されたニッケル水酸化物粒子を用いて構成した正極に関して、高温時での充電効率を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material used for alkaline storage batteries such as a nickel metal hydride battery, a nickel cadmium battery, and a nickel zinc battery, a manufacturing method thereof, and a positive electrode using the positive electrode active material.
[0002]
[Prior art and its problems]
As a technology for increasing the energy density of nickel metal hydride batteries and nickel cadmium batteries, in recent years, a paste-type (non-sintered) electrode has been used instead of a conventional sintered electrode for a nickel electrode that is a positive electrode. It is. The paste type nickel electrode uses a highly porous material of 95% or more as an electrode substrate, so it can be filled with nickel hydroxide as an active material in a larger amount than the conventional electrode, and as a result, high capacity and high energy density are possible. It is what.
[0003]
However, in a paste-type nickel electrode, simply filling nickel hydroxide particles as an active material has an active material utilization rate of only about 60%, which is not practical. Therefore, in order to increase the active material utilization rate, various conductive additives such as nickel powder, graphite powder, and cobalt compounds are added, and among these, addition of cobalt oxide is most effective. It is said.
[0004]
However, it is known that not all cobalt oxides are effective as additives for increasing the active material utilization rate, and the effect is greatly influenced by the crystal structure of the cobalt oxide. For example, Co 3 O 4 has no effect, but Co (OH) 2 , CoO, and other alkali-soluble cobalt oxides have an effect.
[0005]
The action mechanism of such effective cobalt oxide is as follows. That is, a cobalt oxide is dissolved in an alkaline aqueous solution to form a divalent cobalt complex ion, and this complex ion is precipitated as cobalt hydroxide on the surface of nickel hydroxide particles or a current collector. Is changed to conductive cobalt oxyhydroxide (CoOOH) in the initial charging process, thereby forming a conductive network connecting active material particles and current collectors, thereby enabling a high active material utilization rate. . As can be seen from this, in order to obtain a high active material utilization rate, the dissolution and precipitation process of cobalt oxide in an alkaline aqueous solution is important, and a sufficient conductive network must be formed.
[0006]
Conventionally, in order to sufficiently form a conductive network, an alkaline electrolyte is poured into a battery using a paste-type nickel electrode, sealed, and left for a long time, during which cobalt additive is dissolved and dispersed. Thus, a cobalt hydroxide layer is uniformly formed on the entire active material surface. However, since the leaving time is long, there is a problem that a post-assembly process such as a chemical conversion process cannot be smoothly advanced.
[0007]
Thus, in order to shorten the standing time, for example, Japanese Patent Application Laid-Open No. 62-234867 proposes to produce active material particles in which the surface of nickel hydroxide particles is coated with a cobalt hydroxide layer. Furthermore, the solubility in an alkaline electrolyte is increased by changing the crystal structure of the cobalt hydroxide to be coated. For example, the melting process is promoted by changing the crystal structure of cobalt hydroxide from an ordinary β type (interlayer: 4.65 Å) to an α type (interlayer: ˜8 Å).
[0008]
By the way, in a high concentration alkaline electrolyte, β-type cobalt hydroxide is stable and its dissolution rate is slow. In contrast, α-type cobalt hydroxide is unstable and changes to stable β-type cobalt hydroxide through cobalt complex ions. Therefore, α-type cobalt oxide is desirable for forming a strong conductive network. However, it is very difficult to synthesize pure α-type cobalt hydroxide, and cobalt hydroxide powder generally referred to as α-type is disclosed in, for example, an X-ray diffraction diagram of Japanese Patent Application Laid-Open No. 62-234867. As shown, the β-type and the α-type coexist, and the original characteristics have not yet been sufficiently extracted. This point remains as a problem to be further improved.
[0009]
On the other hand, in order to improve the charging efficiency of the nickel electrode, in addition to the purpose of imparting conductivity as described above, a rare earth element or an oxide of a group 2 element is added to the additive in combination. It is. These compounds are known to have an action of making the oxygen generation potential of the nickel electrode noble and increasing the oxygen overvoltage to improve the charging efficiency at high temperatures.
[0010]
However, adding a plurality of additives for different purposes to the nickel hydroxide particles as the main active material makes it difficult to uniformly fill the active material into the electrode substrate, or There was a problem that the production rate and quality could not be stably produced by reducing the utilization rate.
[0011]
The present invention has been made in view of the above problems and the like, and by setting the composition and crystal structure of a cobalt compound to be coated on the nickel hydroxide particle surface to a predetermined one, the formation of a conductive network is achieved. Providing a positive electrode active material for an alkaline storage battery that can be made easy, providing a method for producing such an active material, and providing a positive electrode for an alkaline storage battery using such an active material, Objective.
[0012]
[Means for Solving the Problems]
The positive electrode active material for alkaline storage battery of the present invention, the production method thereof, and the positive electrode for alkaline storage battery are as follows. However, in all the chemical composition formulas, A is Zn (zinc), E is Al (aluminum) or Yb (ytterbium) , B and D are sulfate ion, nitrate ion, carbonate ion, borate ion , And phosphate ions, x is 0.05 to 0.5, y is {(valence of element E) −2} × x ÷ (valence of ion D), z is 0 to 0.5, w is {(valence of the element a) -2} × z ÷ (valence of ion B) Ru der.
[0013]
[0014]
[0015]
The positive electrode active material for an alkaline storage battery according to claim 1, wherein the chemical composition Ni 1-z A z (OH ) surface of the particles of the nickel hydroxide is 2 B w, the chemical composition Co 1-x E x OOH A layer made of cobalt oxide is formed.
[0016]
In the first aspect of the present invention, since a layer consisting of cobalt oxide on the surface of the particles of the nickel hydroxide is formed, the formation of conductive network is facilitated, it is shortened standing time after battery assembly . In addition, since cobalt oxide is excellent in conductivity, the conductive network becomes highly efficient and the active material utilization rate is improved. Moreover, since element E is doped in the cobalt oxide, the oxidative decomposition reaction of the alkaline electrolyte is suppressed, and the charging efficiency at a high temperature when the electrode is used is improved.
[0017]
The positive electrode active material for an alkaline storage battery according to claim 2, wherein, in addition to the configuration of claim 1 Symbol placement, the ratio of cobalt oxide against the nickel hydroxide is 3 to 15 wt%.
[0018]
In the invention of claim 2 , satisfactory active material utilization and battery capacity can be obtained. This is because if the amount is less than 3% by weight, sufficient conductivity due to the conductive network is not ensured, and the utilization factor of the active material is reduced. If the amount exceeds 15% by weight, the amount of nickel hydroxide as the active material This is because the battery capacity is reduced.
[0019]
The positive electrode active material for an alkaline storage battery according to claim 3 is the composition according to claim 1 , wherein the cobalt oxide having a chemical composition of Co 1-x E x OOH has a chemical composition of Co 1-x E x (OH). cobalt hydroxide is 2 D y is obtained by chemical oxidation.
[0020]
In invention of Claim 3 , after obtaining a cobalt hydroxide, a cobalt oxide is obtained easily.
[0021]
[0022]
The method for producing a positive electrode active material for an alkaline storage battery according to claim 4, wherein the chemical composition is put particles nickel hydroxide is Ni 1-z A z (OH ) 2 B w in the reaction vessel, cobalt and an anion D An aqueous solution containing a salt consisting of and a salt consisting of element E and anion D is dropped into an aqueous solution containing ammonia or an ammonium ion supplier and an alkali metal hydroxide while controlling the pH to 8-13, Cobalt hydroxide having a chemical composition of Co 1-x E x ( OH ) 2 D y is deposited on the surface of nickel hydroxide particles , and then the cobalt hydroxide is chemically oxidized to have a chemical composition of Co It is characterized by being a cobalt oxide which is 1-x E x OOH.
[0023]
As the oxidizing agent used for the chemical oxidation treatment, hydrogen peroxide, potassium persulfate, hypochlorite, or the like is used.
[0024]
In the invention of claim 4, wherein, for ammonia or ammonium ion donor are present, cobalt hydroxide single crystal structure is stably generated.
[0025]
In the invention according to claim 4 , a cobalt oxide can be easily obtained.
[0026]
[0027]
[0028]
For an alkaline storage battery positive electrode according to claim 5, there is provided a paste type electrode, the chemical composition is Ni 1-z A z (OH ) 2 the surface of the particles of the nickel hydroxide is B w, the chemical composition Co 1 nickel active material layer consisting of cobalt oxide is -x E x OOH is formed, is characterized in that it is constituted by filling the porous substrate.
[0029]
In the invention described in claim 5 , since a strong and highly efficient conductive network is formed, further high capacity and high energy density are possible.
[0030]
As the porous substrate of claim 5 , a perforated steel plate, a metal mesh, a foamed metal porous body, a fibrous metal porous body, or the like is used.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
The basic embodiment of the present invention will be described below, but the present invention is not limited to this.
[0032]
[Preparation of nickel active material particles]
(1) Preparation of nickel hydroxide particles:
After ammonium sulfate is added to an aqueous solution in which nickel sulfate and zinc sulfate are dissolved at a predetermined ratio to form an ammine metal complex, the aqueous sodium hydroxide solution is added dropwise while vigorously stirring and controlling to pH 10-13, Spherical nickel hydroxide particles having a solid solution of 5 mol% were obtained. Its chemical composition was Ni 0.95 Zn 0.05 (OH) 2 .
[0033]
(2) Preparation of nickel hydroxide particles coated with cobalt hydroxide:
The nickel hydroxide particles obtained in (1) are put into an aqueous solution controlled to pH 8 to 13 with ammonium sulfate and an aqueous sodium hydroxide solution, and an aqueous solution in which cobalt sulfate and aluminum sulfate are mixed at a predetermined ratio. And an aqueous sodium hydroxide solution were added dropwise while stirring and controlling the pH to 8-13. At this time, it is preferable to hold at a predetermined pH for 10 minutes to 2 hours.
[0034]
Then, filtration, washing with water, and vacuum drying were performed to obtain nickel hydroxide particles coated with cobalt hydroxide (hereinafter referred to as nickel active material a particles).
[0035]
The amount of aluminum in the cobalt hydroxide was set by adjusting the ratio of nickel salt (nickel sulfate) and aluminum salt (aluminum sulfate) dissolved in the aqueous solution. The coating amount of cobalt hydroxide was 5% by weight, and the chemical composition of cobalt hydroxide was Co 0.8 Al 0.2 (OH) 2 (SO 4 ) 0.1 . As shown in the X-ray diffraction diagram of FIG. 1, this cobalt hydroxide has a pure α-type structure, and the dissolution rate in an alkaline electrolyte (6M-KOH aqueous solution) is the conventional β-type / α. A large value was shown in comparison with the type Co (OH) 2 .
[0036]
(3) Preparation of nickel hydroxide particles coated with cobalt oxide:
The nickel active material a particles obtained in (2) are chemically oxidized with a hypochlorous acid aqueous solution, and the coated cobalt hydroxide is converted to Co 0.8 Al 0.2 which is a higher-order cobalt oxide. Converted to OOH. That is, nickel hydroxide particles coated with cobalt oxide (hereinafter referred to as nickel active material b particles) were obtained. The conductivity of the nickel active material b particles was higher than that of nickel oxyhydroxide.
[0037]
[Preparation of paste type positive electrode]
(1) Preparation of positive electrode using nickel active material a particles:
20 parts by weight of an aqueous solution in which a thickener such as carboxymethyl cellulose is dissolved is added to 80 parts by weight of the nickel active material a particles, kneaded to form a paste, filled into a 95% nickel porous substrate, pressed after drying Thus, a positive electrode (hereinafter referred to as positive electrode a) was produced.
[0038]
(2) Fabrication of positive electrode using nickel active material b particles:
A nickel active material b particle was used in place of the nickel active material a particle, and a positive electrode (hereinafter referred to as positive electrode b) was produced in the same manner as (1).
[0039]
[Solubility of cobalt in alkaline electrolyte]
About the nickel active material a particle | grains, the solubility of cobalt in alkaline electrolyte was investigated. FIG. 2 shows the relationship between the cobalt / aluminum molar ratio in the cobalt hydroxide and the relative value of the amount of cobalt dissolved after being left in the KOH electrolyte for a certain period of time. The dissolution rate increased with an increase in the doping amount of the different element (here, aluminum), reached a maximum at a molar ratio of 0.3, and maintained a high value even at 0.5. On the other hand, an increase in the amount of doping causes a decrease in the amount of cobalt necessary for forming the conductive network. Therefore, the molar ratio of the doping amounts of the different elements is preferably 0.05 to 0.5.
[0040]
[Active material utilization rate]
About the nickel active material a particle | grain, the relationship between the coating amount of a cobalt hydroxide and an active material utilization factor was investigated. FIG. 3 shows the result. As can be seen from FIG. 3, when the coating amount is 3% by weight or more, a high active material utilization rate of 95% or more is obtained. On the other hand, from a practical standpoint, setting the coating amount to a value exceeding 15% by weight is not preferable because the battery capacity is reduced. Therefore, the coating amount is preferably 3 to 15% by weight.
[0041]
[Relationship between immersion time in alkaline electrolyte and utilization rate of active material]
(1) For the positive electrode a, the relationship between the immersion time in the alkaline electrolyte and the active material utilization rate was examined. On the other hand, a positive electrode (referred to as comparative electrode 1) using nickel hydroxide particles coated with β-type cobalt hydroxide as an active material, and a positive electrode using nickel hydroxide particles mixed with cobalt monoxide powder as an active material. It investigated similarly about (referred to as the comparative electrode 2).
[0042]
FIG. 4 shows the result. In the positive electrode a, unlike the conventional electrodes which are the comparative electrodes 1 and 2, a high active material utilization rate was obtained even when the immersion time in the alkaline electrolyte was short.
[0043]
In this way, in the positive electrode a, the cobalt hydroxide of the nickel active material a particles is doped with a different element, so that the cobalt hydroxide can have an α-type structure and dissolved in an alkaline electrolyte. Improves. As a result, the leaving time after battery assembly is greatly shortened compared to the conventional case.
[0044]
(2) Similarly, for the positive electrode b, the relationship between the immersion time in the alkaline electrolyte and the active material utilization rate was examined. Material utilization rate was obtained.
[0045]
[Charging efficiency at high temperature]
A positive electrode c in which aluminum of cobalt hydroxide of nickel active material a particles was replaced with ytterbium was produced, and charging efficiency at a high temperature of 40 ° C. was examined. That is, the nickel active material particles, chemical composition Ni 0.95 Zn 0.05 (OH) 2 particle surfaces of the nickel hydroxide is the chemical composition Co 0.8 Yb 0.2 (OH) 2 ( SO 4 ) 0.1 is coated with cobalt hydroxide, and the coating amount is 5% by weight.
[0046]
On the other hand, the positive electrode (referred to as the comparative electrode 3) using nickel hydroxide particles mixed with the comparative electrode 2 and ytterbium oxide powder as an active material was also examined in the same manner. In addition, it is known that ytterbium oxide has the effect | action which improves the charging efficiency of a nickel electrode.
[0047]
FIG. 5 shows the result. As can be seen from FIG. 5, the positive electrode c is excellent in charging efficiency at a high temperature as in the comparative electrode 3.
[0048]
【The invention's effect】
[0049]
[0050]
( 1 ) According to the positive electrode active material for an alkaline storage battery according to claim 1 , since the layer made of cobalt oxide is formed on the surface of the nickel hydroxide particles, the formation of the conductive network is facilitated. Therefore, the time for which the battery is left after the battery assembly can be shortened, and the battery manufacturing process can be shortened.
[0051]
And since cobalt oxide is excellent in electroconductivity, a conductive network can be made highly efficient and an active material utilization factor can be improved.
[0052]
Moreover, since the element E is doped in the cobalt oxide, the oxidative decomposition reaction of the alkaline electrolyte can be suppressed, and the charging efficiency at a high temperature when the electrode is used can be improved.
[0053]
( 2 ) According to the positive electrode active material for an alkaline storage battery according to claim 2 , a satisfactory active material utilization rate and battery capacity can be obtained.
[0054]
( 3 ) According to the positive electrode active material for an alkaline storage battery of claim 3 , the cobalt oxide can be easily obtained after obtaining the cobalt hydroxide.
[0055]
[0056]
( 4 ) According to the method for producing a positive electrode active material for an alkaline storage battery according to claim 4 , since the ammonia or ammonium ion supplier is present, it is possible to stably produce cobalt hydroxide having a single crystal structure, Therefore, cobalt oxide can also be generated stably. In addition, the cobalt oxide is easy because it can be obtained simply by chemically oxidizing the cobalt hydroxide. Therefore, the active material according to claim 1 can be obtained reliably and easily.
[0057]
[0058]
( 5 ) According to the positive electrode for an alkaline storage battery according to claim 5 , further higher capacity and higher energy density can be realized.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a cobalt hydroxide produced in an embodiment of the present invention.
FIG. 2 shows the relationship between the amount of different elements in cobalt hydroxide and the solubility of cobalt in alkaline electrolyte with respect to nickel hydroxide particles coated with cobalt hydroxide produced in an embodiment of the present invention. It is a figure which shows a relationship.
FIG. 3 is a diagram showing the relationship between the coating amount of cobalt hydroxide and the active material utilization rate for nickel hydroxide particles coated with cobalt hydroxide produced in an embodiment of the present invention.
FIG. 4 shows the relationship between the immersion time in an alkaline electrolyte and the active material utilization rate for a positive electrode formed using nickel hydroxide particles coated with cobalt hydroxide produced in an embodiment of the present invention. FIG.
FIG. 5 is a diagram showing charging efficiency at a high temperature with respect to a positive electrode configured using nickel hydroxide particles coated with cobalt hydroxide of another example manufactured in an embodiment of the present invention.

Claims (5)

化学組成がNi1−z(OH)であるニッケル水酸化物の粒子の表面に、化学組成がCo1−xOOHであるコバルト酸化物からなる層が形成されていることを特徴とするアルカリ蓄電池用正極活物質。但し、上記化学組成式において、AはZnであり、EはAl又はYbであり、Bは、硫酸イオン、硝酸イオン、炭酸イオン、ホウ酸イオン、及びリン酸イオンのいずれかであり、xは0.05〜0.5であり、zは0〜0.5であり、wは{(元素Aの価数)−2}×z÷(イオンBの価数)である。The surfaces of the particles of the nickel hydroxide is a chemical composition Ni 1-z A z (OH ) 2 B w, a layer consisting of cobalt oxide is formed chemical composition is Co 1-x E x OOH A positive electrode active material for an alkaline storage battery. In the above chemical composition formula, A is Zn, E is Al or Yb , B is any one of sulfate ion, nitrate ion, carbonate ion, borate ion, and phosphate ion, and x is 0.05 to 0.5, z is 0 to 0.5, and w is {(valence of element A) −2} × z ÷ (valence of ion B). ニッケル水酸化物に対するコバルト酸化物の割合が、3〜15重量%である請求項1記載のアルカリ蓄電池用正極活物質。  The positive electrode active material for an alkaline storage battery according to claim 1, wherein the ratio of cobalt oxide to nickel hydroxide is 3 to 15% by weight. 化学組成がCo1−xOOHであるコバルト酸化物が、化学組成がCo1−x(OH)であるコバルト水酸化物を化学酸化して得られたものである請求項1記載のアルカリ蓄電池用正極活物質。但し、上記化学組成式において、Dは、硫酸イオン、硝酸イオン、炭酸イオン、ホウ酸イオン、及びリン酸イオンのいずれかであり、yは{(元素Eの価数)−2}×x÷(イオンDの価数)である。The cobalt oxide having a chemical composition of Co 1-x E x OOH is obtained by chemically oxidizing a cobalt hydroxide having a chemical composition of Co 1-x E x (OH) 2 D y Item 6. The positive electrode active material for an alkaline storage battery according to Item 1. In the above chemical composition formula, D is any one of sulfate ion, nitrate ion, carbonate ion, borate ion, and phosphate ion, and y is {(valence of element E) −2} × x ÷. (Valence of ion D). 化学組成がNi1−z(OH)であるニッケル水酸化物の粒子を反応槽に入れ、コバルトと陰イオンDとからなる塩及び元素Eと陰イオンDとからなる塩を含む水溶液を、アンモニア又はアンモニウムイオン供給体とアルカリ金属水酸化物とを含む水溶液中に、pH8〜13に制御しながら滴下して、ニッケル水酸化物の粒子表面に、化学組成がCo1−x(OH)であるコバルト水酸化物を析出させ、その後、コバルト水酸化物を化学酸化処理して化学組成がCo1−xOOHであるコバルト酸化物とすることを特徴とするアルカリ蓄電池用正極活物質の製造方法。但し、上記化学組成式において、AはZnであり、EはAl又はYbであり、B及びDは、硫酸イオン、硝酸イオン、炭酸イオン、ホウ酸イオン、及びリン酸イオンのいずれかであり、xは0.05〜0.5であり、yは{(元素Eの価数)−2}×x÷(イオンDの価数)であり、zは0〜0.5であり、wは{(元素Aの価数)−2}×z÷(イオンBの価数)である。Chemical composition put particles nickel hydroxide is Ni 1-z A z (OH ) 2 B w in the reaction vessel, a salt of cobalt and an anion D consisting of salt and elemental E and anion D The aqueous solution containing the solution is dropped into an aqueous solution containing ammonia or an ammonium ion supplier and an alkali metal hydroxide while controlling the pH to 8 to 13, and the chemical composition is Co 1-x on the particle surface of the nickel hydroxide. Cobalt hydroxide which is E x (OH) 2 D y is precipitated, and then the cobalt hydroxide is chemically oxidized to form cobalt oxide whose chemical composition is Co 1-x E x OOH. The manufacturing method of the positive electrode active material for alkaline storage batteries. However, in the above chemical composition formula, A is Zn, E is Al or Yb , B and D are any of sulfate ion, nitrate ion, carbonate ion, borate ion, and phosphate ion, x is 0.05 to 0.5, y is {(valence of element E) −2} × x ÷ (valence of ion D), z is 0 to 0.5, and w is {(Valence of element A) −2} × z ÷ (valence of ion B). ペースト式電極であって、化学組成がNi1−z(OH)であるニッケル水酸化物の粒子の表面に、化学組成がCo1−xOOHであるコバルト酸化物からなる層が形成されているニッケル活物質が、多孔性基板に充填されて構成されていることを特徴とするアルカリ蓄電池用正極。但し、上記化学組成式において、AはZnであり、EはAl又はYbであり、Bは、硫酸イオン、硝酸イオン、炭酸イオン、ホウ酸イオン、及びリン酸イオンのいずれかであり、xは0.05〜0.5であり、zは0〜0.5であり、wは{(元素Aの価数)−2}×z÷(イオンBの価数)である。From a cobalt oxide having a chemical composition of Co 1-x E x OOH on a surface of a nickel hydroxide particle having a chemical composition of Ni 1-z A z (OH) 2 B w A positive electrode for an alkaline storage battery, characterized in that a nickel active material in which a layer to be formed is filled in a porous substrate. In the above chemical composition formula, A is Zn, E is Al or Yb , B is any one of sulfate ion, nitrate ion, carbonate ion, borate ion, and phosphate ion, and x is 0.05 to 0.5, z is 0 to 0.5, and w is {(valence of element A) −2} × z ÷ (valence of ion B).
JP17340796A 1996-07-03 1996-07-03 Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery Expired - Fee Related JP3953550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17340796A JP3953550B2 (en) 1996-07-03 1996-07-03 Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17340796A JP3953550B2 (en) 1996-07-03 1996-07-03 Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005299089A Division JP4467504B2 (en) 2005-10-13 2005-10-13 Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH1021901A JPH1021901A (en) 1998-01-23
JP3953550B2 true JP3953550B2 (en) 2007-08-08

Family

ID=15959864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17340796A Expired - Fee Related JP3953550B2 (en) 1996-07-03 1996-07-03 Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3953550B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3923157B2 (en) * 1997-12-11 2007-05-30 松下電器産業株式会社 Alkaline storage battery
DE19910461A1 (en) 1999-03-10 2000-09-14 Starck H C Gmbh Co Kg Nickel hydroxide coated with cobalt hydroxide
JP2001185137A (en) 1999-12-27 2001-07-06 Sanyo Electric Co Ltd Positive electrode active material for alkaline storage battery and positive electrode for alkaline storage battery and alkaline storage battery
WO2003021698A1 (en) 2001-09-03 2003-03-13 Yuasa Corporation Nickel electrode material and production method therefor, and nickel electrode and alkaline battery
CN100345770C (en) * 2005-04-20 2007-10-31 河南新飞科隆电源有限公司 Spherical nickel hydroxide with composite cobalt layer being coated and preparation method

Also Published As

Publication number Publication date
JPH1021901A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
JPH0724218B2 (en) Nickel electrode for alkaline battery and battery using the same
JPH0230061A (en) Nickel electrode active material, and nickel electrode and alkaline battery using same
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
JP3953550B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery
WO2001097305A1 (en) Anode active material for alkali storage battery, anode including the same, and alkali storage battery
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
JPH11213998A (en) Positive electrode active material for alkaline storage battery
JP4467504B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JPH0221098B2 (en)
JP3670401B2 (en) Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and method for producing the same
JP4552319B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP2000082463A (en) Nickel positive electrode active material for alkaline battery and its manufacture
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP2005071991A (en) Alkaline battery
JP2002279992A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP2765028B2 (en) Sealed alkaline battery
JP5350110B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP4370746B2 (en) Method for producing nickel electrode active material and method for producing active material paste for nickel electrode
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051128

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees