JPH0756802B2 - Manufacturing method of hydrogen storage electrode - Google Patents

Manufacturing method of hydrogen storage electrode

Info

Publication number
JPH0756802B2
JPH0756802B2 JP62008499A JP849987A JPH0756802B2 JP H0756802 B2 JPH0756802 B2 JP H0756802B2 JP 62008499 A JP62008499 A JP 62008499A JP 849987 A JP849987 A JP 849987A JP H0756802 B2 JPH0756802 B2 JP H0756802B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
electrode
storage electrode
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62008499A
Other languages
Japanese (ja)
Other versions
JPS63175339A (en
Inventor
博志 川野
宗久 生駒
功 松本
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62008499A priority Critical patent/JPH0756802B2/en
Publication of JPS63175339A publication Critical patent/JPS63175339A/en
Publication of JPH0756802B2 publication Critical patent/JPH0756802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解液中で水素を可逆的に吸蔵・放出する水素
吸蔵合金を負極材料として用いた水素吸蔵電極の製造法
であり、とくに密閉形電池の電極に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage electrode using, as a negative electrode material, a hydrogen storage alloy that reversibly stores and releases hydrogen in an electrolytic solution, and in particular, a sealed battery. Regarding the electrodes.

従来の技術 水素吸蔵合金に対する水素の吸蔵・放出を電気化学的に
行なわせることで、2次電池の負極材料として使用でき
る。このうち、常温付近で水素の吸蔵・放出が可能で吸
蔵量の多い合金を選択することにより、放電電気量の多
い水素吸蔵電極が可能になる。したがって、たとえば酸
化ニッケル正極と組み合わせることで、エネルギー密度
の大きなアルカリ蓄電池が期待できる。このような背景
から、水素吸蔵電極を用いる高容量蓄電池が注目を集め
ている。この種の電極においては水素吸蔵合金の耐食
性,充放電による微粒化などに起因する放電容量の低
下、さらに酸化ニッケル正極と組み合せた密閉電池系に
おける過充電時に、正極から発生する酸素の吸収能力の
低下による電池内圧の上昇に伴う悪影響などが実用化を
阻害していた。
2. Description of the Related Art A hydrogen storage alloy can be used as a negative electrode material for a secondary battery by electrochemically storing and releasing hydrogen. Of these, by selecting an alloy capable of absorbing and desorbing hydrogen near room temperature and having a large absorption amount, a hydrogen absorption electrode having a large discharge electricity amount becomes possible. Therefore, for example, by combining with a nickel oxide positive electrode, an alkaline storage battery having a large energy density can be expected. From such a background, a high-capacity storage battery using a hydrogen storage electrode has been attracting attention. In this type of electrode, the corrosion resistance of the hydrogen storage alloy, the decrease in discharge capacity due to atomization due to charge and discharge, and the ability to absorb oxygen generated from the positive electrode during overcharge in the closed battery system combined with the nickel oxide positive electrode The negative effect of increasing the internal pressure of the battery due to the decrease has hindered its practical use.

一方、この種の電極材料としては一般式LnM5で示される
合金(Lnは希土類金属の混合物、MはNi,Cu,Co,Mn,Fe,A
lなどから選ばれた2種類以上の金属)が提案されてき
た。この金属の内、Mnは少量で水素吸蔵・放出時の平衡
圧を低下させることが可能で重要な役割を法っている。
しかし、反面Mnは他の金属に比べ蒸気圧が高く、合金溶
解中に蒸発することにより、合金の表面付近に偏折し、
均一な合金を形成しにくい。したがって、前述した電極
に構成した場合の悪影響を助長することになる。
On the other hand, as an electrode material of this kind, an alloy represented by the general formula LnM 5 (Ln is a mixture of rare earth metals, M is Ni, Cu, Co, Mn, Fe, A
Two or more metals selected from l, etc.) have been proposed. Among these metals, Mn plays an important role because it can lower the equilibrium pressure at the time of hydrogen absorption and desorption with a small amount.
However, on the other hand, Mn has a higher vapor pressure than other metals, and is evaporated near the surface of the alloy by evaporating during melting of the alloy,
Difficult to form a uniform alloy. Therefore, the adverse effect of the above-mentioned electrode is promoted.

発明が解決しようとする問題点 このようなこれまでの電極構成では前述したような課題
が残されているため、サイクル寿命の低下、密閉電池に
おいては電池内圧の増大による電解液の漏液という問題
があった。
Problems to be Solved by the Invention Since the problems as described above are left in the conventional electrode configurations as described above, there is a problem that the cycle life is shortened, and the electrolyte leaks in the sealed battery due to an increase in the battery internal pressure. was there.

本発明はこのような問題点を解決するために、負極材料
である水素吸蔵合金の均質化と合金粉末表面の耐食性を
向上させることで酸素ガス吸収特性の安定化とサイクル
寿命を向上させることを目的とするものである。
In order to solve such problems, the present invention aims to improve the stability of oxygen gas absorption characteristics and the cycle life by homogenizing a hydrogen storage alloy that is a negative electrode material and improving the corrosion resistance of the alloy powder surface. It is intended.

問題点を解決するための手段 この問題点を解決するために本発明は、アーク溶解法,
高周波電解法などにより得られた一般式LnM5(Lnは希土
類元素の混合物)で示される合金を、真空中で熱処理す
ることにより、合金組成の均質化を図り、さらに、この
合金を電極作製可能な粉末に粉砕後、高温のアルカリ水
溶液中に浸漬して、粉末表面に均一に分布した酸化膜を
形成させることにより、耐食性を向上させ、酸素に対す
る安定性と、合金の粉末内部への腐食の進行を抑制した
ものである。
Means for Solving the Problems In order to solve this problem, the present invention provides an arc melting method,
By heat-treating an alloy represented by the general formula LnM 5 (Ln is a mixture of rare earth elements) obtained by high-frequency electrolysis in a vacuum, the alloy composition can be homogenized, and this alloy can be used as an electrode. After crushing into a fine powder, it is immersed in a high temperature alkaline aqueous solution to form an oxide film that is evenly distributed on the powder surface, improving corrosion resistance, stability against oxygen, and corrosion of the alloy inside the powder. It is the one that restrains the progress.

作 用 この構成により、合金は均質な金属間化合物が形成さ
れ、充放電により、合金中の一部の金属が溶解による悪
影響、たとえば水素吸蔵量の低下による放電電気量の低
下,電池としての短絡現象などが防止できる。さらに、
粉末表面に均一に分布した薄い酸化膜が形成されること
で、耐食性の向上が可能になり、電池寿命の向上を可能
にすることとなる。
Operation With this structure, a homogeneous intermetallic compound is formed in the alloy. Due to charging and discharging, some of the metals in the alloy are adversely affected by melting, for example, the hydrogen storage capacity is reduced and the discharge electricity is reduced. Phenomena can be prevented. further,
By forming a thin oxide film uniformly distributed on the powder surface, corrosion resistance can be improved, and battery life can be improved.

実 施 例 以下、本発明を実施例による詳述する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples.

(実施例1) 純度99.5%以上のランタン(La),ニッケル(Ni),コ
バルト(Co),マンガン(Mn)を含み希土類元素の含有
量98.5%以上のミッシュメタル(Mm)を用いて、合金組
成がLa0.3Mm0.7Ni3.5Co1.2Mn0.3になるように各々の金
属を秤量し、アーク溶解炉を用いて合金を作成した。こ
の合金を真空熱処理炉により、900℃,950℃,1050℃,110
0℃,1150℃の各温度で、真空度10-2Torr以下に保ち、6
時間熱処理を行った。冷却後、これらの合金を粉砕して
400メッシュ以下の粉末にした。ついで、5種類の粉末
を各々の完全に浸漬される量の60℃,30重量%のか性カ
リ水溶液中に撹拌しながら5時間、保持し後、水洗によ
りか性カリを取り除き乾燥した。
(Example 1) Using a misch metal (Mm) containing lanthanum (La), nickel (Ni), cobalt (Co), and manganese (Mn) having a purity of 99.5% or more and a rare earth element content of 98.5% or more, an alloy is formed. Each metal was weighed so that the composition was La 0.3 Mm 0.7 Ni 3.5 Co 1.2 Mn 0.3 , and an alloy was prepared using an arc melting furnace. This alloy is vacuum-heat treated at 900 ℃, 950 ℃, 1050 ℃, 110 ℃.
Keep the degree of vacuum below 10 -2 Torr at 0 ℃ and 1150 ℃.
Heat treatment was performed for an hour. After cooling, crush these alloys
It was made into powder of 400 mesh or less. Then, each of the 5 kinds of powders was kept for 5 hours with stirring in an aqueous solution of caustic potash of 30 ° C. at 60 ° C. for 5 hours, and then washed with water to remove caustic potash and dried.

乾燥後の粉末100gに対して、1.5重量%のポリビニール
アルコールの水溶液25gの割合で混合して泥状のペース
トとした。これらのペーストを多孔度94〜96%の発泡状
ニッケル多孔体(寸法260×38mm,厚さ0.9mm)内へ均一
に充填し、乾燥した。その後加圧プレスを行ない負極と
した。
100 g of the dried powder was mixed with 25 g of a 1.5% by weight aqueous solution of polyvinyl alcohol to prepare a muddy paste. These pastes were uniformly filled into a foamed nickel porous body (size 260 × 38 mm, thickness 0.9 mm) having a porosity of 94 to 96% and dried. After that, pressure pressing was performed to obtain a negative electrode.

つぎに、酸化ニッケル正極として、公知の方法で得られ
た発泡式ニッケル極(理論充填電気量2920〜3030mAh)
を用い、セパレータにはポリアミドの不織布、電解液に
水酸化リチウム30g/溶解した30wt%のか性カリ水溶液
を使用し、前記負極と組みあわせ、公称容量2.8Ahの単
2サイズ(Cサイズ)の密閉形ニッケル−水素蓄電池を
構成した。
Next, as a nickel oxide positive electrode, a foaming nickel electrode obtained by a known method (theoretical charging electricity amount: 2920 to 3030 mAh)
Polyamide non-woven fabric is used for the separator, and 30 wt% of potassium hydroxide aqueous solution containing 30 g of lithium hydroxide is used as the electrolytic solution. In combination with the negative electrode, a sealed size of C2 with a nominal capacity of 2.8 Ah. A nickel-metal hydride storage battery was constructed.

これらの電池を20℃の一定温度下で、初サイクルの充電
を0.1Cで15時間、2サイクル目以降は0.2Cで7.5時間の
条件で、放電はすべて、0.2Cの電流で終止電圧0.9Vまで
放電を続け、電池のサイクル寿命を調べた。また、同時
に電池底部に直径1.5mmの穴をあけ、圧力センサーを取
付けて、電池内の圧力変化を測定した。その結果を第1
表に示す。比較のために一部の合金についてか性カリ水
溶液中に浸漬する工程を省略した合金粉末を使用した負
極での電池特性を示す。
Under the condition that these batteries are charged at 0.1C for 15 hours at a constant temperature of 20 ° C for 15 hours in the first cycle, and at 7.5C for 0.2 hours after the second cycle, all discharges are performed at a current of 0.2C and a cutoff voltage of 0.9V. The battery was continuously discharged until the cycle life of the battery was examined. At the same time, a hole with a diameter of 1.5 mm was opened at the bottom of the battery, a pressure sensor was attached, and the pressure change inside the battery was measured. The result is first
Shown in the table. For comparison, the battery characteristics of some alloys are shown in the negative electrode using the alloy powder in which the step of immersing the alloy in the caustic potash solution is omitted.

第1表において、熱処理温度の影響について注目する
と、アルカリ処理工程の有無により放電容量,電池内圧
に差は認められるが、950〜1100℃の範囲が最適である
ことがわかった。この範囲が最適条件が得られた理由
は、高温側では、合金化されていない金属単体とくに蒸
気圧の高い金属が優先的に蒸発して、合金組成の変化が
生じて、AB5型の合金系の崩れと、水素吸蔵圧の変化な
などにより、負極特性の劣化が大きくなったものと考え
られる。
In Table 1, paying attention to the influence of the heat treatment temperature, it was found that the optimum range was 950 to 1100 ° C, although the discharge capacity and the battery internal pressure differed depending on the presence or absence of the alkali treatment step. The reason why the optimum conditions were obtained in this range is that, on the high temperature side, unalloyed simple metal, especially metal with high vapor pressure, preferentially evaporates, causing a change in alloy composition, resulting in an AB 5 type alloy. It is considered that the deterioration of the negative electrode characteristics increased due to the collapse of the system and the change in hydrogen storage pressure.

また、低温側においては、通常の熱処理効果により得ら
れる合金の均質化が可能な温度領域に達していないた
め、熱処理の効果が現われなかったものと考えられる。
On the low temperature side, it is considered that the effect of the heat treatment did not appear because the temperature range where homogenization of the alloy obtained by the ordinary heat treatment effect was possible has not been reached.

一方、アルカリ処理を行なうことにより、熱処理条件と
同様なもので比較すると、すべてアルカリ処理の効果が
認められた。したがって、あらかじめ、合金粉末をアル
カリ処理を行ない水洗・乾燥して表面に安定な酸化膜層
を形成させることは、密閉電池系において、酸素ガス吸
収能は初期に若干の低下はあるが充放電サイクルの繰り
返しによる安定性が認められ、電池内圧の上昇を防ぐこ
とが効果的であった。したがって、合金の酸化が表面近
傍だけに限定され、内部まで進行することなく、負極の
容量低下が現われなかったものと考えられる。
On the other hand, when the alkali treatment was performed, the effect of the alkali treatment was confirmed when compared under the same heat treatment conditions. Therefore, in order to form a stable oxide film layer on the surface by subjecting the alloy powder to alkali treatment and water washing and drying in advance, in a sealed battery system, the oxygen gas absorption capacity may slightly decrease at the initial stage, but the charge and discharge cycle The stability was confirmed by repeating the above procedure, and it was effective to prevent the rise of the internal pressure of the battery. Therefore, it is considered that the oxidation of the alloy was limited only to the vicinity of the surface, did not proceed to the inside, and the capacity reduction of the negative electrode did not appear.

以上の結果より、熱処理条件と合金粉末のアルカリ処理
を行なうことは、長期間安定した電極特性を示す水素吸
蔵電極に有効な製造法である。
From the above results, the heat treatment condition and the alkali treatment of the alloy powder are effective manufacturing methods for the hydrogen storage electrode showing stable electrode characteristics for a long period of time.

(実施例2) 熱処理温度1050℃の合金を用いて、粉砕後合金粉末100g
に対して、1.5重量%のポリビニルアルコールの水溶液
を25gの割合で混合して泥状のペーストとした。これら
のペーストを多孔度94〜96%の発泡状ニッケル多孔体
(実施例1と同寸法)内へ均一に充填し乾燥した。その
後加圧プレスを行ない、第2表に示す温度,濃度のか性
カリ,か性ソーダ水溶液中へ5時間、浸漬して保持させ
た。ついで、水洗,乾燥を行ない実施例1に示した電池
構成条件で単2サイズ(Cサイズ)の密閉形ニッケル水
素蓄電池K〜Tを作製し、前述した実施例1と同様の充
放電条件での試験結果を第2表に示す。
(Example 2) Using an alloy having a heat treatment temperature of 1050 ° C, 100 g of alloy powder after pulverization
On the other hand, an aqueous solution of 1.5% by weight of polyvinyl alcohol was mixed at a ratio of 25 g to prepare a muddy paste. These pastes were uniformly filled into a foamed nickel porous body (having the same dimensions as in Example 1) having a porosity of 94 to 96% and dried. After that, pressure pressing was performed, and the plate was immersed and held in an aqueous solution of caustic potash or caustic soda at the temperature and concentration shown in Table 5 for 5 hours. Then, after washing with water and drying, the sealed nickel-metal hydride storage batteries K to T of size A (size C) were prepared under the battery constitution conditions shown in Example 1, and the same charging and discharging conditions as in Example 1 were used. The test results are shown in Table 2.

この結果からつぎのことがわかった。まず、アルカリ水
溶液の温度については低温においても効果は認められた
が、顕著に現われるのは45℃以上が良いと云える。高温
側においても良好な結果が得られ効果的であるが、危険
性,濃度の管理などの観点より、90℃以下が適当だと考
えられる。また、アルカリ濃度について、低濃度におい
ても 効果は認められるが20重量%以上の方が有効であること
がわかった。これらの結果を比較するには第1表に示し
たEの電池がアルカリ処理を全く行っていないものであ
り、その効果を比較することができる。
From this result, the following was found. First, regarding the temperature of the alkaline aqueous solution, the effect was recognized even at a low temperature, but it can be said that it is good that the temperature is not less than 45 ° C. Good results are obtained even on the high temperature side, but it is considered that 90 ° C or lower is appropriate from the viewpoints of risk and concentration control. Also, regarding the alkali concentration, even at low concentrations Although the effect was recognized, it was found that 20% by weight or more was more effective. In order to compare these results, the battery of E shown in Table 1 does not undergo alkali treatment at all, and its effects can be compared.

また、Mnを含まない合金系、逆に多量に含む系、例え
ば、La0.3Mm0.7Ni2.8Co1.2Mnの合金について本発明の効
果を調べた結果、前者においては、Mnが含まれないた
め、水素吸蔵合金の平衡水素圧を低下させる効果が少な
く、吸蔵量の低下、電池内圧の上昇が認められた。後者
は、水素平衡圧の平坦性が悪くなること、均質な合金に
なりにくいことなどの原因で、水素吸蔵電極での特性が
低下し、Mnの量としてはLnM5のM中に0.2〜0.8程度が最
適と思われる。
Further, alloy system containing no Mn, on the contrary, a system containing a large amount, for example, as a result of examining the effect of the present invention on an alloy of La 0.3 Mm 0.7 Ni 2.8 Co 1.2 Mn, in the former case, since Mn is not contained, The effect of lowering the equilibrium hydrogen pressure of the hydrogen storage alloy was small, and the storage capacity was decreased and the internal pressure of the battery was increased. The latter causes the flatness of the hydrogen equilibrium pressure to deteriorate, and makes it difficult to form a homogenous alloy, resulting in deterioration of the characteristics at the hydrogen storage electrode, and the amount of Mn is 0.2 to 0.8 in M of LnM 5. The degree seems optimal.

したがって、本発明はMnを含む合金において有効だと考
えられる。また、前述したように、Mnは少量で水素吸蔵
合金の特性を変化させるために効果的な金属であると云
えるため、本発明は水素吸蔵電極を提供する有効な方法
である。
Therefore, the present invention is considered to be effective in alloys containing Mn. Further, as described above, Mn can be said to be an effective metal for changing the characteristics of the hydrogen storage alloy even in a small amount, so the present invention is an effective method for providing a hydrogen storage electrode.

発明の効果 以上のように本発明によれば、とくにMnを含む水素吸蔵
合金において、効果的な熱処理条件の選定とアルカリ処
理工程との組み合せにより、均質な合金の表面に安定な
酸化被膜が形成され、充放電による放電容量の低下,酸
素ガス吸収能力の低下が抑制された水素吸蔵電極が得ら
れ、長寿命で高容量の電池の提供が可能になるという効
果が得られる。
As described above, according to the present invention, particularly in a hydrogen storage alloy containing Mn, a stable oxide film is formed on the surface of a homogeneous alloy by a combination of selection of effective heat treatment conditions and an alkali treatment step. As a result, a hydrogen storage electrode in which a decrease in discharge capacity and a decrease in oxygen gas absorption capacity due to charging and discharging are suppressed can be obtained, and it is possible to provide a battery having a long life and a high capacity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式LnM5(Lnは希土類元素の混合物)で
示され、式中のMに少なくともMnを含む合金を950℃〜1
100℃の真空雰囲気で熱処理後、この合金を粉砕する工
程と、粉砕した粉末を高温のアルカリ水溶液中に浸漬す
る工程と、さらにその後、水洗,乾燥した合金粉末を結
着剤と共に金属多孔体内に充填するかあるいは金属多孔
体の両面に塗着することにより電極を構成する工程を有
することを特徴とする水素吸蔵電極の製造法。
1. An alloy represented by the general formula LnM 5 (Ln is a mixture of rare earth elements), wherein M in the formula contains at least Mn is 950 ° C. to 1 ° C.
After heat treatment in a vacuum atmosphere at 100 ° C, a step of crushing this alloy, a step of immersing the crushed powder in a high-temperature alkaline aqueous solution, and then, washing and drying the alloy powder with a binder into a porous metal body. A method for producing a hydrogen storage electrode, comprising a step of forming an electrode by filling or coating both surfaces of a metal porous body.
【請求項2】熱処理,粉砕の工程により得られた合金粉
末を結着剤と共に金属多孔体内に充填するかあるいは金
属多孔体の両面に塗着することにより電極を構成し、そ
の後、高温のアルカリ水溶液中に浸漬,水洗,乾燥し、
ついで加圧する特許請求の範囲第1項記載の水素吸蔵電
極の製造法。
2. An electrode is formed by filling the alloy powder obtained by the steps of heat treatment and pulverization together with a binder into a porous metal body or coating both surfaces of the porous metal body to form an electrode, and then forming a high temperature alkali. Immerse in aqueous solution, wash with water, dry,
The method for producing a hydrogen storage electrode according to claim 1, wherein pressure is applied.
【請求項3】アルカリ水溶液の温度が、45〜90℃である
ことを特徴とする特許請求の範囲第1項又は第2項に記
載の水素吸蔵電極の製造法。
3. The method for producing a hydrogen storage electrode according to claim 1 or 2, wherein the temperature of the aqueous alkaline solution is 45 to 90 ° C.
【請求項4】アルカリ水溶液がか性カリ又はか性ソーダ
の水溶液であって、各々濃度が20重量%以上であること
を特徴とする特許請求の範囲第1項又は第2項に記載の
水素吸蔵電極の製造法。
4. The hydrogen according to claim 1, wherein the alkaline aqueous solution is an aqueous solution of caustic potash or caustic soda, and the concentration of each is 20% by weight or more. Manufacturing method of storage electrode.
JP62008499A 1987-01-16 1987-01-16 Manufacturing method of hydrogen storage electrode Expired - Lifetime JPH0756802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008499A JPH0756802B2 (en) 1987-01-16 1987-01-16 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008499A JPH0756802B2 (en) 1987-01-16 1987-01-16 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63175339A JPS63175339A (en) 1988-07-19
JPH0756802B2 true JPH0756802B2 (en) 1995-06-14

Family

ID=11694807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008499A Expired - Lifetime JPH0756802B2 (en) 1987-01-16 1987-01-16 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0756802B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033613A1 (en) 1997-01-31 1998-08-06 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same
JP2001313066A (en) 2000-04-27 2001-11-09 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP5142428B2 (en) * 2001-06-21 2013-02-13 パナソニック株式会社 Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JP6984298B2 (en) * 2017-10-10 2021-12-17 株式会社豊田自動織機 Manufacturing method of nickel metal hydride battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233969A (en) * 1985-04-10 1986-10-18 Matsushita Electric Ind Co Ltd Electrode for storage battery
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233969A (en) * 1985-04-10 1986-10-18 Matsushita Electric Ind Co Ltd Electrode for storage battery
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Also Published As

Publication number Publication date
JPS63175339A (en) 1988-07-19

Similar Documents

Publication Publication Date Title
EP0522297B1 (en) Hydrogen storage electrode
JPH09245783A (en) Manufacture of hydrogen storage alloy for battery
JP3092222B2 (en) Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
Kaiya et al. Improvement in cycle life performance of high capacity nickel-metal hydride battery
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
US6030725A (en) Negative electrode for alkaline storage batteries
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
US6329100B1 (en) Hydrogen absorbing alloy electrode and process for producing same
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP2001266865A (en) Manufacturing method of hydrogen storage alloy electrode
JP3198896B2 (en) Nickel-metal hydride battery
JPH04188561A (en) Alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH03285270A (en) Alkaline storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP2679441B2 (en) Nickel-metal hydride battery
JP2001266860A (en) Nickel hydrogen storage battery
JP2001035526A (en) Nickel hydrogen storage battery