JP2558624B2 - Nickel-hydrogen alkaline storage battery - Google Patents
Nickel-hydrogen alkaline storage batteryInfo
- Publication number
- JP2558624B2 JP2558624B2 JP60160523A JP16052385A JP2558624B2 JP 2558624 B2 JP2558624 B2 JP 2558624B2 JP 60160523 A JP60160523 A JP 60160523A JP 16052385 A JP16052385 A JP 16052385A JP 2558624 B2 JP2558624 B2 JP 2558624B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- nickel
- hydrogen
- electrode
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する合金又は水
素化物からなる水素吸蔵電極を負極とし、酸化ニッケル
電極を正極とするニッケル−水素蓄電池に関するもの
で、とくに負極の改良に関する。TECHNICAL FIELD The present invention relates to a nickel-hydrogen storage battery in which a hydrogen storage electrode made of an alloy or a hydride that reversibly stores and releases hydrogen is used as a negative electrode and a nickel oxide electrode is used as a positive electrode. In particular, it relates to the improvement of the negative electrode.
従来の技術 可逆的に水素を吸蔵・放出する合金(以下水素吸蔵合
金と云う)や水素化物を用いる水素吸蔵電極を負極とす
るアルカリ蓄電池においては、電池の充・放電サイクル
によって、負極を構成する水素吸蔵合金又は水素化物が
細分化し、電極支持体から脱落したり、膨張や亀裂をお
こして電池性能の低下がおこる。この現象はとくに開放
型アルカリ蓄電池に顕著に現われる。そこで、水素吸蔵
合金粉末の表面に銅(Cu)を被覆する事によって上記の
問題点を解決しようとする試みが提案されている(特開
昭50-111546号)。すなわち、水素吸蔵合金粉末の表面
に銅の無電解メッキを施す事により、合金自体を保護す
ると共に合金自体の機械的強度と電気伝導性の増大を図
った蓄電池用負極が提案されており、この水素吸蔵電極
を負極とし、セパレータを介して公知のニッケル正極と
組合わせてアルカリ蓄電池が考えられている。2. Description of the Related Art In an alkaline storage battery having a negative electrode of a hydrogen storage electrode using an alloy that reversibly stores and releases hydrogen (hereinafter referred to as a hydrogen storage alloy) or a hydride, the negative electrode is configured by the charge / discharge cycle of the battery. The hydrogen storage alloy or hydride is subdivided and falls off from the electrode support, or expands or cracks, resulting in deterioration of battery performance. This phenomenon is particularly noticeable in open-type alkaline storage batteries. Therefore, an attempt has been proposed to solve the above problems by coating the surface of the hydrogen storage alloy powder with copper (Cu) (Japanese Patent Laid-Open No. 50-111546). That is, by applying electroless plating of copper to the surface of the hydrogen-absorbing alloy powder, a negative electrode for a storage battery has been proposed which protects the alloy itself and increases the mechanical strength and electrical conductivity of the alloy itself. An alkaline storage battery is considered in which the hydrogen storage electrode is used as a negative electrode and is combined with a known nickel positive electrode via a separator.
発明が解決しようとする問題点 前記の銅で表面を被覆した合金を負極に用いると、無
焼結及び焼結電極いずれにおいても、電極自体の機械的
強度と導電性はよくなり、電池性能は向上することが考
えられる。しかしその一方で合金の表面を被覆する金属
は水素と反応しない物質体を選択しているので、水素の
吸蔵・放出特性すなわち、電気化学的に水素の吸蔵・放
出によって規制を受けるエネルギー貯蔵容量には無関係
である。したがってこの金属部分が多いとその量だけ単
位重量当りの容量又は出力は減少することになる。たと
えば、水素吸蔵合金の容量密度0.25Ah/g(約1Ah/cc)に
対して、無電解メンキによって合金粒子の表面に銅を被
覆すると全体の合金量に対して20〜40wt%程の多くの銅
を使用するので、先の容量密度は60〜80%まで低下し、
高エネルギー密度の蓄電池を構成することが困難とな
る。Problems to be solved by the invention When the alloy whose surface is coated with copper is used for the negative electrode, the mechanical strength and conductivity of the electrode itself are improved in both the non-sintered and sintered electrodes, and the battery performance is improved. It can be improved. However, on the other hand, the metal that coats the surface of the alloy is selected to be a substance that does not react with hydrogen, so the hydrogen storage / release characteristics, that is, the energy storage capacity that is electrochemically regulated by hydrogen storage / release Is irrelevant. Therefore, if the amount of this metal portion is large, the capacity or output per unit weight is reduced by that amount. For example, when the capacity density of a hydrogen storage alloy is 0.25Ah / g (about 1Ah / cc), if the surface of the alloy particles is coated with copper by electroless polishing, a large amount of 20-40wt% of the total alloy content Since copper is used, the previous capacity density is reduced to 60-80%,
It becomes difficult to construct a storage battery with high energy density.
元来アルカリ蓄電池においては、一定体積中に正極と
負極の占める容積は定まっているので、負極の占める容
積の増大は正極の占める容量の減少を招き、正極律則の
放電容量が減少するという問題を有している。Originally, in alkaline storage batteries, the volume occupied by the positive electrode and the negative electrode in a given volume is fixed, so an increase in the volume occupied by the negative electrode leads to a decrease in the capacity occupied by the positive electrode, and the discharge capacity of the positive electrode law decreases. have.
問題点を解決するための手段 本発明は酸化ニッケル正極と、水素を可逆的に吸蔵・
放出する合金又は水素化物からなる負極と、アルカリ電
解液とを備え、表面が導電性金属たとえば、銅,ニッケ
ル,又はそれらの合金によって部分的に被覆した水素を
吸蔵・放出しうる電気化学的特性を保持する水素吸蔵合
金又は水素化物粒子を前記負極中に含有させるかもしく
は負極の表面に設けてニッケル−水素アルカリ蓄電池と
することによって上記の問題点を解決したものである。Means for Solving the Problems The present invention is a nickel oxide positive electrode and reversibly occludes hydrogen.
Electrochemical characteristics that include a negative electrode made of a releasing alloy or hydride and an alkaline electrolyte, and can occlude and release hydrogen partially covered with a conductive metal such as copper, nickel, or an alloy thereof on the surface. The above-mentioned problems have been solved by containing a hydrogen storage alloy or hydride particles holding the above in the negative electrode or providing it on the surface of the negative electrode to form a nickel-hydrogen alkaline storage battery.
さらに本発明は前記負極中に、表面が銅,ニッケル又
はそれらの合金によって部分的に被覆した水素吸蔵合金
又は水素化物粒子と結着剤を含有したペースト型電極の
負極および前記負極の表面に表面が銅,ニッケル又はそ
れらの合金によって部分的に被覆した水素吸蔵合金又は
水素化物粒子を単独か又は粘結剤と共に配し、850〜100
0℃の温度で焼結した焼結型電極を負極に用いたニッケ
ル−水素アルカリ蓄電池である。Further, the present invention, in the negative electrode, the surface of the surface of the negative electrode and the negative electrode of the paste type electrode containing a hydrogen storage alloy or hydride particles whose surface is partially coated with copper, nickel or their alloys and a binder. Is a hydrogen storage alloy or hydride particles partially coated with copper, nickel or an alloy thereof, either alone or with a binder, 850-100
It is a nickel-hydrogen alkaline storage battery using a sintered electrode sintered at a temperature of 0 ° C. as a negative electrode.
水素吸蔵合金粉末と、導電性のある金属たとえば銅,
ニッケル又はそれらの合金で被覆した水素吸蔵合金粉末
を結着剤と共に混合し電極支持体を介して加圧・乾燥し
て電極とする事により、導電性金属で被覆した水素吸蔵
合金単量体よりは、その使用量を大幅に軽減することが
できるので、単位重量,容積当りの容量密度が向上する
と共に放電特性(放電電圧と放電容量利用率が高い)も
優れているために従来型蓄電池では得られない高音量型
のアルカリ蓄電池が出来る。または、両者の混合物を電
極支持体を介して高温熱処理(焼結)する事により、電
極自体の機械的強度も向上し、充・放電サイクルの長寿
命化が図れる。Hydrogen absorbing alloy powder and conductive metal such as copper,
By mixing hydrogen storage alloy powder coated with nickel or their alloys with a binder, pressurizing and drying through an electrode support to form an electrode, the hydrogen storage alloy monomer coated with a conductive metal Can significantly reduce the amount used, so that the capacity density per unit weight and volume is improved and the discharge characteristics (high discharge voltage and discharge capacity utilization rate) are excellent. A high-volume alkaline storage battery that cannot be obtained is created. Alternatively, by heat-treating (sintering) the mixture of the two via the electrode support, the mechanical strength of the electrode itself is improved, and the life of the charge / discharge cycle can be extended.
一方、水素吸蔵合金又は水素化物粉末からなる電極基
体の表面にのみ、導電性のある金属たとえば銅,ニッケ
ル又はそれらの合金で被覆した水素吸蔵合金又は水素化
物粉末を形成することにより、同様に機械的強度の向
上,単位重量,容積当りの放電容量の向上につながる。
また、放電特性(高率放電特性)にも優れる。これは
銅,ニッケル又はそれらの合金などの導電性物質粒子が
電極内部で水素吸蔵合金粉末と効率よく接触し合ってい
ることによる作用と、銅,ニッケル又はそれらの合金で
被覆した合金自体も放電容量に関与しているために重
量,容積当りの容量アップになっている。一方、電極表
面が銅,ニッケル又はそれらの合金で被覆された水素吸
蔵合金粉末から形成されているとこの銅,ニッケル又は
合金の被覆面で粒子同志が接触・結合しているため、電
極自体の抵抗の減少,機械的強度の増大の他に単位重
量,容積当りの容量増加が期待できる。On the other hand, by forming a hydrogen storage alloy or hydride powder coated with a conductive metal such as copper, nickel, or an alloy thereof only on the surface of the electrode substrate made of the hydrogen storage alloy or hydride powder, the same mechanical This leads to an improvement in dynamic strength and an improvement in discharge capacity per unit weight and volume.
Also, it has excellent discharge characteristics (high rate discharge characteristics). This is because the conductive substance particles such as copper, nickel or their alloys are in efficient contact with the hydrogen storage alloy powder inside the electrode, and the alloy itself coated with copper, nickel or their alloys is also discharged. Since it is related to the capacity, the capacity per weight and volume is increased. On the other hand, if the electrode surface is made of a hydrogen storage alloy powder coated with copper, nickel or an alloy thereof, the particles of the copper, nickel or alloy are in contact with each other on the coated surface, so that the electrode itself In addition to a decrease in resistance and an increase in mechanical strength, an increase in capacity per unit weight and volume can be expected.
実施例 以上実施例により本発明を説明する。EXAMPLES The present invention will be described with reference to Examples.
実施例1 市販のMm(ミッシュメタル,La:60,Ce:25,Nd:7,Pr、そ
の他8),Ni(純度99%以上),Co(純度99%以上)の各
試料を一定の組成比に秤量し、水冷銅るつぼ内に入れ、
アーク溶解炉によって加算させ、MmNi3Co2合金を製造し
た。この合金を粉砕機で30μm以下まで細かく粉砕し、
電極合金の試料をaとした。Example 1 Each sample of commercially available Mm (Misch metal, La: 60, Ce: 25, Nd: 7, Pr, and others 8), Ni (purity 99% or more), Co (purity 99% or more) was made into a fixed composition. Weigh in proportion and put in a water-cooled copper crucible,
The addition was carried out in an arc melting furnace to produce an MmNi 3 Co 2 alloy. Grind this alloy finely to less than 30 μm with a crusher,
The electrode alloy sample was designated as a.
つぎに、この電極合金の試料aの一部を取り、この合
金の表面に無電解メッキ法により銅の被覆膜を部分的に
形成させた。この無電解メッキの条件はつぎの通りであ
る。Next, a part of the sample a of this electrode alloy was taken, and a copper coating film was partially formed on the surface of this alloy by electroless plating. The conditions of this electroless plating are as follows.
この合金は一見、合金粒子の表面に均質な金属被覆膜
を形成しているが、まだ多くの穴,割れ目が存在してい
る。この穴,割れ目があるために部分的な被覆膜を形成
していることになる。この穴,割れ目を通して水素の吸
蔵・放出が行なわれているものと考えられる。この銅を
被覆した合金試料をbとした。 At first glance, this alloy forms a uniform metal coating film on the surface of the alloy particles, but still has many holes and cracks. Due to the holes and cracks, a partial coating film is formed. It is considered that hydrogen is absorbed and released through these holes and cracks. This alloy sample coated with copper was designated as b.
つぎに、a粉末80wt%,b粉末20wt%を加え、ポリビニ
ルアルコールのような結着剤と共によく混練して、電極
支持体(穴開き板:別名パンチングメタル)の両側に塗
着.加圧.乾燥.リードを取り付け負極とし、公知の酸
化ニッケル正極とセパレータを用いて極板群を構成し、
アルカリ性電解液を入れてアルカリ蓄電池とし、この蓄
電池をAとする。この蓄電池の構成を第1図に示す。金
属で被覆した合金又は水素化物を含む水素吸蔵電極から
なる吸蔵1、酸化ニッケルからなる正極2、両極の間に
位置するセパレータ3が電解液4の中に浸っている。5
は電槽、6は蓋、7は注液口、8と9は負極と正極のリ
ード端子である。Next, 80 wt% of a powder and 20 wt% of b powder were added and kneaded well with a binder such as polyvinyl alcohol, and applied on both sides of the electrode support (perforated plate: also known as punching metal). Pressurization. Dry. A lead is attached as a negative electrode, and a known nickel oxide positive electrode and a separator are used to form an electrode plate group,
The alkaline electrolyte is put into an alkaline storage battery, and this storage battery is designated as A. The structure of this storage battery is shown in FIG. An occlusion 1 made of a hydrogen occlusion electrode containing a metal-coated alloy or hydride, a positive electrode 2 made of nickel oxide, and a separator 3 located between both electrodes are immersed in an electrolytic solution 4. 5
Is a battery case, 6 is a lid, 7 is a liquid injection port, and 8 and 9 are negative and positive lead terminals.
第2図は水素吸蔵合金からなる電極構造を模式的に表
わしたものである。第2図Aは本実施例1で示す電極で
ある。○印がaを示し、●印がbを示している。FIG. 2 schematically shows an electrode structure made of a hydrogen storage alloy. FIG. 2A shows the electrode shown in the first embodiment. The ∘ mark indicates a, and the ● mark indicates b.
第2図Bはつぎに示す本実施例2で示す電極である。
第2図Cは従来例として取り上げた電極である。FIG. 2B shows the electrode shown in the second embodiment shown below.
FIG. 2C shows an electrode taken up as a conventional example.
実施例1における負極の大きさは40mm×50mm,厚さ1.2
mmとした。負極容量の比較を行なうために、正極容量は
負極容量よりも大きくし、負極律則で容量規制を行なっ
た。充電・放電電流共に500mAとした。充電時間は放電
時間の約1.3倍とした。終止電圧は1.0Vとした。The negative electrode in Example 1 had a size of 40 mm × 50 mm and a thickness of 1.2.
mm. In order to compare the negative electrode capacities, the positive electrode capacities were made larger than the negative electrode capacities, and the capacity was regulated by the negative electrode rule. Both charging and discharging current was 500mA. The charging time was about 1.3 times the discharging time. The final voltage was 1.0V.
従来型のアルカリ蓄電池としては、第1図の電池構成
で第2図Cの電極構造を採用し、負極の大きさは40mm×
50mm,厚さ1.2mmとし、前者と全く同じ体積の負極とし
た。B粉末にポリビニルアルコールのような結着剤を加
え、よく混練して電極支持体(穴開き板)の両側に塗
着,加圧乾燥してリードを取り付けて負極とし、公知の
酸化ニッケル正極とをセパレータとで極板群を構成し、
アルカリ性電解液に浸したアルカリ蓄電池を構成した。
この蓄電池をBとする。As a conventional alkaline storage battery, the electrode structure of FIG. 2C is adopted in the battery configuration of FIG. 1, and the size of the negative electrode is 40 mm ×
The negative electrode had a volume of 50 mm and a thickness of 1.2 mm and had exactly the same volume as the former. A binder such as polyvinyl alcohol is added to the B powder, and the mixture is well kneaded and applied on both sides of the electrode support (perforated plate), dried under pressure, and a lead is attached to form a negative electrode. The electrode plate group with the separator,
An alkaline storage battery soaked in an alkaline electrolyte was constructed.
This storage battery is designated as B.
第3図,第4図にAの電池とBの電池の放電容量の比
較を示す。第3図は500mA放電(0.2Cに相当:5時間率放
電)時の性能である。Aの電池は1.0V以上の端子電圧を
5時間保持しているのに対して、Bの電池は3.5時間し
か保持されない。Bの電池はAの電池に対して約30%程
容量低下している。これは、単位容積当りの容量(Ah/c
c)が小さく、それだけ有効な合金が少ない事を意味し
ている。Figures 3 and 4 show a comparison of the discharge capacities of the batteries A and B. Figure 3 shows the performance at 500mA discharge (corresponding to 0.2C: 5 hour rate discharge). The battery of A holds the terminal voltage of 1.0 V or more for 5 hours, while the battery of B holds only 3.5 hours. The capacity of battery B is about 30% lower than that of battery A. This is the capacity per unit volume (Ah / c
c) is small, which means that there are few effective alloys.
第4図は2500mA放電(1Cに相当:1時間率放電)時の性
能である。Bの電池はAの電池に対して約30%程容量が
低下している。しかも1C放電のような高率放電特性も優
れていることがわかる。また、放電電圧においてA,Bの
電池とも殆んど大差ない。充・放電サイクル寿命も100
サイクルを経過しているがほとんど変わらない。従っ
て、従来の特性に加えて、本発明型電池は一定容積を示
める電池系において容量が大幅に改善することができ
た。Figure 4 shows the performance at 2500mA discharge (corresponding to 1C: 1 hour rate discharge). The capacity of the B battery is about 30% lower than that of the A battery. Moreover, it can be seen that high rate discharge characteristics such as 1C discharge are also excellent. Also, there is almost no difference in discharge voltage between the A and B batteries. 100 charge / discharge cycle life
The cycle has passed, but there is almost no change. Therefore, in addition to the conventional characteristics, the capacity of the battery of the present invention can be significantly improved in the battery system showing a constant volume.
実施例2 実施例1で製造した合金粉末(a)を電極支持体(発
泡状メタル)内に充てんした後、さらにこの両側面に銅
を被覆した水素化合金粉末(前以って、水素の吸蔵と放
出をくりかえして水素化した試料粉末)(b′)を加圧
充てんしてb′の層を形成させた。なお、重量比率で約
10wt%のb′粉末を用いた。ついで、加圧・乾燥した
後、真空中で高温でのホットプレスを行なうが、または
真空中950℃の温度で5時間焼結処理を行なった。表面
の粉末粒子は強固に焼結され、機械的強度の強い電極が
出来た。この電極をCとする。蓄電池の構成や充・放電
条件はすべて実施例1と同じとして容量試験を行なっ
た。Example 2 After filling the alloy powder (a) produced in Example 1 into an electrode support (foamed metal), hydrogenated alloy powder having both sides coated with copper (previously A hydrogenated sample powder (b ') with repeated occlusion and desorption was pressure-filled to form a layer b'. The weight ratio is approximately
10 wt% b'powder was used. Then, after pressurizing and drying, hot pressing was performed at high temperature in vacuum, or sintering treatment was performed at a temperature of 950 ° C. for 5 hours in vacuum. The powder particles on the surface were strongly sintered, and an electrode having high mechanical strength was formed. This electrode is designated as C. A capacity test was conducted on the assumption that the configuration of the storage battery and the charging / discharging conditions were all the same as in Example 1.
従来の電極として、B粉末のみを発泡状メタル内に充
てん、加圧した後、真空中で5時間、焼結した電極をD
とする。試験条件は実施例と全く同じであり、電極の容
積はCと全く同じである。As a conventional electrode, an electrode obtained by filling only B powder into a foamed metal, pressurizing it, and then sintering it in a vacuum for 5 hours was used.
And The test conditions are exactly the same as in the example, and the electrode volume is exactly the same as C.
この蓄電池の放電容量試験の結果より、C電池は2.4A
hの容量を示したのに対して、D電池では1.7Ah程度しか
容量を示さなかった。これは単位容積当りの容量が小さ
ので、電池容量が低くく出ている。このように、焼結電
極に対しても実施例1と同様な傾向がある。また、高率
放電電圧、充・放電サイクル寿命においてC,D電池共殆
んど大きな差は認められなかった。From the result of discharge capacity test of this storage battery, C battery is 2.4A
While the capacity of h was shown, the D battery showed a capacity of only about 1.7 Ah. Since this has a small capacity per unit volume, the battery capacity is low. As described above, the same tendency as in Example 1 is obtained for the sintered electrode. In addition, in the high rate discharge voltage and charge / discharge cycle life, almost no significant difference was observed between the C and D batteries.
ここでは開放型蓄電池を作り、負極の容量比較を行な
ったが、密閉型蓄電池の負極に用いても同様な効果が期
待できる。すなわち、一定容積中に活物質をつめるわけ
であるから、単位容積当りの容量(Ah/cc)が小さくな
るとそれだけ、所定の容量を確保するためには負極材料
を多く入れることになる。多くなった分量だけ正極材料
の占める部分が少なくなるので、電池容量が低くくなら
ざるを得ない。今、実施例1で作った負極を用いて単2
サイズの密閉型アルカリ蓄電池を作って容量試験を行な
った所、本発明の蓄電池では2.0Ahの容量が出るのに対
して従来型蓄電池では1.5Ahの容量しか出ない。充電・
放電電流はすべて0.2C相当の電流で行なった。Here, an open-type storage battery was made and the capacity of the negative electrode was compared, but the same effect can be expected when it is used as the negative electrode of the sealed storage battery. That is, since the active material is packed in a constant volume, the smaller the capacity per unit volume (Ah / cc), the more the negative electrode material is added to secure the predetermined capacity. The positive electrode material occupies a smaller portion by the increased amount, so the battery capacity must be reduced. Now, using the negative electrode prepared in Example 1,
When a sealed alkaline storage battery of a size is made and a capacity test is performed, the storage battery of the present invention has a capacity of 2.0 Ah, whereas the conventional storage battery has a capacity of 1.5 Ah. charging·
The discharge current was all 0.2 C.
また、電極の表面にb層を形成させる事によって、過
充電時にニッケル正極から発生する酸素によって、負極
合金が酸化されることを防止する役目も持っており、耐
酸化性に強い電極を有する蓄電池をも提供する事にな
る。この点に関しては、さらに長寿化が期待できるもの
である。Further, by forming the b layer on the surface of the electrode, it also has a role of preventing the negative electrode alloy from being oxidized by oxygen generated from the nickel positive electrode during overcharge, and the storage battery having the electrode having strong oxidation resistance. Will also be provided. In this respect, we can expect further longevity.
実施例では導電性金属として銅について述べている
が、ニッケルについても同様な事が云える。このように
無電解メッキが可能な金属又は合金でしかも導電性のあ
る金属材料なら何でも可能である。Although copper is described as the conductive metal in the examples, the same can be said for nickel. As described above, any metal or alloy capable of electroless plating and having conductivity can be used.
水素吸蔵合金としてMmNi3Co2を用いているが、他の希
土類−ニッケル系でも同じである。また、Ti2Niのよう
なチタン−ニッケル系でもよい。最初の出発物質として
水素吸蔵合金を用いても、水素化物を用いても同じ効果
がある。無電解メッキの場合は合金より水素化しておく
方が表面が活性となり、メッキしやすい。したがって、
水素化した合金を無電解メッキする方が好ましい。Although using MmNi 3 Co 2 as a hydrogen storage alloy, other rare earth - is the same nickel-based. Also, a titanium-nickel system such as Ti 2 Ni may be used. The same effect is obtained whether a hydrogen storage alloy or a hydride is used as the initial starting material. In the case of electroless plating, hydrogenating the alloy makes the surface more active and makes plating easier. Therefore,
It is preferred to electrolessly plate the hydrogenated alloy.
金属を被覆する水素吸蔵合金は合金であっても水素化
物であっても基本的には同じ効果を有するが、その量は
全体の10wt%以下ではその効果が少なく、40wt%以上と
すると容量低下が10%以上となり、容量当りのコストが
高くなり実用的でなくなる。したがって、耐久性,コス
トを考えれば、10〜40wt%が最適な範囲である。The hydrogen storage alloy covering the metal has basically the same effect regardless of whether it is an alloy or a hydride, but if the amount is 10 wt% or less, the effect is small, and if it is 40 wt% or more, the capacity decreases. Becomes 10% or more, and the cost per capacity becomes high, making it impractical. Therefore, considering durability and cost, 10 to 40 wt% is the optimum range.
実施例であげた焼結温度を950℃としたが、850℃〜10
00℃が最適である。850℃以下では焼結する時の強度が
弱く大きな効果が出ない、銅の融点は1083℃であるから
1000℃以上では過焼結して表面積を小さくし容量を著し
く減少させるために、850℃〜1000℃が最適である。ま
た他の焼結方法としてホットプレスする事によって、加
圧と焼結を同時に行なう事も出来る。表面積,多孔度が
やや小さくなるが、機械的強度は強くなる。Although the sintering temperature mentioned in the examples was set to 950 ° C, 850 ° C to 10 ° C.
00 ° C is the best. At 850 ° C or lower, the strength during sintering is weak and no great effect is obtained, because the melting point of copper is 1083 ° C.
Above 1000 ° C, 850 ° C to 1000 ° C is optimal because it over-sinters to reduce the surface area and significantly reduce the capacity. In addition, as another sintering method, hot pressing can be performed simultaneously with pressing and sintering. The surface area and porosity are slightly smaller, but the mechanical strength is stronger.
発明の効果 以上のように、本発明によれば機械的強度があり、し
かも耐久性からサイクル寿命が長く、高率放電特性の優
れている事に加えて、負極の容量密度が高く放電容量の
大きなニッケル−水素アルカリ蓄電池が得られる。EFFECTS OF THE INVENTION As described above, according to the present invention, in addition to having mechanical strength, long durability and long cycle life, and excellent high rate discharge characteristics, the capacity density of the negative electrode is high and discharge capacity is high. A large nickel-hydrogen alkaline storage battery is obtained.
第1図は本発明の電極を用いたニッケル−水素アルカリ
蓄電池の構成を示した図、第2図A,B,Cは電極構成を模
式的に示した図、第3図,第4図は本発明の電池と従来
型電池の放電特性の比較を示した図である。 1……負極、2……正極、3……セパレータ。FIG. 1 is a diagram showing a configuration of a nickel-hydrogen alkaline storage battery using an electrode of the present invention, FIGS. 2A, B and C are diagrams schematically showing an electrode configuration, and FIGS. 3 and 4 are It is the figure which showed the comparison of the discharge characteristic of the battery of this invention and the conventional type battery. 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator.
Claims (5)
・放出する合金又は水素化物からなる負極と、アルカリ
電解液とを備え、表面が導電性金属によって部分的に被
覆され水素を吸蔵・放出する水素吸蔵合金か又は水素化
物粒子を前記負極中に含有するかもしくは前記負極の表
面に設けたことを特徴とするニッケル−水素アルカリ蓄
電池。1. A nickel oxide positive electrode, a negative electrode made of an alloy or hydride that reversibly absorbs and desorbs hydrogen, and an alkaline electrolyte, the surface of which is partially covered with a conductive metal to occlude hydrogen. A nickel-hydrogen alkaline storage battery comprising a hydrogen storage alloy or hydride particles to be released in the negative electrode or provided on the surface of the negative electrode.
性を保持する水素吸蔵合金又は水素化物粒子に被覆した
金属が、銅,ニッケル又はそれらの合金からなることを
特徴とする特許請求の範囲第1項記載のニッケル−水素
アルカリ蓄電池。2. A hydrogen storage alloy or a metal coated with hydride particles, which retains electrochemical characteristics capable of storing and releasing hydrogen, is made of copper, nickel or an alloy thereof. A nickel-hydrogen alkaline storage battery according to claim 1.
って部分的に被覆した水素吸蔵合金又は水素化物粒子と
結着剤を含有したペースト型電極を負極としたことを特
徴とする特許請求の範囲第1項記載のニッケル−水素ア
ルカリ蓄電池。3. A negative electrode comprising a paste type electrode containing a hydrogen storage alloy or hydride particles whose surface is partially covered with copper, nickel or an alloy thereof and a binder. The nickel-hydrogen alkaline storage battery according to item 1.
よって部分的に被覆した水素吸蔵合金又は水素化物粒子
を単独か又は粘結剤と共に負極表面に配し850〜1000℃
の温度で焼結した焼結型電極を負極としたことを特徴と
する特許請求の範囲第1項記載のニッケル−水素アルカ
リ蓄電池。4. A hydrogen storage alloy or hydride particle whose surface is partially coated with copper, nickel or an alloy thereof is placed on the negative electrode surface alone or together with a binder at 850 to 1000 ° C.
The nickel-hydrogen alkaline storage battery according to claim 1, wherein the negative electrode is a sintered electrode sintered at the temperature.
金によって部分的に被覆した水素吸蔵合金又は水素化物
粒子の総量が、負極全体の10〜40重量%であることを特
徴とする特許請求の範囲第1項記載のニッケル−水素ア
ルカリ蓄電池。5. The total amount of hydrogen storage alloy or hydride particles whose surface is partially coated with copper or nickel or an alloy thereof is 10 to 40% by weight of the whole negative electrode. The nickel-hydrogen alkaline storage battery according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60160523A JP2558624B2 (en) | 1985-07-19 | 1985-07-19 | Nickel-hydrogen alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60160523A JP2558624B2 (en) | 1985-07-19 | 1985-07-19 | Nickel-hydrogen alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6220244A JPS6220244A (en) | 1987-01-28 |
JP2558624B2 true JP2558624B2 (en) | 1996-11-27 |
Family
ID=15716798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60160523A Expired - Lifetime JP2558624B2 (en) | 1985-07-19 | 1985-07-19 | Nickel-hydrogen alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2558624B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2012394652B2 (en) | 2012-11-14 | 2017-02-02 | Prysmian S.P.A. | Process for recovering wastes of a polymeric composition including a peroxidic crosslinking agent |
-
1985
- 1985-07-19 JP JP60160523A patent/JP2558624B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
PHILIPSJOURNALOFRESERCH=1984 * |
Also Published As
Publication number | Publication date |
---|---|
JPS6220244A (en) | 1987-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007534133A (en) | Nickel metal hydride battery design | |
JPH11162505A (en) | Nickel-hydrogen battery | |
US4792505A (en) | Electrodes made from mixed silver-silver oxides | |
JP3104230B2 (en) | Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same | |
JPS5937667A (en) | Metal oxide-hydrogen battery | |
JP4815738B2 (en) | Method for producing hydrogen storage alloy powder | |
JP2558624B2 (en) | Nickel-hydrogen alkaline storage battery | |
JP5278411B2 (en) | Hydrogen storage alloy powder and nickel metal hydride storage battery using the same. | |
JPS5931177B2 (en) | Zinc electrode for alkaline storage battery | |
JP3136738B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
JP2629807B2 (en) | Hydrogen storage alloy electrode and its manufacturing method | |
JP3141141B2 (en) | Sealed nickel-metal hydride storage battery | |
JP2929716B2 (en) | Hydrogen storage alloy electrode | |
JPH07107848B2 (en) | Non-sintered positive electrode for alkaline storage battery | |
JPS63239771A (en) | Paste-type hydrogen occluded electrode | |
JPH0763004B2 (en) | Sealed alkaline storage battery | |
JP2558624C (en) | ||
JPH0815077B2 (en) | Sealed alkaline storage battery | |
JP2642144B2 (en) | Method for producing hydrogen storage electrode | |
JPS6222370A (en) | Nickel-hydrogen alkaline storage battery | |
JP3519836B2 (en) | Hydrogen storage alloy electrode | |
JPS61233966A (en) | Manufacture of sealed nickel-hydrogen storage battery | |
JP2589750B2 (en) | Nickel cadmium storage battery | |
JP2568967B2 (en) | Manufacturing method of sealed nickel-hydrogen secondary battery | |
JP3316687B2 (en) | Nickel-metal hydride storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |