JP2733231B2 - Manufacturing method of hydrogen storage alloy electrode - Google Patents

Manufacturing method of hydrogen storage alloy electrode

Info

Publication number
JP2733231B2
JP2733231B2 JP62290020A JP29002087A JP2733231B2 JP 2733231 B2 JP2733231 B2 JP 2733231B2 JP 62290020 A JP62290020 A JP 62290020A JP 29002087 A JP29002087 A JP 29002087A JP 2733231 B2 JP2733231 B2 JP 2733231B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
discharge
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62290020A
Other languages
Japanese (ja)
Other versions
JPH01132048A (en
Inventor
宗久 生駒
康子 伊藤
博志 川野
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62290020A priority Critical patent/JP2733231B2/en
Publication of JPH01132048A publication Critical patent/JPH01132048A/en
Application granted granted Critical
Publication of JP2733231B2 publication Critical patent/JP2733231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケル・水素蓄電池等のアルカリ蓄電池の
負極に用いる水素吸蔵合金電極の製造法に関するもので
ある。 従来の技術 従来この種の電極はまだ実用化には至っていないが、
その製法として次のような方法が提案されている。すな
わち、三次元の網目状金属多孔体(発泡メタル)に水素
吸蔵合金粉末と結着剤を混練したペーストを充填,乾燥
後、加圧操作を施すことにより水素吸蔵合金電極を作製
する方法が提案(特公昭57−34678号公報)されてい
る。また、水素吸蔵合金の粉末をポリテトラフルオロエ
チレン(PTFE)と均一に混合すると同時にPTFEを繊維化
し、ニッケルネット等の芯材の両面にこれらを塗着,加
圧し水素級蔵合金電極を作製する方法も提案(特公昭61
−66372号公報)されている。 発明が解決しようとする問題点 このような従来の製法では、PTFEが水素吸蔵合金粉末
の重量に対して1〜5%含有されている。したがって、
このような製造法で作製された負極を用いて密閉形ニッ
ケル・水素蓄電池を構成した場合、合成粒子表面がPTFE
に被覆されているため、粒子間の導電性や反応面積が低
下し、高率放電特性が劣るという問題があった。また、
芯材に発泡メタルを用いた場合は、電池の特性面では特
に問題は生じないが、ニッケルネットやパンチングメタ
ル等の芯材と比較するとコスト高になるという問題点が
あった。 さらに、これらの製造法のように、合金を粉砕した後
に結着剤と混練し、芯材に塗着あるいは充填して作製し
た水素吸蔵合金負極は、密閉形電池内で過充電時にニッ
ケル正極から発生する酸素ガスにより合金表面が酸化さ
れ、充放電サイクル寿命が短いという問題があった。 本発明はこのような問題点を解決するもので、高率放
電特性とサイクル寿命特性に優れ、比較的低コストの水
素吸蔵合金電極を提供することを目的とするものであ
る。 問題点を解決するための手段 この問題点を解決するために本発明は、可逆的に水素
を吸蔵・放出する水素吸蔵合金の粉末を酸またはアルカ
リ性の溶液に浸漬する工程と、水洗乾燥の後、粉末と結
着剤の混練物を芯金に塗着,乾燥し加圧操作を施す工程
と、真空中、不活性ガス中もしくは水素ガス中で合金の
融点以下の温度で焼結する工程を有する水素吸蔵合金電
極の製造法としたものである。 作用 酸またはアルカリ性の溶液に浸漬する工程を有する製
造法により、合金粒子表面から一部金属が溶解し耐酸化
性皮膜を粒子表面に形成する結果、密閉電池内でニッケ
ル正極から発生する酸素による酸化が抑制され、サイク
ル寿命特性が向上することなる。さらに、酸またはアル
カリ性の溶液に浸漬後、焼結する工程を有する製造法に
より、合金表面に凹凸が形成されるため、反応表面積が
増大し、さらに焼結性が向上することと、芯金に塗着す
る工程で用いた結着剤は分解され電極中にはほとんど残
存しない。その結果、粒子と粒子間の導電性および表面
積は低下せず、高率放電特性は向上することとなる。 実施例 以下、本発明の一実施例を第1図と第2図により説明
する。市販のミッシュメタルMm(希土類元素の混合
物)、例えばCe45wt%,La30wt%Nd5wt%,他の希土類元
素約20wt%)とNi,Al,Mn,Coの各試料をMmNi3.55Mn0.4Al
0.3Co0.75の組成比に秤量し混合した。これらの試料を
アーク溶解炉に入れて、10-4〜10-5Torrまで真空状態に
した後、アルゴンガス雰囲気中でアーク放電し、加熱溶
解させた。試料の均質化を図るために数回反転させてア
ーク溶解を行い、CaCu5型の結晶構造を有する水素吸蔵
合金を得た。これと同様な方法で、組成がMmNi4.5Mn0.4
Al0.3である水素吸蔵合金を作製した。次に、これらの
合金の均質性をさらに良好にし、水素吸蔵量を増大させ
るために、アルゴンガス雰囲気中にて1050℃で6時間熱
処理を行った。これらの合金を粗粉砕後、ボールミルで
機械的に38μm以下の粉末に微粉砕した。 次に、これらの粉末を80℃の水酸化カリウム水溶液
(比重1.30)中で12時間処理(以下、アルカリ処理を称
す)した後、水洗・乾燥し、負極に用いる水素吸蔵合金
粉末を得た。 これらの粉末100gに対してポリビニルアルコール6wt.
%の水溶液23gとポリエチレン粉末を2g添加して練合を
行い、ペースト状態とした。ついで、これらのペースト
をパンチングメタルに塗着し、120℃で乾燥後、加圧を
施してペースト式電極を得た。さらに、これらのペース
ト式電極をアルゴンガス雰囲気中で800〜1200℃の各温
度で1時間焼結を行い、本発明の水素吸蔵合金電極を得
た。本実施例に用いた電極の合金組成と各焼結温度、ア
ルカリ処理の有無を表に示す。比較例として、合金粉末
を前記と同様な結着剤を用いてペースト状態として、パ
ンチングメタルに塗着後、乾燥,加圧を施したペースト
式電極Hを用いた。 次に、酸化ニッケル正極として、公知の方法で得られ
た発泡メタル式ニッケル正極(理論充填電気量1050〜11
00mAh)を用い、セパレータにはポリアミドの不織布、
電解液に水酸化リチウムを40g/溶解した比重1.30のKO
H水溶液を使用し、前記A〜Hの負極と組み合わせ、公
称容量1000mAhの単3サイズ(AAサイズ)の各種密閉形
ニッケル−水素蓄電池を構成した。 第1図には、0℃で種々の放電率で放電を行った場合
の容量比率を示した。容量比率は、0℃,0.2CmA放電に
おける容量を基準にして計算した。なお、各放電は20℃
で0.1CmAで正極容量に対し150%の充電後、0℃で2時
間放置した後に行った。第1図から明らかなように、比
較例のペースト式電極Hを用いた電池は、0℃,3CmAの
容量比率が35%であり、高率放電時の特性に劣ることが
わかる。これに対し、本発明の電極A,B,Dを用いた電池
は、0℃,3CmAにおける容量比率は63〜70%であり、電
極Hを用いた電池に比べ、放電特性は著しく向上する。
これは、950℃で焼結を施すことにより、ポリビニルア
ルコールやポリエチレンの結着剤が分解し、負極中に存
在しないこと、粒子−粒子−芯材間の結合が良好で導電
性が低下しないことにより、3CmA放電における負極の分
極が減少したことに起因する。また、アルカリ処理を施
していないFは、Aに比べ放電特性が劣る。これは、焼
結前に合金粉末にアルカリ処理を施すことにより、合金
中に含まれるコバルトが優先的に溶解し、粒子表面に凹
凸を形成しているため、有効反応表面積が増大したこと
および、凹凸面での焼結性が良好になり、導電性が向上
し、放電特性が改善された。 第2図には、20℃における充放電サイクル寿命特性を
示した。充放電条件は、充電が1/3CmA×4.5hr.,放電が1
CaAで終止電圧は0.8Vである。本発明の電極A,B,Dを用い
た電池は、500サイクルの充放電を繰り返しても容量は
ほとんど低下しない。これに対して、比較例のHを用い
た電池は、80サイクル程度で劣化する。また、焼結を施
した電極Fを用いた電池も、80サイクル程度で容量低下
をきたす。F,Hのようにアルカリ処理を施していない電
極を用いた電池は、過充電時に正極から発生する酸素ガ
スにより合金が酸化されて容量低下をきたす。また、ア
ルカリ処理を施していない合金粉末を焼結した場合、合
金表面から蒸気圧の低いMnが一部蒸発することにより、
表面層の組成が変化し、負極の充電効率の低下によって
も容量が低下する。 次に、コバルトを含有しない電極Gを用いた電池は、
70サイクル程度で容量が劣化する。また、焼結における
最適な温度範囲は、850〜1100℃である。これは、850℃
以下の温度では焼結が不可能であり、1100℃以上になる
と焼結が進行しすぎ電池構成が不可能となる。本実施例
では、アルゴンガス雰囲気中で焼結を施したが、N2ガス
やH2ガス中およびN2とH2等の混合ガス中あるいは真空中
で焼結を施しても同様な効果が得られた。また、アルカ
リ処理を施した場合の一実施例を示したが、アルカリ処
理温度は45〜90℃処理時間が0.5〜20時間であれば同様
な効果が得られる。さらに、塩酸等の酸中で処理を施し
ても同様な効果が得られる。本実施例ではアルカリ処理
を施した後に焼結する工程で電極を作製したが、焼結を
行った後、アルカリ処理または酸処理を施して電極を作
製しても同様な効果が得られる。 なお、芯材に発泡状ニッケルに比べ安価なパンチング
メタルを用いることができ、負極のコストダウンが図れ
る。 発明の効果 以上のように、本発明によれば、水素吸蔵合金の粉末
を酸またはアルカリ性の溶液に浸漬する工程と、水洗・
乾燥の後、粉末と結着剤との混合物を芯金に塗着、乾燥
し加圧操作を施す工程と、真空中、不活性ガス中もしく
は水素ガス中で合金の融点以下の温度で焼結する工程と
を有する水素吸蔵電極の製造法とすることにより、高率
放電特性に優れ、充放電サイクル寿命の良好な電池を提
供できるという効果が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy electrode used as a negative electrode of an alkaline storage battery such as a nickel-metal hydride storage battery. Conventional technology Conventionally, this kind of electrode has not been put to practical use yet,
The following method has been proposed as a manufacturing method. That is, a method is proposed in which a three-dimensional mesh-like porous metal body (foam metal) is filled with a paste obtained by kneading a hydrogen storage alloy powder and a binder, dried, and then subjected to a pressurizing operation to produce a hydrogen storage alloy electrode. (Japanese Patent Publication No. 57-34678). In addition, the hydrogen storage alloy powder is uniformly mixed with polytetrafluoroethylene (PTFE), and at the same time, the PTFE is fibrillated, and these are applied to both surfaces of a core material such as a nickel net and pressed to produce a hydrogen storage alloy electrode. A method is also proposed.
No. -66372). Problems to be Solved by the Invention In such a conventional production method, PTFE is contained in an amount of 1 to 5% based on the weight of the hydrogen storage alloy powder. Therefore,
When a sealed nickel-metal hydride battery is constructed using the negative electrode produced by such a manufacturing method, the surface of the synthetic particles is PTFE.
Therefore, there is a problem that the conductivity between particles and the reaction area are reduced, and the high-rate discharge characteristics are inferior. Also,
When a foam metal is used as the core material, there is no particular problem in terms of the characteristics of the battery, but there is a problem that the cost is higher than a core material such as a nickel net or a punched metal. Furthermore, as in these production methods, the alloy is pulverized, then kneaded with a binder, and coated or filled in a core material. There is a problem that the surface of the alloy is oxidized by the generated oxygen gas, and the charge / discharge cycle life is short. An object of the present invention is to solve such a problem, and an object of the present invention is to provide a relatively low-cost hydrogen storage alloy electrode having excellent high-rate discharge characteristics and cycle life characteristics. Means for Solving the Problems In order to solve this problem, the present invention provides a step of immersing a hydrogen storage alloy powder that reversibly stores and releases hydrogen in an acid or alkaline solution, and after washing and drying. A step of applying a kneaded mixture of powder and a binder to a core metal, drying and applying pressure, and a step of sintering in a vacuum, an inert gas or a hydrogen gas at a temperature lower than the melting point of the alloy. It is a method for producing a hydrogen storage alloy electrode having the same. The metal oxide is partially oxidized from the surface of the alloy particles to form an oxidation-resistant film on the surface of the particles by a manufacturing method that includes a step of immersion in an acid or alkaline solution. Is suppressed, and the cycle life characteristics are improved. Further, by a manufacturing method having a step of sintering after immersion in an acid or alkaline solution, irregularities are formed on the surface of the alloy, so that the reaction surface area is increased, the sinterability is further improved, and The binder used in the step of coating is decomposed and hardly remains in the electrode. As a result, the conductivity and the surface area between the particles do not decrease, and the high-rate discharge characteristics are improved. Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Commercially available misch metal Mm (mixture of rare earth elements), for example, Ce45wt%, La30wt% Nd5wt%, other rare earth elements about 20wt%) and each sample of Ni, Al, Mn, Co was MmNi 3.55 Mn 0.4 Al
0.3 Co 0.75 composition ratio was weighed and mixed. These samples were placed in an arc melting furnace and evacuated to 10 -4 to 10 -5 Torr, and then arc-discharged and heated and melted in an argon gas atmosphere. Arc melting was performed by inverting the sample several times in order to homogenize the sample, and a hydrogen storage alloy having a CaCu 5- type crystal structure was obtained. In a similar manner, the composition is MmNi 4.5 Mn 0.4
A hydrogen storage alloy of Al 0.3 was produced. Next, in order to further improve the homogeneity of these alloys and increase the hydrogen storage capacity, heat treatment was performed at 1050 ° C. for 6 hours in an argon gas atmosphere. After coarsely pulverizing these alloys, they were finely pulverized mechanically with a ball mill to a powder of 38 μm or less. Next, these powders were treated in an aqueous solution of potassium hydroxide (specific gravity: 1.30) at 80 ° C. for 12 hours (hereinafter referred to as alkali treatment), washed with water and dried to obtain a hydrogen storage alloy powder used for the negative electrode. For 100 g of these powders, polyvinyl alcohol 6 wt.
% Aqueous solution and 2 g of polyethylene powder were added and kneaded to obtain a paste state. Next, these pastes were applied to a punching metal, dried at 120 ° C., and then pressurized to obtain a paste electrode. Furthermore, these paste-type electrodes were sintered at a temperature of 800 to 1200 ° C. for 1 hour in an argon gas atmosphere to obtain a hydrogen storage alloy electrode of the present invention. The alloy composition of the electrode used in this example, each sintering temperature, and the presence or absence of alkali treatment are shown in the table. As a comparative example, a paste-type electrode H was used in which the alloy powder was made into a paste state using the same binder as described above, applied to a punching metal, dried and pressed. Next, as a nickel oxide positive electrode, a foamed metal nickel positive electrode obtained by a known method (theoretical charging electric quantity of 1050-11
00mAh), using a polyamide non-woven fabric for the separator,
KO with a specific gravity of 1.30 in which 40 g of lithium hydroxide was dissolved in the electrolyte
Using H aqueous solution and combining with the negative electrodes of A to H, various sealed AA-size nickel-metal hydride batteries with a nominal capacity of 1000 mAh were constructed. FIG. 1 shows the capacity ratio when discharge was performed at 0 ° C. at various discharge rates. The capacity ratio was calculated based on the capacity at 0 ° C. and 0.2 CmA discharge. Each discharge is 20 ℃
After charging at 150% with respect to the capacity of the positive electrode at 0.1 CmA, the test was carried out after being left at 0 ° C. for 2 hours. As is clear from FIG. 1, the battery using the paste-type electrode H of the comparative example has a capacity ratio of 35% at 0 ° C. and 3 CmA, which is inferior in the characteristics at the time of high-rate discharge. On the other hand, in the battery using the electrodes A, B, and D of the present invention, the capacity ratio at 0 ° C. and 3 CmA is 63 to 70%, and the discharge characteristics are significantly improved as compared with the battery using the electrode H.
This is because the binder of polyvinyl alcohol or polyethylene is decomposed by sintering at 950 ° C. and does not exist in the negative electrode, and the bond between particles-particles-core material is good and the conductivity does not decrease. This causes the polarization of the negative electrode in the 3 CmA discharge to decrease. Further, F not subjected to the alkali treatment has inferior discharge characteristics to A. This is because, by subjecting the alloy powder to an alkali treatment before sintering, the cobalt contained in the alloy is preferentially dissolved to form irregularities on the particle surface, thereby increasing the effective reaction surface area, and The sinterability on the uneven surface was improved, the conductivity was improved, and the discharge characteristics were improved. FIG. 2 shows the charge / discharge cycle life characteristics at 20 ° C. The charge and discharge conditions are as follows: charge is 1/3 CmA x 4.5 hr., Discharge is 1
The final voltage of CaA is 0.8V. In the battery using the electrodes A, B, and D of the present invention, the capacity hardly decreases even when charge and discharge are repeated for 500 cycles. On the other hand, the battery using H of the comparative example deteriorates in about 80 cycles. Also, the capacity of a battery using the sintered electrode F decreases in about 80 cycles. In batteries using electrodes that have not been subjected to alkali treatment, such as F and H, the alloy is oxidized by oxygen gas generated from the positive electrode during overcharge, resulting in a decrease in capacity. Also, when sintering an alloy powder that has not been subjected to alkali treatment, Mn with a low vapor pressure is partially evaporated from the alloy surface,
The composition of the surface layer changes, and the capacity also decreases due to a decrease in the charging efficiency of the negative electrode. Next, a battery using the electrode G containing no cobalt is:
The capacity deteriorates in about 70 cycles. The optimum temperature range for sintering is 850 to 1100 ° C. This is 850 ° C
Sintering is not possible at the following temperatures, and sintering proceeds too much at 1100 ° C. or higher, making battery construction impossible. In this embodiment, sintering was performed in an argon gas atmosphere, but the same effect can be obtained by sintering in N 2 gas, H 2 gas, a mixed gas of N 2 and H 2 , or in a vacuum. Obtained. In addition, although one embodiment in which the alkali treatment is performed is shown, the same effect can be obtained if the alkali treatment temperature is 45 to 90 ° C. and the treatment time is 0.5 to 20 hours. Further, the same effect can be obtained by treating in an acid such as hydrochloric acid. In this embodiment, the electrode is manufactured in the step of sintering after performing the alkali treatment. However, the same effect can be obtained by manufacturing the electrode by performing the alkali treatment or the acid treatment after the sintering. In addition, a punching metal which is less expensive than the foamed nickel can be used as the core material, and the cost of the negative electrode can be reduced. Effects of the Invention As described above, according to the present invention, a step of immersing a powder of a hydrogen storage alloy in an acid or alkaline solution,
After drying, apply the mixture of powder and binder to the core metal, dry and apply pressure, and sinter at a temperature below the melting point of the alloy in vacuum, inert gas or hydrogen gas. By using the method for producing a hydrogen storage electrode having the steps of: (1) obtaining an effect of being able to provide a battery having excellent high-rate discharge characteristics and a good charge-discharge cycle life.

【図面の簡単な説明】 第1図は本発明の一実施例における放電率と容量比率の
関係を示す図、第2図は充放電サイクル数と放電容量の
関係を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the discharge rate and the capacity ratio in one embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川野 博志 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−285658(JP,A) 特公 昭49−25135(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hiroshi Kawano               Matsushita, 1006 Kadoma, Kazuma, Osaka               Kiki Sangyo Co., Ltd. (72) Inventor Isao Matsumoto               Matsushita, 1006 Kadoma, Kazuma, Osaka               Kiki Sangyo Co., Ltd.                (56) References JP-A-61-285658 (JP, A)                 Tokiko 49-25135 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 1.CaCu5型の結晶構造を有し、少なくともコバルトを
含有する、水素吸蔵合金の粉末を酸またはアルカリ性の
溶液に浸漬する工程と、水洗乾燥の後、粉末と結着剤の
混練物を芯金に塗着、乾燥し加圧操作を施す工程と、そ
れを850〜1100℃の温度で焼結する工程とを有すること
を特徴とする水素吸蔵合金電極の製造法。
(57) [Claims] Having a CaCu type 5 crystal structure and containing at least cobalt, a step of immersing the hydrogen storage alloy powder in an acid or alkaline solution, washing and drying, and then kneading the powder and binder into a cored bar. A method for producing a hydrogen storage alloy electrode, comprising: a step of applying, drying and applying a pressure operation, and a step of sintering it at a temperature of 850 to 1100 ° C.
JP62290020A 1987-11-17 1987-11-17 Manufacturing method of hydrogen storage alloy electrode Expired - Fee Related JP2733231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290020A JP2733231B2 (en) 1987-11-17 1987-11-17 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290020A JP2733231B2 (en) 1987-11-17 1987-11-17 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH01132048A JPH01132048A (en) 1989-05-24
JP2733231B2 true JP2733231B2 (en) 1998-03-30

Family

ID=17750749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290020A Expired - Fee Related JP2733231B2 (en) 1987-11-17 1987-11-17 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2733231B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773878A (en) * 1993-08-31 1995-03-17 Sanyo Electric Co Ltd Manufacture of metal hydride electrode
JP3661190B2 (en) * 1994-02-25 2005-06-15 株式会社ユアサコーポレーション Hydrogen storage electrode and manufacturing method thereof
CA2264134C (en) * 1997-01-31 2004-12-07 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy powder and process for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925135A (en) * 1972-06-29 1974-03-06
JPS5840828B2 (en) * 1977-07-07 1983-09-08 松下電器産業株式会社 Manufacturing method of hydrogen storage electrode
JPH0789488B2 (en) * 1985-06-12 1995-09-27 松下電器産業株式会社 Method for manufacturing hydrogen storage electrode

Also Published As

Publication number Publication date
JPH01132048A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
JP3661190B2 (en) Hydrogen storage electrode and manufacturing method thereof
US5360687A (en) Hydrogen-occulusion electrode
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2512076B2 (en) Manufacturing method of sealed nickel-metal hydride storage battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JP4743997B2 (en) Hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3010989B2 (en) Hydrogen storage electrode and method for producing the same
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3322449B2 (en) Method for producing metal hydride electrode
JP3374995B2 (en) Manufacturing method of nickel electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees