JPH04188561A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH04188561A
JPH04188561A JP2317349A JP31734990A JPH04188561A JP H04188561 A JPH04188561 A JP H04188561A JP 2317349 A JP2317349 A JP 2317349A JP 31734990 A JP31734990 A JP 31734990A JP H04188561 A JPH04188561 A JP H04188561A
Authority
JP
Japan
Prior art keywords
alkaline
alloy
storage battery
metal
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2317349A
Other languages
Japanese (ja)
Other versions
JP3118832B2 (en
Inventor
Yasuko Ito
康子 伊藤
Munehisa Ikoma
宗久 生駒
Koji Yuasa
浩次 湯浅
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02317349A priority Critical patent/JP3118832B2/en
Publication of JPH04188561A publication Critical patent/JPH04188561A/en
Application granted granted Critical
Publication of JP3118832B2 publication Critical patent/JP3118832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make an alkaline storage battery equipped with excellent discharge characteristic by including metal oxide and/or metal ion in the battery, which uses powder of hydrogen absorption alloy exhibiting unevenness in the surface configuration. CONSTITUTION:Unevenness is provided on the surface of a powder 1 of hydrogen absorption alloy, and one or more of oxides and/or ions derived from Al, Zn, Ga, Ge, Sn, Si, Cr, Ti, and alkali earth metal are included in an alkali electrolyte 5. That is. unevenness exists on the surface of the hydrogen absorption alloy 1 at the neg. electrode, an appropriate space 4 is generated between a metal oxide 3 excellent in liquid affinity and the surface of the hydrogen absorption alloy 1, where the electrolyte 5 is retained, and the electrolyte will easily permeate to the alloy surface inside of the electrode. Thereby it is no more needed to attach oxides to the alloy surface by means of a heat treatment, and an excellent discharge characteristic is obtained only through subjecting the powder of hydrogen absorption alloy to an alkali treatment.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、活物質である水素を電気化学的に吸収・放出
可能な水素吸蔵合金を負極に用いたアルカリ蓄電池の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in an alkaline storage battery using a hydrogen storage alloy as an active material, which is capable of electrochemically absorbing and releasing hydrogen, as a negative electrode.

従来の技術 多量に水素を吸収・放出する水素吸蔵合金は、高エネル
ギー密度を有する電極材料として注目され、高容量をめ
ざすアルカリ蓄電池への応用が図られている。しかし、
水素吸蔵合金電極は、カドミウム電極に比較し初期の電
気化学反応における活性が著しく劣るため、電池構成後
、数サイクルは放電容量が小さく、十数サイクルの充放
電を繰り返した後に十分な放電容量を得ることが可能に
なる。とくにこの傾向は、低温(0℃)で高率放電を行
った場合に著しい。この原品は、水素吸蔵合金電極の初
期の放電過電圧がとくに大きいことに起因する。したが
って、従来この種の電極では、水素吸蔵合金電極を、高
圧の水素雰囲気下での化学的な水素の吸収・放出や、あ
るいは、電解液中での充放電により活性化を高める方法
や、水素吸蔵合金表面に親水性の金属の酸化物を付着さ
せて有効反応表面積を増大させる方法(特開平2−51
860号公報)が提案されている。
BACKGROUND ART Hydrogen storage alloys that absorb and release large amounts of hydrogen have attracted attention as electrode materials with high energy density, and are being applied to alkaline storage batteries aiming for high capacity. but,
Hydrogen storage alloy electrodes have significantly lower activity in the initial electrochemical reaction than cadmium electrodes, so their discharge capacity is small for several cycles after battery construction, and it is difficult to achieve sufficient discharge capacity after a dozen or more cycles of charging and discharging. It becomes possible to obtain. This tendency is particularly remarkable when high rate discharge is performed at a low temperature (0° C.). This is due to the fact that the initial discharge overvoltage of the hydrogen storage alloy electrode is particularly high in this original product. Therefore, conventional methods for this type of electrode have been to increase the activation of the hydrogen storage alloy electrode by chemically absorbing and releasing hydrogen in a high-pressure hydrogen atmosphere, or by charging and discharging in an electrolytic solution. A method of increasing the effective reaction surface area by attaching a hydrophilic metal oxide to the surface of a storage alloy (Japanese Unexamined Patent Publication No. 2-51
No. 860) has been proposed.

発明が解決しようとする課題 しかし、前記電極を活性化する方法は、高圧の水素雰囲
気下で化学的な水素の吸収・放出の操作や、電解液中で
の充放型抜電極を水洗・乾燥するなとの煩雑な工程が必
要となる。
Problems to be Solved by the Invention However, the methods for activating the electrodes include chemical absorption and release of hydrogen in a high-pressure hydrogen atmosphere, and washing and drying the charged and discharged electrodes in an electrolytic solution. This requires a complicated process.

また、特開平2−51860号公報に示された提案は水
素吸蔵合金と酸化物を単に混合したのみでは効果が得ら
れず、酸化物を付着というよりむしろ被覆させる必要が
あり、金属、金属酸化物を混合した後、それぞれ酸化雰
囲気中や不活性雰囲気中で熱処理を行う等の繁雑な工程
が必要となる。
In addition, the proposal shown in JP-A-2-51860 does not produce any effect by simply mixing a hydrogen storage alloy and an oxide, and requires coating the oxide rather than adhering it to the metal. After mixing the materials, complicated steps such as heat treatment in an oxidizing atmosphere or an inert atmosphere are required.

本発明は、上記課題を解決するもので、簡単な構成によ
り、初期から放電特性の優れたアルカリ蓄電池を提供す
ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an alkaline storage battery with a simple configuration and excellent discharge characteristics from the beginning.

課題を解決するための手段 この課題を解決するために本発明は、表面形状が凹凸を
示す水素吸蔵合金粉末を用いた電池に金属酸化物および
/または金属イオンを存在させてアルカリ蓄電池を構成
したものである。
Means for Solving the Problem In order to solve this problem, the present invention constructs an alkaline storage battery by making metal oxides and/or metal ions exist in a battery using a hydrogen storage alloy powder having an uneven surface shape. It is something.

カリ隼 このように表面形状が凹凸を示す水素吸蔵合金粉末を負
極に用いた電池に、金属酸化物および/または金属イオ
ン存在させたことにより、放電時の過電圧が低下し、電
池としての放電特性か向上する。
Potash HayabusaBy adding metal oxides and/or metal ions to a battery using hydrogen storage alloy powder with an uneven surface as the negative electrode, the overvoltage during discharge is reduced, improving the discharge characteristics of the battery. or improve.

すなわち、負極では水素吸蔵合金表面に凹凸か存在する
ことにより親液性に優れる金属酸化物と水素吸蔵合金表
面の間に適当な空間が生じ、そこに電解液が保持される
ことにより、電解液が電極内部の水素吸蔵合金表面に浸
透しやすくなるためである。したがって、水素吸蔵合金
表面に熱処理により酸化物を付着させる必要はなく、単
に水素吸蔵合金粉末をアルカリ処理するのみで優れた放
電特性が得られる。また電解液中の金属イオンや、正負
極に添加した酸化物がアルカリ電解液中に溶解して生じ
た金属イオンは、負極表面に移動し酸化物として析出し
て負極の親水性を高めるとともに、例えば亜鉛酸イオン
([Z’n (OH) 4コ2−1[Z n (OH)
 3]−)のように水和イオンとなり、これが、交換電
流密度が高いため、OH−イオンの供給能力が高く、こ
のOH−イオンが水素吸蔵合金電極上における放電反応
(次式■)に要するOH−イオンとして供給されること
により過電圧が低下し、放電特性が向上すると考えられ
る。
In other words, at the negative electrode, due to the presence of irregularities on the surface of the hydrogen storage alloy, an appropriate space is created between the highly lyophilic metal oxide and the hydrogen storage alloy surface, and the electrolyte is retained there. This is because it easily penetrates into the surface of the hydrogen storage alloy inside the electrode. Therefore, it is not necessary to attach oxides to the surface of the hydrogen storage alloy by heat treatment, and excellent discharge characteristics can be obtained simply by alkali treatment of the hydrogen storage alloy powder. In addition, metal ions in the electrolyte and metal ions generated when oxides added to the positive and negative electrodes are dissolved in the alkaline electrolyte move to the surface of the negative electrode and precipitate as oxides, increasing the hydrophilicity of the negative electrode. For example, zincate ion ([Z'n (OH)
3]-), and because the exchange current density is high, the ability to supply OH- ions is high, and these OH- ions are required for the discharge reaction (the following equation (■)) on the hydrogen storage alloy electrode. It is thought that by being supplied as OH- ions, overvoltage is reduced and discharge characteristics are improved.

MHx+OH4MH!−1+H20+ e−−”−■ま
た正極に添加した金属酸化物や、正極へ移動した金属イ
オンは、正極活物質の親液性をも高め、正極の放電特性
を良好にする。水酸化ニッケルを生活物質とする正極の
場合、充放電サイクル−の進行に伴う正極の膨張が抑制
され、電池寿命の低下を抑制できる。
MHx+OH4MH! -1+H20+ e--"-■In addition, metal oxides added to the positive electrode and metal ions transferred to the positive electrode also increase the lyophilicity of the positive electrode active material and improve the discharge characteristics of the positive electrode. Nickel hydroxide In the case of a positive electrode that is used as a living substance, expansion of the positive electrode as the charge/discharge cycle progresses is suppressed, and a decrease in battery life can be suppressed.

実施例 以下、本発明の詳細を第1図、第2図に示すとともに説
明する。
EXAMPLES The details of the present invention will be described below with reference to FIGS. 1 and 2.

〈実施例1〉 活物質である水素を電気化学的に吸収・放出する水素吸
蔵合金と、その電極は以下の方法で作成した。
<Example 1> A hydrogen storage alloy that electrochemically absorbs and releases hydrogen, which is an active material, and its electrode were created by the following method.

セリウム約40 w t %、  ランタン約30 w
 t%、ネオジウム約13wt%を主成分とするミツシ
ュメタル(以下Mmと称す)、ニッケル、コバルト、ア
ルミニウムおよびマンガンをそれぞれ原子比で1+3.
55:0.75:0.3・0. 4となるように秤量す
る。これを高周波溶解炉で溶解し、CaCu5型の結晶
構造を有する、組成かMmNi 3.55Mn0.4A
I□、3 Co□、75の水素吸蔵合金1を作成した。
Cerium approx. 40wt%, lanthanum approx. 30w
t%, Mitsushi metal (hereinafter referred to as Mm) mainly composed of about 13 wt% neodymium, nickel, cobalt, aluminum and manganese in an atomic ratio of 1+3.
55:0.75:0.3・0. Weigh it so that it becomes 4. This was melted in a high frequency melting furnace to obtain a composition of MmNi 3.55Mn0.4A, which has a CaCu5 type crystal structure.
Hydrogen storage alloy 1 of I□, 3 Co□, 75 was prepared.

次に、この合金をArガス雰囲気中で、1050℃の温
度で熱処理したのち機械的に粉砕し、平均粒子径が20
μmの合金粉末を得た。この粉末を比重1.30で80
℃に加熱したKOH水溶液に浸漬し、表面エツチングを
施し、その凹凸のある表面2を内部の合金組成に比較し
てNiの多い組成とした。これを水洗乾燥後、金属酸化
物(A1203.ZnO。
Next, this alloy was heat-treated at a temperature of 1050°C in an Ar gas atmosphere and then mechanically crushed to obtain an average particle size of 20°C.
An alloy powder of μm was obtained. This powder has a specific gravity of 1.30 and is 80
It was immersed in a KOH aqueous solution heated to 0.degree. C. to perform surface etching, so that the uneven surface 2 had a composition containing more Ni than the internal alloy composition. After washing and drying this, a metal oxide (A1203.ZnO.

Mg0)の粉末3と種々の割合で混合した(第1図A)
Mg0) powder 3 in various proportions (Fig. 1A)
.

これにカルボキシメチルセルロースのl w t%水溶
液を加えてペースト状にし、厚さ0.9髄で多孔度約9
5%の支持体であるスポンジ状ニッケル多孔体内に充填
した。第1図Bに示す拡大図のようにペースト状態での
粉末間には空間4か形成され、1,3間には電解液5が
保持されることになる。これを100℃で乾燥後加圧し
て、平均厚さ05關の極板にした。
Add l wt % aqueous solution of carboxymethyl cellulose to this to make a paste, with a thickness of 0.9 mm and a porosity of approximately 9.
It was filled into a sponge-like porous nickel material which was a 5% support. As shown in the enlarged view of FIG. 1B, a space 4 is formed between the powders in a paste state, and an electrolytic solution 5 is held between 1 and 3. This was dried at 100° C. and then pressed to form an electrode plate with an average thickness of 0.5 mm.

ついでこれを幅39m+n、長さ80m+nに切断し、
充放電可能容量が1600mAhの種々の金属酸化物の
添加量を有する水素吸蔵合金型、極を得た。
Next, this was cut into a width of 39m+n and a length of 80m+n,
Hydrogen storage alloy type electrodes having a charge/discharge capacity of 1600 mAh and containing various metal oxides were obtained.

このようにして得られた水素吸蔵合金電極を負極とし、
容量が100100Oの公知の発泡メタル式ニッケル正
極とポリプロピレン不織布をスルフォン化したスルフォ
ン化ボリブロピレン不織布のセパレータとで電極群を構
成して、金属ケースに挿入し、ついで7.1規定のKO
H水溶液2.2d注液した後、封口してAA (R6)
サイズの電池を試作した。水素吸蔵合金電極中へ添加し
た金属酸化物の種類とその添加量(金属元素に換算した
添加量)と、そのそれぞれの水素吸蔵合金電極を用いた
電池の番号を表1に示す。
The hydrogen storage alloy electrode obtained in this way was used as a negative electrode,
An electrode group is made up of a known foamed metal type nickel positive electrode with a capacity of 100,100 O and a separator made of a sulfonated polypropylene nonwoven fabric obtained by sulfonating a polypropylene nonwoven fabric, inserted into a metal case, and then KO according to 7.1 standard.
After injecting 2.2 d of H aqueous solution, seal it and AA (R6)
We made a prototype battery of the same size. Table 1 shows the type and amount of metal oxide added to the hydrogen storage alloy electrode (the amount added in terms of metal element), and the number of the battery using each hydrogen storage alloy electrode.

比較例として、無添加の水素吸蔵合金負極を用いた電池
をA−1とする。
As a comparative example, a battery using an additive-free hydrogen storage alloy negative electrode is designated as A-1.

これらの電池それぞれ5個ずつを、20℃の雰囲気で、
初充電を100mAで15時間行った後、20 ’Om
 Aで1.Ovまで放電し、この電池を45℃で5日間
放置した。
Five of each of these batteries were placed in an atmosphere of 20°C.
After initial charging at 100mA for 15 hours, 20'Om
1 with A. After discharging to Ov, the battery was left at 45° C. for 5 days.

この後、これらの電池を前記と同様な条件で充電を行い
、0℃の雰囲気中に2時間放置し、この温度雰囲気中で
、3000mAの定電流で放電した。
Thereafter, these batteries were charged under the same conditions as above, left in an atmosphere at 0° C. for 2 hours, and discharged at a constant current of 3000 mA in this temperature atmosphere.

第2図に、3000mAの定電流放電を行った場合のそ
れぞれの平均の放電カーブを示す。
FIG. 2 shows the respective average discharge curves when a constant current discharge of 3000 mA was performed.

その結果、A−3〜5.B−3〜5.C−3〜5の電池
は、水素吸蔵合金電極中に金属酸化物を添加したため、
0℃の雰囲気中で3000mAの大電流で放電を行って
も負極の過電圧が増大せず、端子電圧が1.OVまでの
放電容量は700mAh以上であり、優れた放電特性を
示した。
As a result, A-3 to 5. B-3~5. Batteries C-3 to C-5 added metal oxide to the hydrogen storage alloy electrode, so
Even when discharging with a large current of 3000 mA in an atmosphere at 0°C, the overvoltage of the negative electrode does not increase, and the terminal voltage remains at 1. The discharge capacity up to OV was 700 mAh or more, indicating excellent discharge characteristics.

一方、比較例A−1と酸化物の添加量の少ないA−2,
B−2,C−2の電池は、端子電圧が1.0■に低下す
るまでの放電容量はioomAh程度である。この原因
は、0℃の雰囲気下で3000mAの大電流放電を行っ
た場合、負極合金粉末表面での水酸化物イオンの供給が
律速となり、放電時の過電圧が増大することに起因する
On the other hand, Comparative Example A-1 and A-2 with a small amount of oxide added,
Batteries B-2 and C-2 have a discharge capacity of about ioomah until the terminal voltage drops to 1.0. The reason for this is that when a large current discharge of 3000 mA is performed in an atmosphere at 0° C., the supply of hydroxide ions on the surface of the negative electrode alloy powder becomes rate-determining, and the overvoltage during discharge increases.

また、金属酸化物を過剰に添加した実施例A−6、B−
”6.C−6の電池は、端子電圧が1.OVに低下する
までの放電容量は170mAh程度である。
In addition, Examples A-6 and B- in which metal oxide was added in excess
``6.C-6 battery has a discharge capacity of about 170mAh until the terminal voltage drops to 1.OV.

金属酸化物を過剰に添加した場合、絶縁物質である金属
酸化物により負極の導電性が低下させられるためと考え
られる。以上のことから、金属酸化物の添加量は金属元
素換算で0.04〜5 w t%が実用上適当である。
This is believed to be because when an excessive amount of metal oxide is added, the conductivity of the negative electrode is reduced by the metal oxide, which is an insulating substance. From the above, it is practically appropriate for the amount of metal oxide added to be 0.04 to 5 wt% in terms of metal element.

なお1本実施例では金属酸化物としてAl2O3゜Zn
O,MgOを用いたが、Ga、Ge、Sn、Si。
Note that in this example, Al2O3゜Zn was used as the metal oxide.
Although O and MgO were used, Ga, Ge, Sn, and Si were also used.

Cr、Ti他のアルカリ土類金属の群の酸化物を用いた
場合や、それらを2種類以上混合して用いた場合も同様
な結果が得られた。
Similar results were obtained when oxides of alkaline earth metals such as Cr and Ti were used, or when two or more of them were used as a mixture.

また、電池構成後に行った初売放電や、本実施例では示
さなかったが、室温以上の雰囲気での電池の放置により
、添加した酸化物が水和物となる反応の進行が促進する
ため、より放電特性が向上する。
In addition, although it was not shown in this example, initial discharge performed after battery construction or leaving the battery in an atmosphere above room temperature accelerates the reaction in which the added oxide becomes a hydrate. The discharge characteristics are further improved.

また、本発明は、水素吸蔵合金粉末を主構成材料とする
負極を用いたアルカリ蓄電池についてであるが、Ni−
Cd電池においても負極内に金属酸化物を存在させるこ
とにより同様な結果が得られる。
Further, the present invention relates to an alkaline storage battery using a negative electrode mainly composed of hydrogen storage alloy powder, but Ni-
Similar results can be obtained in Cd batteries by including metal oxides in the negative electrode.

〈実施例2〉 実施例1における金属酸化物無添加の水素吸蔵合金電極
を負極とし、アルカリ電解液として、7.1規定のKO
H水溶液に種々の割合で金属イオンを溶解したものを用
いて、実施例1と同様な方法で電池を作成した。アルカ
リ電解液中の金属イオンの濃度と、試作した電池の番号
を表2に示す。
<Example 2> The metal oxide-free hydrogen storage alloy electrode in Example 1 was used as a negative electrode, and 7.1 standard KO was used as an alkaline electrolyte.
Batteries were prepared in the same manner as in Example 1 using H aqueous solutions in which metal ions were dissolved in various proportions. Table 2 shows the concentration of metal ions in the alkaline electrolyte and the numbers of the prototype batteries.

表  2 これらの電池5個ずつを、実施例1で示したパターンと
同じ充放電条件で平均の放電カーブを調べた結果を第3
図に示す。
Table 2 The average discharge curves of five of these batteries were examined under the same charging and discharging conditions as the pattern shown in Example 1.
As shown in the figure.

その結果、D−3〜5.E−3〜5.F−3〜5の電池
は、電解液中に金属イオンを添加したため、負極表面や
負極の内部に浸透した水和イオンが、負極内部に添加し
た金属酸化物と同様に動き、0℃の雰囲気で3000m
Aの大電流で放電を行っても負極の過電圧が増大せず、
端子電圧が1、Ovに低下するまでの放電容量は700
mAh以上であり、優れた放電特性を示した。
As a result, D-3 to D-5. E-3~5. In batteries F-3 to F-5, metal ions were added to the electrolyte, so the hydrated ions that penetrated the negative electrode surface and the inside of the negative electrode moved in the same way as the metal oxides added inside the negative electrode, and the hydrated ions penetrated into the negative electrode surface and inside the negative electrode. 3000m
Even when discharging with a large current of A, the overvoltage of the negative electrode does not increase,
The discharge capacity until the terminal voltage drops to 1.0V is 700
mAh or more, showing excellent discharge characteristics.

一方、比較例D−1と、金属イオンの添加量の少ないD
−1,E−2,F−2の電池は、端子電圧が1.0■に
低下するまでの放電容量は100mAh程度である。こ
の原因は、0℃の雰囲気下で3030−0Oの大電流放
電を行った場合、負極合金粉末表面での水酸化物イオン
の供給が律速となり、放電時の過電圧が増大することに
起因する。また、金属イオンを過剰に添加した実施例D
−6,E−6,F−6の電池は、端子電圧が1゜Ovま
での放電容量は170mAh程度である。
On the other hand, Comparative Example D-1 and D with a small amount of added metal ions
-1, E-2, and F-2 batteries have a discharge capacity of about 100 mAh until the terminal voltage drops to 1.0 . The reason for this is that when a large current discharge of 3030-0O is performed in an atmosphere at 0° C., the supply of hydroxide ions on the surface of the negative electrode alloy powder becomes rate-determining, and the overvoltage during discharge increases. In addition, Example D in which metal ions were added excessively
-6, E-6, and F-6 batteries have a discharge capacity of about 170 mAh when the terminal voltage reaches 1° Ov.

添加した金属イオンが飽和状態であるため、0℃の雰囲
気下では、金属イオンの一部が金属酸化物として析出し
、放電反応を妨げたためと考えられる。以上のことから
、金属イオンの添加量は金属換算で0.04〜1mol
/lが実用上適当である。
This is considered to be because the added metal ions were in a saturated state, so that some of the metal ions precipitated as metal oxides in an atmosphere of 0° C., which hindered the discharge reaction. From the above, the amount of metal ions added is 0.04 to 1 mol in terms of metal.
/l is suitable for practical use.

なお、本実施例ではアルカリ電解液中への添加イオンと
してAl、Zn、Mgを用いたが、Ga。
In this example, Al, Zn, and Mg were used as ions added to the alkaline electrolyte, but Ga.

Ge、Sn、S i、Cr、T iその他のアルカリ土
類金属の群のイオンを用いた場合や、それらを2種類以
上混合して用いた場合も同様な結果が得られた。
Similar results were obtained when ions of the group of alkaline earth metals such as Ge, Sn, Si, Cr, Ti, etc. were used, or when two or more of them were used as a mixture.

また本実施例では、電解液にのみ金属イオンを添加した
場合について説明したが、負極への酸化物の添加と組み
合わせた場合にも同様な効果が得られる。
Further, in this example, a case has been described in which metal ions are added only to the electrolytic solution, but similar effects can be obtained when the metal ions are added in combination with the addition of an oxide to the negative electrode.

発明の効果 以上のように本発明によれば、表面形状が凹凸を示す水
素吸蔵合金粉末を用いた電池に、金属酸化物および/ま
たは金属イオンを存在させてアルカリ蓄電池を構成する
ことにより、低温度雰囲気中で大電流放電を行っても優
れた放電特性を有するアルカリ蓄電池を提供できるとい
う効果がある。
Effects of the Invention As described above, according to the present invention, a metal oxide and/or metal ion is present in a battery using a hydrogen-absorbing alloy powder having an uneven surface shape to form an alkaline storage battery. This has the effect of providing an alkaline storage battery that has excellent discharge characteristics even when discharging at a large current in a temperature atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表面形状が凹凸を示す水素吸蔵合金粉末と金属
酸化物の間に電解液が保持された状態を示す模式図、第
2図は負極に金属酸化物を添加した場合の平均の放電カ
ーブを示す図、第3図は電解液に金属イオンを溶解した
場合の平均の放電カーブを示す図である。 1・・・・・・水素吸蔵合金、2・・・・・・Niの多
い凹凸表面、3・・・・・・金属酸化物粉末、5・・・
・・・合金表面と金属酸化物粉末の間に保持された電解
液。 代理人の氏名 弁理士 小蝦治 明 ほか2名第 1 
図 1− 東へ晩本令含紛朱 ?−−−Mの〜い○凹表菌 3−−−1もlり”イζ1広博シ1尤 1− 空間 5−−一会4ン酷、4トA愈マiし物ヤi禾のMu召呆
Jヤ敢1;電h〒銘りぐハン 区   訃」j;′ 平成 3年乙 月77 E
Figure 1 is a schematic diagram showing a state in which an electrolyte is held between a hydrogen storage alloy powder with an uneven surface and a metal oxide, and Figure 2 is an average discharge when a metal oxide is added to the negative electrode. FIG. 3 is a diagram showing an average discharge curve when metal ions are dissolved in an electrolytic solution. 1...Hydrogen storage alloy, 2...Ni-rich uneven surface, 3...Metal oxide powder, 5...
...An electrolytic solution held between the alloy surface and metal oxide powder. Name of agent: Patent attorney Haruaki Koebi and 2 others No. 1
Figure 1 - To the East, Banhonrei included Shu? ---M's ~ ○ concave surface bacteria 3 --- 1 is also l"i 1991 January 77 E

Claims (6)

【特許請求の範囲】[Claims] (1)金属酸化物を主体とする正極と、活物質である水
素を電気化学的に吸収・放出することが可能な水素吸蔵
合金粉末を主構成材料とする負極と、セパレータと、ア
ルカリ電解液とからなる発電要素を備えたアルカリ蓄電
池において、前記水素吸蔵合金粉末は表面形状が凹凸で
あり、また前記の発電要素内にAl、Zn、Ga、Ge
、Sn、Si、Cr、Ti、アルカリ土類金属の群の酸
化物および/またはイオンのうち1種類以上が存在する
ことを特徴とするアルカリ蓄電池。
(1) A positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy powder that can electrochemically absorb and release hydrogen as an active material, a separator, and an alkaline electrolyte. In the alkaline storage battery, the hydrogen storage alloy powder has an uneven surface shape, and the power generation element contains Al, Zn, Ga, Ge.
, Sn, Si, Cr, Ti, and alkaline earth metals.
(2)水素吸蔵合金を構成する元素の一つはNiであっ
て、該合金表面に設けられた無数の凹凸は、内部の合金
よりもNiの割合が多いことを特徴とする特許請求の範
囲第1項記載のアルカリ蓄電池。
(2) A claim characterized in that one of the elements constituting the hydrogen storage alloy is Ni, and the countless unevenness provided on the surface of the alloy has a higher proportion of Ni than the inner alloy. The alkaline storage battery according to item 1.
(3)負極中にAl、Zn、Ga、Ge、Sn、Si、
Cr、Ti、アルカリ土類金属の群の酸化物のうちのい
ずれか1種類以上が添加されていることを特徴とする特
許請求の範囲第1項記載のアルカリ蓄電池。
(3) Al, Zn, Ga, Ge, Sn, Si,
2. The alkaline storage battery according to claim 1, wherein at least one of oxides from the group of Cr, Ti, and alkaline earth metals is added.
(4)Al、Zn、Ga、Ge、Sn、Si、Cr、T
i、アルカリ土類金属の酸化物の添加量は、水素吸蔵合
金に対し金属元素に換算して0.04〜6wt%である
ことを特徴とする特許請求の範囲第3項記載のアルカリ
蓄電池。
(4) Al, Zn, Ga, Ge, Sn, Si, Cr, T
i. The alkaline storage battery according to claim 3, wherein the amount of the alkaline earth metal oxide added is 0.04 to 6 wt% in terms of metal element based on the hydrogen storage alloy.
(5)アルカリ電解液中にAl、Zn、Ga、Ge、S
n、Si、Cr、Ti、アルカリ土類金属のイオンのう
ち1種類以上含有することを特徴とする特許請求の範囲
第1項記載の、アルカリ蓄電池。
(5) Al, Zn, Ga, Ge, S in alkaline electrolyte
The alkaline storage battery according to claim 1, characterized in that the alkaline storage battery contains one or more of n, Si, Cr, Ti, and alkaline earth metal ions.
(6)アルカリ電解液中に溶解したイオンの濃度が、金
属換算で0.04〜1mol/lであることを特徴とす
る特許請求の範囲第5項記載のアルカリ蓄電池。
(6) The alkaline storage battery according to claim 5, wherein the concentration of ions dissolved in the alkaline electrolyte is 0.04 to 1 mol/l in terms of metal.
JP02317349A 1990-11-20 1990-11-20 Alkaline storage battery Expired - Lifetime JP3118832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02317349A JP3118832B2 (en) 1990-11-20 1990-11-20 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02317349A JP3118832B2 (en) 1990-11-20 1990-11-20 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04188561A true JPH04188561A (en) 1992-07-07
JP3118832B2 JP3118832B2 (en) 2000-12-18

Family

ID=18087237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02317349A Expired - Lifetime JP3118832B2 (en) 1990-11-20 1990-11-20 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3118832B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367669A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Alkaline battery
US6926998B2 (en) 2001-12-21 2005-08-09 Sanyo Electric Co., Ltd. Nickel-metal hydride storage battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0614835D0 (en) 2006-07-26 2006-09-06 Isis Innovation Formation of bilayers of amphipathic molecules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367669A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Alkaline battery
US6926998B2 (en) 2001-12-21 2005-08-09 Sanyo Electric Co., Ltd. Nickel-metal hydride storage battery

Also Published As

Publication number Publication date
JP3118832B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3438142B2 (en) Medium / large capacity sealed metal oxide / hydrogen storage battery
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP5119577B2 (en) Nickel metal hydride battery
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JPH1074536A (en) Sealed nickel-hydrogen storage battery
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JPH04188561A (en) Alkaline storage battery
JPS59181459A (en) Metal oxide hydrogen battery
JPH0855618A (en) Sealed alkaline storage battery
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JP2987873B2 (en) Alkaline storage battery
JP2001118597A (en) Alkaline secondary cell
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH01107465A (en) Manufacture of sealed alkaline secondary battery
JP3118812B2 (en) Alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP2000200612A (en) Rectangular alkaline secondary battery
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11