JPS6220244A - Nickel-hydrogen alkaline storage battery - Google Patents

Nickel-hydrogen alkaline storage battery

Info

Publication number
JPS6220244A
JPS6220244A JP60160523A JP16052385A JPS6220244A JP S6220244 A JPS6220244 A JP S6220244A JP 60160523 A JP60160523 A JP 60160523A JP 16052385 A JP16052385 A JP 16052385A JP S6220244 A JPS6220244 A JP S6220244A
Authority
JP
Japan
Prior art keywords
hydrogen
nickel
alloy
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60160523A
Other languages
Japanese (ja)
Other versions
JP2558624B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Yoshio Moriwaki
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60160523A priority Critical patent/JP2558624B2/en
Publication of JPS6220244A publication Critical patent/JPS6220244A/en
Application granted granted Critical
Publication of JP2558624B2 publication Critical patent/JP2558624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent tearing off of a hydrogen occlusion alloy and improve the cycle life, by containing in, or placing over the surface of, the negative electrode a hydrogen occlusion alloy or hydride, covered with a conductive metal. CONSTITUTION:The negative electrode 1 is formed pressing a mixture of a powder of hydrogen occlusion alloy with an electrochemical property to occlude and discharge hydrogen and a powder of hydrogen occlusion alloy covered with copper, nickel or the like onto an electrode base, or placing a hydrogen occlusion alloy or the like covered with copper or the like over the surface of an electrode base which is placed with only a hydrogen occlusion alloy or the like. The nickel-hydrogen alkaline storage battery is formed combining the said negative electrode 1, a positive electrode 2 made of nickel oxide, a separator 3, and an alkaline electrolyte 4. Therefore, as well as increasing the discharge capacity per unit weight or unit volume of the electrode, the mechanical strength of the electrode is improved, and the charge and discharge life can be made longer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する合金又は水素
化物からなる水素吸蔵電極を負極とし、酸化ニッケル電
極を正極とするニッケル−水素蓄電池に関するもので、
とくに負極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a nickel-hydrogen storage battery in which the negative electrode is a hydrogen storage electrode made of an alloy or hydride that reversibly stores and releases hydrogen, and the positive electrode is a nickel oxide electrode. Something,
In particular, it relates to improvements in negative electrodes.

従来の技術 可逆的に水素を吸蔵・放出する合金(以下水素吸蔵合金
と云う)や水素化物を用いる水素吸蔵電極を負極とする
アルカリ蓄電池においては、電池の充・放電サイクルに
よって、負極を構成する水素吸蔵合金又は水素化物が細
分化I7、電極支持体から脱落したり、膨張や亀裂をお
こして電池性能の低下がおこる。この現象はとくに開放
型アルカリ蓄電池に顕著に現われる。そこで、水素吸蔵
合金粉末の表面に銅(Cu )を被覆する事によって上
記の問題点を解決しようとする試みが提案されている(
特開昭50−111546号)。ずなわち、水素吸蔵合
金粉末の表面に銅の無電解メッキを施す事により、合金
自体を保護すると共に合金自体の機械的強度と電気伝導
性の増大を図った蓄電池用負極が提案されており、この
水素吸蔵電極を負極とし、セパ1ノータを介して公知の
ニッケル正極と組合わせてアルカリ蓄電池が考えられて
いる。
Conventional technology In alkaline storage batteries whose negative electrode is a hydrogen storage electrode that uses alloys that store and release hydrogen reversibly (hereinafter referred to as hydrogen storage alloys) or hydrides, the negative electrode is formed by the charging and discharging cycles of the battery. The hydrogen storage alloy or hydride becomes fragmented (I7), falls off from the electrode support, expands, or cracks, resulting in a decrease in battery performance. This phenomenon is particularly noticeable in open-type alkaline storage batteries. Therefore, an attempt has been proposed to solve the above problems by coating the surface of hydrogen-absorbing alloy powder with copper (Cu).
JP-A-50-111546). In other words, a negative electrode for storage batteries has been proposed in which electroless copper plating is applied to the surface of hydrogen-absorbing alloy powder to protect the alloy itself and increase the mechanical strength and electrical conductivity of the alloy itself. An alkaline storage battery is being considered by using this hydrogen storage electrode as a negative electrode and combining it with a known nickel positive electrode via a separator.

発明が解決しようとする問題点 前記の銅で表面を被覆した合金を負極に用いると、無焼
結及び焼結電極いずれにおいても、電極自体の機械的強
度と導電性はよく々す、電池性能は向」二することが考
えられる。しかしその一方で合金の表面を被覆する金属
は水素と反応しない物質体を選択しているので、水素の
吸蔵・放出特性す々わち、電気化学的に水素の吸蔵・放
出によって規制を受けるエネルギー貯蔵容量には無関係
である。したがってこの金属部分が多いとその量だけ単
位重量当りの容量又は出力は減少することになる。たと
えば、水素吸蔵合金の容量密度0.25)h/j9  
I約1 Ah/cc )に対して、無電解メッキによっ
て合金粒子の表面に銅を被覆すると全体の合金量に対し
て20〜40wt%程の多くの銅を使用するので、先の
容量密度は60〜80%才で低下し、高エイ、ルギー密
度の蓄電池を構成することが困難となる。
Problems to be Solved by the Invention When the alloy whose surface is coated with copper is used for the negative electrode, the mechanical strength and conductivity of the electrode itself are good for both unsintered and sintered electrodes, and the battery performance is improved. It is conceivable to do this in the opposite direction. However, on the other hand, the metal that coats the surface of the alloy is selected to be a material that does not react with hydrogen, so the hydrogen storage and release characteristics, that is, the energy that is regulated by electrochemical hydrogen storage and release. It is independent of storage capacity. Therefore, if the metal portion increases, the capacity or output per unit weight will decrease by that amount. For example, the capacity density of hydrogen storage alloy is 0.25)h/j9
1 Ah/cc), when copper is coated on the surface of alloy particles by electroless plating, a large amount of copper is used, about 20 to 40 wt% of the total alloy amount, so the capacity density is It decreases by 60 to 80% at the age of 60 to 80%, making it difficult to construct a storage battery with high ray density and energy density.

元来アルカリ蓄電池においては、一定体積中に正極と負
極の占める容積は定寸っているので、負極の占める容積
の増大は正極の占める容量の減少を招き、正極律則の放
電容量が減少するという問題を有している。
Originally, in an alkaline storage battery, the volume occupied by the positive electrode and negative electrode in a given volume is fixed, so an increase in the volume occupied by the negative electrode causes a decrease in the capacity occupied by the positive electrode, and the discharge capacity according to the positive electrode rule decreases. There is a problem.

5ベーン 問題点を解決するだめの手段 本発明は酸化ニッケル正極と、水素を可逆的に吸蔵・放
出する合金又は水素化物からなる負極と、アルカリ電解
液とを備え、表面を導電性金属たとえば、銅9ニッケル
9又はそれらの合金によって部分的に被覆した水素を、
吸蔵・放出しうる電気化学的特性を保持する水素吸蔵合
金又は水素化物粒子を前記負極中に含有させるかもしく
は負極の表面に設けてニッケル−水素アルカリ蓄電池と
することによって上記9問題点を解決したものである。
5 Means for Solving the Vane Problem The present invention comprises a nickel oxide positive electrode, a negative electrode made of an alloy or hydride that reversibly absorbs and releases hydrogen, and an alkaline electrolyte, the surface of which is coated with a conductive metal such as Hydrogen partially coated with copper 9 nickel 9 or their alloys,
The above nine problems were solved by incorporating a hydrogen storage alloy or hydride particles that have electrochemical properties that allow occlusion and desorption into the negative electrode or by providing them on the surface of the negative electrode to form a nickel-hydrogen alkaline storage battery. It is something.

さらに本発明は前記負極中に、表面が銅、ニッケル又は
それらの合金によって部分的に被覆した水素吸蔵合金又
は水素化物粒子と結着剤を含有したベースト型電極の負
極および前記負極の表面に表面が銅、ニッケル又はそれ
らの合金によって部分的に被覆した水素吸蔵合金又は水
素化物粒子を・単独か又は粘結剤と共に配し、850〜
1000℃の温度で焼結した焼結型電極を負極に用いた
ニッケル−水素アルカリ蓄電池である。
Furthermore, the present invention provides a negative electrode of a base type electrode containing, in the negative electrode, a hydrogen storage alloy whose surface is partially coated with copper, nickel, or an alloy thereof or hydride particles and a binder; hydrogen storage alloy or hydride particles partially coated with copper, nickel or their alloys, alone or together with a binder, 850~
This is a nickel-hydrogen alkaline storage battery using a sintered electrode sintered at a temperature of 1000°C as the negative electrode.

作用 6へ 水素吸蔵合金粉末と、導電性のある金属たとえば銅、ニ
ッケル又はそれらの合金で被覆した水素吸蔵合金粉末を
結着剤と共に混合し電極支持体を介して加圧・乾燥して
電極とする事により、導電性金属で被覆した水素吸蔵合
金単体よりは、その使用量を大幅に軽減することができ
るので、単位重量、容積当りの容量密度が向上すると共
に放電特性(放電電圧と放電容量利用率が高い)も優れ
ているために従来型蓄電池では得られない高音量型のア
ルカリ蓄電池が出来る。捷たけ、両者の混合物を電極支
持体を介して高温熱処理(焼結)する事により、電極自
体の機械的強度も向上し、充・放電サイクルの長寿命化
が図れる。
Step 6: Hydrogen storage alloy powder and hydrogen storage alloy powder coated with a conductive metal such as copper, nickel, or an alloy thereof are mixed together with a binder and dried under pressure through an electrode support to form an electrode. By doing so, the amount used can be significantly reduced compared to using a single hydrogen storage alloy coated with a conductive metal, improving the capacity density per unit weight and volume, and improving the discharge characteristics (discharge voltage and discharge capacity). Because it has an excellent utilization rate (high utilization rate), it is possible to create an alkaline storage battery with a high volume that cannot be obtained with conventional storage batteries. By subjecting the mixture of the two to high-temperature heat treatment (sintering) via the electrode support, the mechanical strength of the electrode itself is improved, and the life of the charge/discharge cycle can be extended.

一方、水素吸蔵合金又は水素化物粉末からなる電極基体
の表面にのみ、導電性のある金属たとえば銅、ニッケル
又はそれらの合金で被覆した水素吸蔵合金又は水素化物
粉末を形成することにより。
On the other hand, by forming a hydrogen storage alloy or hydride powder coated with a conductive metal such as copper, nickel, or an alloy thereof only on the surface of an electrode base made of the hydrogen storage alloy or hydride powder.

同様に機械的強度の向上、単位重量、容積当りの放電容
量の向上につながる。捷だ、放電特性(高率放電特性)
にも優れる。これは銅、ニッケル又はそれらの合金など
の導電性物質粒子が電極内部で水素吸蔵合金粉末と効率
よく接触し合っていることによる作用と、銅、ニッケル
又はそれらの合金で被覆した合金自体も放電容量に関与
しているために重量9容積当りの容量アップになってい
る。
Similarly, it leads to improvement in mechanical strength and discharge capacity per unit weight and volume. Excellent discharge characteristics (high rate discharge characteristics)
It is also excellent. This is due to the fact that conductive material particles such as copper, nickel, or their alloys are in efficient contact with the hydrogen storage alloy powder inside the electrode, and the alloy itself coated with copper, nickel, or their alloys also discharges. Since it is related to capacity, the capacity is increased by 9 weight/volume.

一方、電極表面が銅、ニッケル又はそれらの合金で被覆
された水素吸蔵合金粉末から形成されているとこの銅9
ニッケル又は合金の被覆面で粒子同志が接触・結合して
いるため、電極自体の抵抗の減少9機械的強度の増大の
他に単位重量、容積当りの容量増加が期待できる。
On the other hand, if the electrode surface is made of hydrogen storage alloy powder coated with copper, nickel or an alloy thereof, the copper 9
Since the particles are in contact and bonded to each other on the nickel or alloy coated surface, it is expected that the resistance of the electrode itself will be reduced, 9 and the mechanical strength will be increased, as well as an increase in capacity per unit weight and volume.

実施例 08  :25.Nd  ニア、Pr、その他s)、N
i(純度99係以上) 、 Go (純度99係以上)
の各試料を一定の組成比に秤量し、水冷銅るつぼ内に入
れ、アーク溶解炉によって加熱させ、MmNi3Go、
、合金を製造した。この合金を粉砕機で3071771
以下捷で細かく粉砕し、電極合金の試料をaとした。
Example 08: 25. Nd near, Pr, other s), N
i (purity 99 or higher), Go (purity 99 or higher)
Each sample was weighed to a certain composition ratio, placed in a water-cooled copper crucible, heated in an arc melting furnace,
, produced an alloy. This alloy is 3071771 in a crusher.
Thereafter, it was finely pulverized using a sieve, and the electrode alloy sample was designated as a.

つきに、この電極合金の試料乙の一部を取り、この合金
の表面に無電解メッキ法により銅の被覆膜を部分的に形
成させた。その無電解メッキの条件ばつぎの通りである
Finally, a part of sample B of this electrode alloy was taken, and a copper coating film was partially formed on the surface of this alloy by electroless plating. The conditions for electroless plating are as follows.

この合金は一見、合金粒子の表面に均質な金属被覆膜を
形成しているが5寸だ多くの穴9割れ目が存在している
。この穴9割れ目があるために部分的な被覆膜を形成し
ていることになる。この穴。
At first glance, this alloy appears to form a homogeneous metal coating on the surface of the alloy particles, but there are many holes and cracks in the surface. Due to the presence of these nine cracks, a partial coating film is formed. This hole.

9へ−7 割れ目を通して水素の吸蔵・放出が行なわれているもの
と考えられる。この銅を被覆した合金試料をbとした。
Go to 9-7 It is thought that hydrogen is absorbed and released through the cracks. This copper-coated alloy sample was designated as b.

つぎに、a粉末80wt%、b粉末2owt%を加え、
ポリビニルアルコールのような結着剤と共によく混練し
て、電極支持体(穴開き板:別名バンチングメタル)の
両側に塗着、加圧、乾燥。
Next, add 80 wt% of powder a and 2 wt% of powder b,
Mix well with a binder such as polyvinyl alcohol, apply to both sides of the electrode support (perforated plate, also known as bunching metal), pressurize, and dry.

リードを取り付は負極とし、公知の酸化ニッケル正極と
セパレータを用いて極板群を構成し、アルカル性電解液
を入れてアルカリ蓄電池とし、この蓄電池をAとする。
The lead is attached as a negative electrode, a known nickel oxide positive electrode and a separator are used to constitute an electrode plate group, and an alkaline electrolyte is added to form an alkaline storage battery, and this storage battery is designated as A.

この蓄電池の構成を第1図に示す。金属で被覆した合金
又は水素化物を含む水素吸蔵電極からなる負極1、酸化
ニッケルから々る正極2、両極の間に位置するセパレー
タ3が電解液4の中に浸っている。5は電槽、6は蓋、
了は注液口、8と9は負極と正極のリード端子である。
The configuration of this storage battery is shown in FIG. A negative electrode 1 consisting of a hydrogen storage electrode containing an alloy or hydride coated with a metal, a positive electrode 2 made of nickel oxide, and a separator 3 located between the two electrodes are immersed in an electrolytic solution 4. 5 is the battery case, 6 is the lid,
The reference numeral is the liquid injection port, and 8 and 9 are the negative and positive electrode lead terminals.

第2図は水素吸蔵合金からなる電極構造を模式的に表わ
したものである。第2図Aは本実施例1で示す電極であ
る。○印がaを示し、・印がbを10・\− 示している。
FIG. 2 schematically shows an electrode structure made of a hydrogen storage alloy. FIG. 2A shows the electrode shown in Example 1. The ○ mark indicates a, and the * mark indicates b.

第2図Bはつぎに示す本実施例2で示す電極である。第
2図Cは従来例として取り上げた電極である。
FIG. 2B shows an electrode shown in Example 2, which will be described below. FIG. 2C shows an electrode taken as a conventional example.

実施例1における負極の大きさは40IMX50wtb
 、厚さ1.2語とした。負極容量の比較を行なうため
に、正極容量は負極容量よりも太きくシ、負極律則で容
量規制を行なった。充電・放電電流共に500mAとし
た。充電時間は放電時間の約1.3倍とした。終止電圧
は1.○Vとした。
The size of the negative electrode in Example 1 is 40IMX50wtb
, 1.2 words thick. In order to compare the negative electrode capacities, the positive electrode capacity was made larger than the negative electrode capacity, and the capacity was regulated using the negative electrode rule. Both charging and discharging currents were 500 mA. The charging time was approximately 1.3 times the discharging time. The final voltage is 1. ○V.

従来型のアルカリ蓄電池としては、第1図の電池構成で
第2図のCの電極構造を採用し、負極の大きさは40鴫
×50賜、厚さ1.2語とし、前者と全く同じ体積の負
極とした。B粉末にポリビニルアルコールのような結着
剤を加え、よく混練して電極支持体(穴開き板)の両側
に塗着、加圧乾燥してリードを取り付は負極とし、公知
の酸化ニッケル正極とをセパ■/−夕とで極板群を構成
し、アルカリ性電解液に浸してアルカリ蓄電池を構成し
た。この蓄電池をBとする。
A conventional alkaline storage battery uses the battery configuration shown in Figure 1 and the electrode structure shown in Figure 2 C, and the negative electrode size is 40mm x 50mm and has a thickness of 1.2mm, which is exactly the same as the former. It was used as a volumetric negative electrode. Add a binder such as polyvinyl alcohol to powder B, mix well, apply to both sides of the electrode support (perforated plate), dry under pressure, attach a lead as a negative electrode, and use a known nickel oxide positive electrode. A group of electrode plates was formed by separating the electrodes and the electrodes, and immersing them in an alkaline electrolyte to form an alkaline storage battery. This storage battery is called B.

第3図、第4図にAの電池とBの電池の放電容量の比較
を示す。第3図は500mA放電(0,2Gに相当=5
5時間率放電時の性能である。Aの電池は1.○V以」
二の端子電圧を5時間保持しているのに対して、Bの電
池は3.5時間しか保持されない。Bの電池はAの電池
に対して約30係程容量低下している。これは、単位容
積当りの容量(Ah/cc)が小さく、それだけ有効々
合金が少ない事を意味している。
FIGS. 3 and 4 show a comparison of the discharge capacities of batteries A and B. Figure 3 shows a 500mA discharge (equivalent to 0.2G = 5
This is the performance at 5 hour rate discharge. Battery A is 1. ○V or later”
While the voltage at the second terminal is maintained for 5 hours, battery B is maintained for only 3.5 hours. The capacity of battery B is about 30 times lower than that of battery A. This means that the capacity per unit volume (Ah/cc) is small and the amount of alloy is effectively reduced accordingly.

第4図は2500mA放電(1Cに相当:1時間率放電
)時の性能である。Bの電池はAの電池に対して約30
係程容量が低下している。しかも1G放電のよう々高率
放電特性も優れていることがわかる。また、放電電圧に
おいてA、Bの電池とも殆んど大差ない。充・放電ザイ
クル寿命も100サイクルを経過しているがほとんど変
わら々い。従って、従来の特性に加えて、本発明型電池
は一定容積を示める電池系において容量が大幅に改善す
ることができた。
FIG. 4 shows the performance at 2500 mA discharge (equivalent to 1 C: 1 hour rate discharge). Battery B is about 30 times smaller than battery A.
The lifting capacity is decreasing. Furthermore, it can be seen that the high rate discharge characteristics such as 1G discharge are also excellent. In addition, there is almost no significant difference between batteries A and B in terms of discharge voltage. The charge/discharge cycle life has also passed 100 cycles, but it remains almost unchanged. Therefore, in addition to the conventional characteristics, the battery of the present invention was able to significantly improve the capacity in a battery system exhibiting a constant volume.

実施例2 実施例1で製造した合金粉末(a)を電極支持体(発泡
状メタル)内に充てA、した後、さらにこの両側面に銅
を被覆した水素化合金粉末(前以って、水素の吸蔵と放
出をくりかえして水素化した試料粉末)(b層)を加圧
光てんしてb′ の層を形成させた。なお、重量比率で
約10wt%のb′粉末を用いた。ついで、加圧・乾燥
した後、真空中で高温でのホットプレスを行なうか、捷
たけ真空中960℃の温度で5時間焼結処理を行なった
Example 2 After filling the electrode support (foamed metal) with the alloy powder (a) produced in Example 1 and performing A, hydrogenated alloy powder (previously, The sample powder (layer b), which had been hydrogenated by repeatedly absorbing and desorbing hydrogen, was exposed to light under pressure to form layer b'. Note that b' powder was used in a weight ratio of approximately 10 wt%. Then, after pressurizing and drying, hot pressing was performed at high temperature in a vacuum, or sintering treatment was performed at a temperature of 960° C. in a shaking vacuum for 5 hours.

表面の粉末粒子は強固に焼結され、機械的強度の強い電
極が出来た。この電極をCとする。蓄電池の構成や充・
放電条件はすべて実施例1と同じとして容量試験を行な
った。
The powder particles on the surface were strongly sintered, creating an electrode with strong mechanical strength. This electrode is designated as C. Configuration and charging of storage batteries
A capacity test was conducted under all the same discharge conditions as in Example 1.

従来の電極として、B粉末のみを発泡状メタル内に充て
ん、加圧した後、真空中で5時間、焼結した電極をDと
する。試験条件は実施例と全く同じであり、電極の容積
はCと全く同じである。
As a conventional electrode, an electrode D is obtained by filling only B powder into a foamed metal, pressurizing it, and then sintering it in a vacuum for 5 hours. The test conditions are exactly the same as in Examples, and the volume of the electrode is exactly the same as in C.

この蓄電池の放電容量試験の結果より、C電池は2.4
 Ahの容量を示したのに対して、D電池では1.7A
h程度しか容量を示さ々かった。これは単位容積当りの
容量が小さいので、電池容量が低くく出ている。このよ
うに、焼結電極に対しても実施例1と同様々傾向がある
。寸だ、高率放電電圧、充・放電サイクル寿命において
c、n電池共殆んど大きな差は認められなかった。
Based on the results of the discharge capacity test of this storage battery, the C battery has a 2.4
Whereas the capacity of D battery was 1.7A.
The capacity was only about 1 h. This has a small capacity per unit volume, resulting in a low battery capacity. In this way, the same tendency as in Example 1 exists for the sintered electrode as well. In fact, there was almost no significant difference between the C and N batteries in terms of high rate discharge voltage and charge/discharge cycle life.

ここでは開放型蓄電池を作り、負極の容量比較を行なっ
たが、密閉型蓄電池の負極に用いても同様な効果が期待
できる。すなわち、一定容積中に活物質をつめるわけで
あるから、単位容積当りの容量(Ah/cc  )が小
さくなるとそれだけ、所定の容量を確保するためには負
極材料を多く入れることになる。多くなった分量だけ正
極材料の占める部分が少なくなるので、電池容量が低く
くならざるを得ない。今、実施例1で作った負極を用い
て単2サイズの密閉型アルカリ蓄電池を作って容量試験
を行なった所、本発明の蓄電池では2.OAhの容量が
出るのに対して従来型蓄電池では1.5Ahの容量しか
出々い。充電・放電電流はすべて0.20相当の電流で
行なった。
Here, an open storage battery was created and the capacity of the negative electrode was compared, but similar effects can be expected when used as the negative electrode of a sealed storage battery. That is, since the active material is packed into a fixed volume, the smaller the capacity per unit volume (Ah/cc), the more negative electrode material must be added in order to secure a predetermined capacity. As the amount of positive electrode material increases, the portion occupied by the positive electrode material decreases, so the battery capacity inevitably decreases. Now, a AA size sealed alkaline storage battery was made using the negative electrode made in Example 1, and a capacity test was conducted. While conventional storage batteries have a capacity of OAh, they only have a capacity of 1.5Ah. All charging and discharging currents were conducted at a current equivalent to 0.20.

寸だ、電極の表面にb層を形成させる事によっ14 ・ で、過充電時にニッケル正極から発生する酸素によって
、負極合金が酸化されることを防止する役目も持ってお
り、耐酸化性に強い電極を有する蓄電池をも提供する事
になる。この点に関しては。
By forming a B layer on the surface of the electrode, it also has the role of preventing the negative electrode alloy from being oxidized by the oxygen generated from the nickel positive electrode during overcharging, improving oxidation resistance. It will also provide storage batteries with strong electrodes. Regarding this point.

さらに長寿化が期待できるものである。Further longevity can be expected.

実施例では導電性金属として銅について述べているが、
ニッケルについても同様な事が云える。
Although copper is mentioned as a conductive metal in the examples,
The same can be said about nickel.

このように無電解メッキが可能な金属又は合金でしかも
導電性のある金属材料なら伺でも可能である。
In this way, any metal or alloy that can be plated electrolessly and is electrically conductive can be plated.

水素吸蔵合金としてMmNi5CO2を用いているが、
他の希土類−ニッケル系でも同じである。また、Ti2
Ni のようなチタン−ニッケル系でもよい。最初の出
発物質として水素吸蔵合金を用いても、水素化物を用い
ても同じ効果がある。無電解メッキの場合は合金より水
素化しておく方が表面が活性となり、メッキしやすい。
MmNi5CO2 is used as a hydrogen storage alloy,
The same applies to other rare earth-nickel systems. Also, Ti2
A titanium-nickel type material such as Ni may also be used. The same effect can be achieved whether a hydrogen storage alloy or a hydride is used as the initial starting material. In the case of electroless plating, hydrogenation makes the surface more active and easier to plate than alloy.

したがって、水素化した合金を無電解メッキする方が好
ましい。
Therefore, it is preferable to electrolessly plate the hydrogenated alloy.

金属を被覆する水素吸蔵合金は合金であっても水素化物
であっても基本的には同じ効果を有する157、 が、その量d]全全体10wt%以下ではその効果が少
なく、40wt%以上とすると容量低下が10係以上と
なり、容量当りのコストが高くなり実用的でなくなる。
The hydrogen storage alloy that coats the metal has basically the same effect whether it is an alloy or a hydride157, but the effect is small when the amount d] is less than 10 wt%, and when it is more than 40 wt%. In this case, the capacity decrease becomes a factor of 10 or more, and the cost per capacity increases, making it impractical.

したがって、耐久性、コス[・を考えれば、10〜40
wt%が最適な範囲である。
Therefore, considering durability and cost, 10 to 40
wt% is the optimum range.

実施例であげた焼結温度を950″Cとしたが。The sintering temperature given in the example was 950''C.

860℃〜1000″Cが最適である。850℃以下で
は焼結する時の強度が弱く大きな効果が出々い、銅の融
点は1083℃であるから1000℃以上では過焼結し
て表面積を小さくし容量を著しく減少させるために、8
50 ’C〜1o○0℃が最適である。また他の焼結方
法としてホットプレスする事によって、加圧と焼結を同
時に行なう事も出来る。表面積、多孔度がやや小さく々
るが0機械的強度は強くなる。
The optimum temperature is 860°C to 1000"C. Below 850°C, the strength during sintering is weak and the effect is not great. Since the melting point of copper is 1083°C, above 1000°C, it will oversinter and reduce the surface area. In order to reduce the size and significantly reduce the capacity, 8
50'C to 100C is optimal. In addition, as another sintering method, pressing and sintering can be performed simultaneously by hot pressing. Although the surface area and porosity are slightly smaller, the mechanical strength is stronger.

発明の効果 以上のように、本発明によれば機械的強度があり、しか
も耐久性からサイクル寿命が長く、高率放電特性の優れ
ている事に加えて、負極の容量密度が高く放電容量の大
きなニッケル−水素アルカリ蓄電池が得られる。
Effects of the Invention As described above, the present invention has mechanical strength, long cycle life due to durability, and excellent high rate discharge characteristics, as well as high capacity density of the negative electrode and low discharge capacity. A large nickel-hydrogen alkaline storage battery is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電極を用いたニッケル−水素アルカリ
蓄電池の構成を示した図、第2図A 、B。 Cは電極構成を模式的に示した図、第3図、第4図は本
発明の電池と従来型電池の放電特性の比較を示した図で
ある。 1・・・・・・負極、2・・・・・・正極、3・・・・
セハレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名啄用
や 一−N へ)
FIG. 1 shows the structure of a nickel-hydrogen alkaline storage battery using the electrode of the present invention, and FIGS. 2A and 2B. C is a diagram schematically showing the electrode configuration, and FIGS. 3 and 4 are diagrams showing a comparison of the discharge characteristics of the battery of the present invention and a conventional battery. 1...Negative electrode, 2...Positive electrode, 3...
Sehaleta. Name of agent: Patent attorney Toshio Nakao and one other person (Takuyo Yaichi-N)

Claims (5)

【特許請求の範囲】[Claims] (1)酸化ニッケル正極と、水素を可逆的に吸蔵・放出
する合金又は水素化物からなる負極と、アルカリ電解液
とを備え、表面が導電性金属によって部分的に被覆され
水素を吸蔵・放出する水素吸蔵合金か又は水素化物粒子
を前記負極中に含有するかもしくは前記負極の表面に設
けたことを特徴とするニッケル−水素アルカリ蓄電池。
(1) Equipped with a nickel oxide positive electrode, a negative electrode made of an alloy or hydride that reversibly stores and releases hydrogen, and an alkaline electrolyte, the surface of which is partially coated with a conductive metal to store and release hydrogen. A nickel-hydrogen alkaline storage battery characterized in that hydrogen storage alloy or hydride particles are contained in the negative electrode or provided on the surface of the negative electrode.
(2)前記水素を吸蔵・放出しうる電気化学的特性を保
持する水素吸蔵合金又は水素化物粒子に被覆した金属が
、銅、ニッケル又はそれらの合金からなることを特徴と
する特許請求の範囲第1項記載のニッケル−水素アルカ
リ蓄電池。
(2) The hydrogen storage alloy or the metal coated on the hydride particles having electrochemical properties capable of absorbing and desorbing hydrogen is made of copper, nickel, or an alloy thereof. The nickel-hydrogen alkaline storage battery according to item 1.
(3)表面が銅、ニッケル又はそれらの合金によって部
分的に被覆した水素吸蔵合金又は水素化物粒子と結着剤
を含有したペースト型電極を負極としたことを特徴とす
る特許請求の範囲第1項記載のニッケル−水素アルカリ
蓄電池。
(3) Claim 1, characterized in that the negative electrode is a hydrogen storage alloy whose surface is partially coated with copper, nickel, or an alloy thereof, or a paste-type electrode containing hydride particles and a binder. The nickel-hydrogen alkaline storage battery described in .
(4)表面が、銅、ニッケル又はそれらの合金によって
部分的に被覆した水素吸蔵合金又は水素化物粒子を単独
か又は粘結剤と共に負極表面配し850〜1000℃の
温度で焼結した焼結型電極を負極としたことを特徴とす
る特許請求の範囲第1項記載のニッケル−水素アルカリ
蓄電池。
(4) Sintering in which hydrogen storage alloy or hydride particles whose surface is partially coated with copper, nickel or their alloys are placed on the negative electrode surface alone or together with a binder and sintered at a temperature of 850 to 1000°C. The nickel-hydrogen alkaline storage battery according to claim 1, characterized in that the type electrode is a negative electrode.
(5)表面に銅又はニッケルあるいはそれらの合金によ
って部分的に被覆した水素吸蔵合金又は水素化物粒子の
総量が、負極全体の10〜40重量%であることを特徴
とする特許請求の範囲第1項記載のニッケル−水素アル
カリ蓄電池。
(5) Claim 1, characterized in that the total amount of the hydrogen storage alloy or hydride particles whose surface is partially coated with copper, nickel, or an alloy thereof is 10 to 40% by weight of the entire negative electrode. The nickel-hydrogen alkaline storage battery described in .
JP60160523A 1985-07-19 1985-07-19 Nickel-hydrogen alkaline storage battery Expired - Lifetime JP2558624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60160523A JP2558624B2 (en) 1985-07-19 1985-07-19 Nickel-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60160523A JP2558624B2 (en) 1985-07-19 1985-07-19 Nickel-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6220244A true JPS6220244A (en) 1987-01-28
JP2558624B2 JP2558624B2 (en) 1996-11-27

Family

ID=15716798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60160523A Expired - Lifetime JP2558624B2 (en) 1985-07-19 1985-07-19 Nickel-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2558624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076520A1 (en) 2012-11-14 2014-05-22 Prysmian S.P.A. Process for recovering wastes of a polymeric composition including a peroxidic crosslinking agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHILIPSJOURNALOFRESERCH=1984 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076520A1 (en) 2012-11-14 2014-05-22 Prysmian S.P.A. Process for recovering wastes of a polymeric composition including a peroxidic crosslinking agent

Also Published As

Publication number Publication date
JP2558624B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US5360687A (en) Hydrogen-occulusion electrode
JP3104230B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JPS5937667A (en) Metal oxide-hydrogen battery
JPS6220244A (en) Nickel-hydrogen alkaline storage battery
JPS63314777A (en) Sealed type ni-h accumulator
JPS6222370A (en) Nickel-hydrogen alkaline storage battery
JPH02236955A (en) Nickel oxide-hydrogen alkaline storage battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0212765A (en) Manufacture of hydrogen storage electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3429684B2 (en) Hydrogen storage electrode
JP2745501B2 (en) Sealed alkaline storage battery
JPS61168866A (en) Hydrogen occlusion electrode
JP2558624C (en)
JP3432847B2 (en) Hydrogen storage alloy electrode
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JPS6355857A (en) Enclosed type alkaline storage battery
JP3192694B2 (en) Alkaline storage battery
JPS63195960A (en) Sealed alkaline storage battery
JP2848465B2 (en) Metal-hydrogen alkaline storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPS63239771A (en) Paste-type hydrogen occluded electrode
JPS60175367A (en) Production of negative electrode for closed storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term