JP3118832B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP3118832B2
JP3118832B2 JP02317349A JP31734990A JP3118832B2 JP 3118832 B2 JP3118832 B2 JP 3118832B2 JP 02317349 A JP02317349 A JP 02317349A JP 31734990 A JP31734990 A JP 31734990A JP 3118832 B2 JP3118832 B2 JP 3118832B2
Authority
JP
Japan
Prior art keywords
alkaline
storage battery
hydrogen storage
storage alloy
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02317349A
Other languages
Japanese (ja)
Other versions
JPH04188561A (en
Inventor
康子 伊藤
宗久 生駒
浩次 湯浅
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02317349A priority Critical patent/JP3118832B2/en
Publication of JPH04188561A publication Critical patent/JPH04188561A/en
Application granted granted Critical
Publication of JP3118832B2 publication Critical patent/JP3118832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、活物質である水素を電気化学的に吸収・放
出可能な水素吸蔵合金を負極に用いたアルカリ蓄電池の
改良に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an alkaline storage battery using, as a negative electrode, a hydrogen storage alloy capable of electrochemically absorbing and releasing hydrogen as an active material.

従来の技術 多量に水素を吸収・放出する水素吸蔵合金は、高エネ
ルギー密度を有する電極材料として注目され、高容量を
めざすアルカリ蓄電池への応用が図られている。しか
し、水素吸蔵合金電極は、カドミウム電極に比較し初期
の電気化学反応における活性が著しく劣るため、電池構
成後、数サイクルは放電容量が小さく、十数サイクルの
充放電を繰り返した後に十分な放電容量を得ることが可
能になる。とくにこの傾向は、低温(0℃)で高率放電
を行った場合に著しい。この原因は、水素吸蔵合金電極
の初期の放電過電圧がとくに大きいことに起因する。し
たがって、従来この種の電極では、水素吸蔵合金電極
を、高圧の水素雰囲気下での化学的な水素の吸収・放出
や、あるいは、電解液中での充放電により活性化を高め
る方法や、水素吸蔵合金表面に親水性の金属の酸化物を
付着させて有効反応表面積を増大させる方法(特開平2
−51860号公報)が提案されている。
2. Description of the Related Art A hydrogen storage alloy that absorbs and releases a large amount of hydrogen attracts attention as an electrode material having a high energy density, and is being applied to an alkaline storage battery aiming at a high capacity. However, the hydrogen storage alloy electrode has a significantly lower activity in the initial electrochemical reaction than the cadmium electrode.Therefore, after the battery is constructed, the discharge capacity is small for several cycles, and the discharge is sufficient after repeated charging and discharging for more than ten cycles. It is possible to obtain capacity. This tendency is remarkable when high-rate discharge is performed at a low temperature (0 ° C.). This is because the initial discharge overvoltage of the hydrogen storage alloy electrode is particularly large. Therefore, conventionally, in this type of electrode, a method of increasing the activation of a hydrogen storage alloy electrode by chemically absorbing and releasing hydrogen under a high-pressure hydrogen atmosphere, or by charging and discharging in an electrolyte, A method of increasing the effective reaction surface area by attaching a hydrophilic metal oxide to the surface of an occlusion alloy
No. 51860).

発明が解決しようとする課題 しかし、前記電極を活性化する方法は、高圧の水素雰
囲気下で化学的な水素の吸収・放出の操作や、電解液中
での充放電後電極を水洗・乾燥するなどの煩雑な工程が
必要となる。
Problems to be Solved by the Invention However, the method of activating the electrode is a method of chemically absorbing and releasing hydrogen under a high-pressure hydrogen atmosphere, and washing and drying the electrode after charging and discharging in an electrolytic solution. Such a complicated process is required.

また、特開平2−51860号公報に示された提案は水素
吸蔵合金と酸化物を単に混合したのみでは効果が得られ
ず、酸化物を付着というよりむしろ被覆させる必要があ
り、金属,金属酸化物を混合した後、それぞれ酸化雰囲
気中や不活性雰囲気中で熱処理を行う等の繁雑な工程が
必要となる。
Further, the proposal disclosed in Japanese Patent Application Laid-Open No. Hei 2-51860 cannot obtain the effect only by simply mixing the hydrogen storage alloy and the oxide, and it is necessary to coat the oxide rather than adhere it. After mixing the components, complicated steps such as heat treatment in an oxidizing atmosphere or an inert atmosphere are required.

本発明は、上記課題を解決するもので、簡単な構成に
より、初期から放電特性の優れたアルカリ蓄電池を提供
することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide an alkaline storage battery having excellent discharge characteristics from the beginning with a simple configuration.

課題を解決するための手段 この課題を解決するために本発明は、表面形状が凹凸
を示す水素吸蔵合金粉末を用いた電池に金属酸化物およ
び/または金属イオンを存在させてアルカリ蓄電池を構
成したものである。
Means for Solving the Problems In order to solve the problems, the present invention provides an alkaline storage battery in which a metal oxide and / or a metal ion is present in a battery using a hydrogen storage alloy powder having an uneven surface. Things.

作用 このように表面形状が凹凸を示す水素吸蔵合金粉末を
負極に用いた電池に、金属酸化物および/または金属を
イオン存在させたことにより、放電時の過電圧が低下
し、電池としての放電特性が向上する。
Function The presence of ions of a metal oxide and / or a metal in a battery using a hydrogen storage alloy powder having an uneven surface as described above as a negative electrode reduces the overvoltage at the time of discharge, and the discharge characteristics of the battery. Is improved.

すなわち、負極では水素吸蔵合金表面に凹凸が存在す
ることにより親液性に優れる金属酸化物と水素吸蔵合金
表面の間に適当な空間が生じ、そこに電解液が保持され
ることにより、電解液が電極内部の水素吸蔵合金表面に
浸透しやすくなるためである。したがって、水素吸蔵合
金表面に熱処理により酸化物を付着させる必要はなく、
単に水素吸蔵合金粉末をアルカリ処理するのみで優れた
放電特性が得られる。また電解液中の金属イオンや、正
負極に添加した酸化物がアルカリ電解液中に溶解して生
じた金属イオンは、負極表面に移動し酸化物として析出
して負極の親水性を高めるとともに、例えば亜鉛酸イオ
ン([Zn(OH)2-,[Zn(OH))のように水
和イオンとなり、これが、交換電流密度が高いため、OH
-イオンの供給能力が高く、このOH-イオンが水素吸蔵合
金電極上における放電反応(次式)に要するOH-イオ
ンとして供給されることにより過電圧が低下し、放電特
性が向上すると考えられる。
That is, in the negative electrode, an uneven space is present on the surface of the hydrogen storage alloy, so that an appropriate space is created between the metal oxide having excellent lyophilicity and the surface of the hydrogen storage alloy, and the electrolyte is held there. Is more likely to penetrate into the hydrogen storage alloy surface inside the electrode. Therefore, there is no need to attach an oxide to the surface of the hydrogen storage alloy by heat treatment,
Excellent discharge characteristics can be obtained by simply treating the hydrogen storage alloy powder with alkali. In addition, metal ions in the electrolytic solution and metal ions generated by dissolving the oxide added to the positive and negative electrodes in the alkaline electrolytic solution move to the surface of the negative electrode and precipitate as an oxide to increase the hydrophilicity of the negative electrode, For example, hydrated ions such as zincate ions ([Zn (OH) 4 ] 2− , [Zn (OH) 3 ] ), which have a high exchange current density,
- high supply capacity of the ion, the OH - ions OH required for the discharge reaction (equation) on the hydrogen storage alloy electrode - overvoltage is reduced by supplying the ions is believed that discharge characteristics are improved.

MHx+OH-→MHx-1+H2O+e- …… また正極に添加した金属酸化物や、正極へ移動した金
属イオンは、正極活物質の親液性をも高め、正極の放電
特性を良好にする。水酸化ニッケルを主活物質とする正
極の場合、充放電サイクルの進行に伴う正極の膨張が抑
制され、電池寿命の低下を抑制できる。
MH x + OH - → MH x -1 + H 2 O + e - ...... The or metal oxide added to the positive electrode, metal ions transferred to the positive electrode also increases the lyophilic of the positive electrode active material, excellent discharge characteristics of the positive electrode To In the case of a positive electrode containing nickel hydroxide as a main active material, expansion of the positive electrode as the charge / discharge cycle progresses is suppressed, and a decrease in battery life can be suppressed.

実施例 以下、本発明の詳細を第1図,第2図に示すとともに
説明する。
Embodiment Hereinafter, details of the present invention will be described with reference to FIGS. 1 and 2. FIG.

<実施例1> 活物質である水素を電気化学的に吸収・放出する水素
吸蔵合金と、その電極は以下の方法で作成した。
<Example 1> A hydrogen storage alloy that electrochemically absorbs and releases hydrogen as an active material and electrodes thereof were prepared by the following method.

セリウム約40wt%,ランタン約30wt%,ネオジウム約
13wt%を主成分とするミッシュメタル(以下Mmと称
す),ニッケル,コバルト,アルミニウムおよびマンガ
ンをそれぞれ原子比で1:3.55:0.75:0.3:0.4となるよう
に秤量する。これを高周波溶解炉で溶解し、CaCu5型の
結晶構造を有する、組成がMmNi3.55Mn0.4Al0.3Co0.75
水素吸蔵合金1を作成した。次に、この合金をArガス雰
囲気中で、1050℃の温度で熱処理したのち機械的に粉砕
し、平均粒子径が20μmの合金粉末を得た。この粉末を
比重1.30で80℃に加熱したKOH水溶液に浸漬し、表面エ
ッチングを施し、その凹凸のある表面2を内部の合金組
成に比較してNiの多い組成とした。これを水洗乾燥後、
金属酸化物(Al2O3,ZnO,MgO)の粉末3と種々の割合で
混合した(第1図A)。
About 40wt% cerium, about 30wt% lanthanum, about neodymium
Mich metal (hereinafter, referred to as Mm) containing 13wt% as a main component, nickel, cobalt, aluminum and manganese are weighed so that their atomic ratios are respectively 1: 3.55: 0.75: 0.3: 0.4. This was melted in a high-frequency melting furnace to prepare a hydrogen storage alloy 1 having a CaCu 5 type crystal structure and a composition of MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 . Next, this alloy was heat-treated in an Ar gas atmosphere at a temperature of 1050 ° C. and then mechanically pulverized to obtain an alloy powder having an average particle diameter of 20 μm. This powder was immersed in a KOH aqueous solution heated to 80 ° C. at a specific gravity of 1.30, and subjected to surface etching, and the uneven surface 2 was made to have a composition with more Ni than the internal alloy composition. After washing with water and drying,
It was mixed with powder 3 of a metal oxide (Al 2 O 3 , ZnO, MgO) at various ratios (FIG. 1A).

これにカルボキシメチルセルロースの1wt%水溶液を
加えてペースト状にし、厚さ0.9mmで多孔度約95%の支
持体であるスポンジ状ニッケル多孔体内に充填した。第
1図Bに示す拡大図のようにペースト状態での粉末間に
は空間4が形成され、1,3間には電解液5が保持される
ことになる。これを100℃で乾燥後加圧して、平均厚さ
0.5mmの極板にした。
A 1 wt% aqueous solution of carboxymethylcellulose was added to this to form a paste, which was filled into a sponge-like porous nickel body as a support having a thickness of 0.9 mm and a porosity of about 95%. As shown in the enlarged view of FIG. 1B, a space 4 is formed between the powders in the paste state, and an electrolytic solution 5 is held between 1 and 3. This is dried at 100 ° C and then pressurized.
A 0.5 mm electrode plate was used.

ついでこれを幅39mm,長さ80mmに切断し、充放電可能
容量が1600mAhの種々の金属酸化物の添加量を有する水
素吸蔵合金電極を得た。
Next, this was cut into a width of 39 mm and a length of 80 mm to obtain a hydrogen storage alloy electrode having a chargeable / dischargeable capacity of 1600 mAh and an addition amount of various metal oxides.

このようにして得られた水素吸蔵合金電極を負極と
し、容量が1000mAhの公知の発泡メタル式ニッケル正極
とポリプロピレン不織布をスルフォン化したスルフォン
化ポリプロピレン不織布のセパレータとで電極群を構成
して、金属ケースに挿入し、ついで7.1規定のKOH水溶液
2.2cm3注液した後、封口してAA(R6)サイズの電池を試
作した。水素吸蔵合金電極中へ添加した金属酸化物の種
類とその添加量(金属元素に換算した添加量)と、その
それぞれの水素吸蔵合金電極を用いた電池の番号を表1
に示す。
The hydrogen storage alloy electrode thus obtained was used as a negative electrode, and a known foamed metal nickel positive electrode having a capacity of 1000 mAh and a sulfonated polypropylene nonwoven fabric separator formed by sulfonating a polypropylene nonwoven fabric to form an electrode group, and a metal case was formed. And then 7.1 KOH aqueous solution
After injecting 2.2 cm 3, it was sealed and a prototype of AA (R6) size battery was produced. Table 1 shows the type of metal oxide added to the hydrogen storage alloy electrode, the amount added (the amount added in terms of metal element), and the number of the battery using the respective hydrogen storage alloy electrode.
Shown in

比較例として、無添加の水素吸蔵合金負極を用いた電
池をA−1とする。
As a comparative example, a battery using the hydrogen-absorbing alloy negative electrode to which no additive is added is designated as A-1.

これらの電池それぞれ5個ずつを、20℃の雰囲気で、
初充電を100mAで15時間行った後、200mAで1.0Vまで放電
し、この電池を45℃で5日間放置した。
Five of each of these batteries were placed in a 20 ° C atmosphere.
After the initial charge was performed at 100 mA for 15 hours, the battery was discharged at 200 mA to 1.0 V, and the battery was left at 45 ° C. for 5 days.

この後、これらの電池を前記と同様な条件で充電を行
い、0℃の雰囲気中に2時間放電し、この温度雰囲気中
で、3000mAの定電流で放電した。第2図に、3000mAの定
電流放電を行った場合のそれぞれの平均の放電カーブを
示す。
Thereafter, these batteries were charged under the same conditions as described above, discharged for 2 hours in an atmosphere of 0 ° C., and discharged at a constant current of 3000 mA in this temperature atmosphere. FIG. 2 shows the respective average discharge curves when a constant current discharge of 3000 mA is performed.

その結果、A−3〜5,B−3〜5,C−3〜5の電池は、
水素吸蔵合金電極中に金属酸化物を添加したため、0℃
の雰囲気中で3000mAの大電流で放電を行っても負極の過
電圧が増大せず、端子電圧が1.0Vまでの放電容量は700m
Ah以上であり、優れた放電特性を示した。
As a result, batteries A-3 to 5, B-3 to 5, and C-3 to 5
0 ° C because metal oxide was added to the hydrogen storage alloy electrode
Even when discharging with a large current of 3000 mA in an atmosphere of, the overvoltage of the negative electrode does not increase, and the discharge capacity up to a terminal voltage of 1.0 V is 700 m
Ah or more, and showed excellent discharge characteristics.

一方、比較例A−1と酸化物の添加量の少ないA−2,
B−2,C−2の電池は、端子電圧が1.0Vに低下するまでの
放電容量は100mAh程度である。この原因は、0℃の雰囲
気下で3000mAの大電流放電を行った場合、負極合金粉末
表面での水酸化物イオンの供給が律速となり、放電時の
過電圧が増大することに起因する。
On the other hand, Comparative Example A-1 and A-2, in which the added amount of oxide was small,
The batteries B-2 and C-2 have a discharge capacity of about 100 mAh until the terminal voltage drops to 1.0 V. This is because, when a large current discharge of 3000 mA is performed in an atmosphere of 0 ° C., the supply of hydroxide ions on the surface of the negative electrode alloy powder is rate-limiting, and the overvoltage at the time of discharge increases.

また、金属酸化物を過剰に添加した実施例A−6,B−
6,C−6の電池は、端子電圧が1.0Vに低下するまでの放
電容量は170mAh程度である。
Examples A-6 and B-
The batteries of C-6 and C-6 have a discharge capacity of about 170 mAh until the terminal voltage drops to 1.0 V.

金属酸化物を過剰に添加した場合、絶縁物質である金
属酸化物により負極の導電性が低下させられるためと考
えられる。以上のことから、金属酸化物の添加量は金属
元素換算で0.04〜6wt%が実用上適当である。
It is considered that when the metal oxide is excessively added, the conductivity of the negative electrode is reduced by the metal oxide which is an insulating substance. From the above, it is practically appropriate to add 0.04 to 6 wt% of the metal oxide in terms of the metal element.

なお,本実施例では金属酸化物としてAl2O3,ZnO,MgO
を用いたが、Ga,Ge,Sn,Si,Cr,Tiその他のアルカリ土類
金属の群の酸化物を用いた場合や、それらを2種類以上
混合して用いた場合も同様な結果が得られた。
In this embodiment, Al 2 O 3 , ZnO, MgO
However, similar results were obtained when using oxides of the group of alkaline earth metals such as Ga, Ge, Sn, Si, Cr, Ti, and when using a mixture of two or more of them. Was done.

また、電池構成後に行った初充放電や、本実施例では
示さなかったが、室温以上の雰囲気での電池の放置によ
り、添加した酸化物が水和物となる反応の進行が促進す
るため、より放電特性が向上する。
In addition, although the initial charge and discharge performed after the battery configuration and not shown in this example, the reaction of the added oxide to a hydrate is promoted by leaving the battery in an atmosphere at room temperature or higher, The discharge characteristics are further improved.

また、本発明は、水素吸蔵合金粉末を主構成材料とす
る負極を用いたアルカリ蓄電池についてであるが、Ni−
Cd電池においても負極内に金属酸化物を存在させること
により同様な結果が得られる。
Further, the present invention relates to an alkaline storage battery using a negative electrode containing hydrogen storage alloy powder as a main constituent material.
Similar results can be obtained in a Cd battery by the presence of a metal oxide in the negative electrode.

<実施例2> 実施例1における金属酸化物無添加の水素吸蔵合金電
極を負極とし、アルカリ電解液として、7.1規定のKOH水
溶液に種々の割合で金属イオンを溶解したものを用い
て、実施例1と同様な方法で電池を作成した。アルカリ
電解液中の金属イオンの濃度と、試作した電池の番号を
表2に示す。
<Example 2> An example in which the hydrogen-absorbing alloy electrode containing no metal oxide in Example 1 was used as a negative electrode, and an alkaline electrolyte solution obtained by dissolving metal ions at various ratios in a 7.1 N aqueous KOH solution was used. A battery was prepared in the same manner as in Example 1. Table 2 shows the concentrations of the metal ions in the alkaline electrolyte and the numbers of the prototype batteries.

これらの電池5個ずつを、実施例1で示したパターン
と同じ充放電条件で平均の放電カーブを調べた結果を第
3図に示す。
FIG. 3 shows the results of examining the average discharge curve of each of these five batteries under the same charge / discharge conditions as the pattern shown in Example 1.

その結果、D−3〜5,E−3〜5,F−3〜5の電池は、
電解液中に金属イオンを添加したため、負極表面や負極
の内部に浸透した水和イオンが、負極内部に添加した金
属酸化物と同様に動き、0℃の雰囲気で3000mAの大電流
で放電を行っても負極の過電圧が増大せず、端子電圧が
1.0Vに低下するまでの放電容量は700mAh以上であり、優
れた放電特性を示した。
As a result, the batteries of D-3 to 5, E-3 to 5, and F-3 to 5 are:
Since metal ions were added to the electrolyte, the hydrated ions that permeated the negative electrode surface and inside the negative electrode moved in the same way as the metal oxide added inside the negative electrode, and discharged at a large current of 3000 mA in an atmosphere at 0 ° C. However, the overvoltage of the negative electrode does not increase
The discharge capacity before dropping to 1.0 V was 700 mAh or more, showing excellent discharge characteristics.

一方、比較例D−1と、金属イオンの添加量の少ない
D−2,E−2,F−2の電池は、端子電圧が1.0Vに低下する
までの放電容量は100mAh程度である。この原因は、0℃
の雰囲気下で3000mAの大電流放電を行った場合、負極合
金粉末表面での水酸化物イオンの供給が律速となり、放
電時の過電圧が増大することに起因する。また、金属イ
オンを過剰に添加した実施例D−6,E−6,F−6の電池
は、端子電圧が1.0Vまでの放電容量は170mAh程度であ
る。添加した金属イオンが飽和状態であるため、0℃の
雰囲気下では、金属イオンの一部が金属酸化物として析
出し、放電反応を妨げたためと考えられる。以下のこと
から、金属イオンの添加量は金属換算で0.040〜0.64wt
%が実用上適当である。
On the other hand, in the batteries of Comparative Example D-1 and D-2, E-2, and F-2 in which the amount of metal ions added is small, the discharge capacity until the terminal voltage decreases to 1.0 V is about 100 mAh. This is caused by 0 ° C
When a large current discharge of 3000 mA is performed in the atmosphere described above, the supply of hydroxide ions on the surface of the negative electrode alloy powder is rate-limiting, and the overvoltage at the time of discharge increases. The batteries of Examples D-6, E-6, and F-6 to which metal ions were excessively added had a discharge capacity of about 170 mAh when the terminal voltage was up to 1.0 V. It is considered that because the added metal ions were in a saturated state, in an atmosphere at 0 ° C., some of the metal ions were precipitated as metal oxides, which prevented the discharge reaction. From the following, the amount of metal ion added is 0.040 to 0.64 wt% in metal conversion.
% Is practically appropriate.

なお、本実施例ではアルカリ電解液中への添加イオン
としてAl,Zn,Mgを用いたが、Ga,Ge,Sn,Si,Cr,Tiその他
のアルカリ土類金属の群のイオンを用いた場合や、それ
らを2種類以上混合して用いた場合も同様な結果が得ら
れた。
In this example, Al, Zn, and Mg were used as ions to be added to the alkaline electrolyte, but Ga, Ge, Sn, Si, Cr, Ti, and other ions of the group of alkaline earth metals were used. Similar results were obtained when two or more of them were used in combination.

また本実施例では、電解液にのみ金属イオンを添加し
た場合について説明したが、負極への酸化物の添加と組
み合わせた場合にも同様な効果が得られる。
Further, in the present embodiment, the case where the metal ions are added only to the electrolytic solution has been described. However, the same effect can be obtained when combined with the addition of the oxide to the negative electrode.

発明の効果 以上のように本発明によれば、表面形状が凹凸を示す
水素吸蔵合金粉末を用いた電池に、金属酸化物および/
または金属イオンを存在させてアルカリ蓄電池を構成す
ることにより、低温度雰囲気中で大電流放電を行っても
優れた放電特性を有するアルカリ蓄電池を提供できると
いう効果があるる。
Effects of the Invention As described above, according to the present invention, a metal oxide and / or a metal oxide and / or a battery using a hydrogen-absorbing alloy powder having an uneven surface are provided.
Alternatively, by configuring an alkaline storage battery in the presence of metal ions, there is an effect that an alkaline storage battery having excellent discharge characteristics can be provided even when a large current discharge is performed in a low temperature atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

第1図は表面形状が凹凸を示す水素吸蔵合金粉末と金属
酸化物の間に電解液が保持された状態を示す模式図、第
2図は負極に金属酸化物を添加した場合の平均の放電カ
ーブを示す図、第3図は電解液に金属イオンを溶解した
場合の平均の放電カーブを示す図である。 1……水素吸蔵合金,2……Niの多い凹凸表面,3……金属
酸化物粉末,5……合金表面と金属酸化物粉末の間に保持
された電解液。
FIG. 1 is a schematic diagram showing a state in which an electrolytic solution is held between a hydrogen storage alloy powder and a metal oxide whose surface shapes are uneven, and FIG. 2 is an average discharge when a metal oxide is added to a negative electrode. FIG. 3 is a diagram showing a curve, and FIG. 3 is a diagram showing an average discharge curve when metal ions are dissolved in an electrolytic solution. 1 ... Hydrogen storage alloy, 2 ... Uneven surface with a lot of Ni, 3 ... Metal oxide powder, 5 ... Electrolyte held between alloy surface and metal oxide powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 功 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平1−130467(JP,A) 特開 平2−256161(JP,A) 特開 平2−51860(JP,A) 特開 平4−34849(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/24 - 10/30 H01M 4/24 - 4/26 H01M 4/38 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Matsumoto 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-1-130467 (JP, A) JP-A-2- 256161 (JP, A) JP-A-2-51860 (JP, A) JP-A-4-34849 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10 / 24-10 / 30 H01M 4/24-4/26 H01M 4/38

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属酸化物を主体とする正極と、活物質で
ある水素を電気化学的に吸収・放出することが可能な水
素吸蔵合金粉末を主構成材料とする負極と、セパレータ
と、アルカリ電解液とからなる発電要素を備えたアルカ
リ蓄電池において、前記水素吸蔵合金粉末は表面形状が
凹凸であり、また前記の発電要素内にAl,Ga,Ge,Sn,Si,C
r,Ti,アルカリ土類金属の群から選ばれる1種以上のイ
オンと酸化物が、水素吸蔵合金に対し、元素として0.04
〜6重量%存在することを特徴とするアルカリ蓄電池。
1. A positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy powder capable of electrochemically absorbing and releasing hydrogen as an active material, a separator, and an alkali. In an alkaline storage battery provided with a power generation element composed of an electrolyte, the hydrogen storage alloy powder has an uneven surface shape, and Al, Ga, Ge, Sn, Si, C
One or more ions and oxides selected from the group consisting of r, Ti, and alkaline earth metals form 0.04
Alkaline storage battery characterized by being present in an amount of up to 6% by weight.
【請求項2】水素吸蔵合金を構成する元素の一つはNiで
あって、該合金表面に設けられた無数の凹凸は、内部の
合金よりもNiの割合が多いことを特徴とする特許請求の
範囲第1項記載のアルカリ蓄電池。
2. One of the elements constituting the hydrogen storage alloy is Ni, and the countless irregularities provided on the surface of the alloy have a higher proportion of Ni than the internal alloy. 3. The alkaline storage battery according to claim 1, wherein
【請求項3】負極中にAl,Ga,Ge,Sn,Si,Cr,Ti,アルカリ
土類金属の群の酸化物のうちのいずれか1種以上が添加
されていることを特徴とする特許請求の範囲第1項記載
のアルカリ蓄電池。
3. A patent characterized in that at least one of oxides of the group consisting of Al, Ga, Ge, Sn, Si, Cr, Ti and alkaline earth metals is added to the negative electrode. The alkaline storage battery according to claim 1.
【請求項4】金属酸化物を主体とする正極と、活物質で
ある水素を電気化学的に吸収・放出することが可能な水
素吸蔵合金粉末を主構成材料とする負極と、セパレータ
と、アルカリ電解液とからなる発電要素を備えたアルカ
リ蓄電池において、前記水素吸蔵合金粉末は表面形状が
凹凸であり、前記アルカリ電解液中にAl,Ga,Ge,Sn,Si,C
r,Ti,アルカリ土類金属の群から選ばれる1種以上のイ
オンが、元素として0.040〜0.64重量%存在することを
特徴とするアルカリ蓄電池。
4. A positive electrode mainly composed of a metal oxide; a negative electrode mainly composed of a hydrogen storage alloy powder capable of electrochemically absorbing and releasing hydrogen as an active material; a separator; In an alkaline storage battery provided with a power generating element composed of an electrolytic solution, the hydrogen storage alloy powder has an uneven surface shape, and Al, Ga, Ge, Sn, Si, C is contained in the alkaline electrolytic solution.
An alkaline storage battery characterized in that at least one ion selected from the group consisting of r, Ti, and alkaline earth metals is present as an element in an amount of 0.040 to 0.64% by weight.
JP02317349A 1990-11-20 1990-11-20 Alkaline storage battery Expired - Lifetime JP3118832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02317349A JP3118832B2 (en) 1990-11-20 1990-11-20 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02317349A JP3118832B2 (en) 1990-11-20 1990-11-20 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04188561A JPH04188561A (en) 1992-07-07
JP3118832B2 true JP3118832B2 (en) 2000-12-18

Family

ID=18087237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02317349A Expired - Lifetime JP3118832B2 (en) 1990-11-20 1990-11-20 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3118832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268627B2 (en) 2006-07-26 2012-09-18 Isis Innovation Limited Formation of bilayers of amphipathic molecules

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062929B2 (en) * 2001-06-04 2012-10-31 パナソニック株式会社 Alkaline storage battery
JP3895984B2 (en) 2001-12-21 2007-03-22 三洋電機株式会社 Nickel / hydrogen storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268627B2 (en) 2006-07-26 2012-09-18 Isis Innovation Limited Formation of bilayers of amphipathic molecules

Also Published As

Publication number Publication date
JPH04188561A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP3773694B2 (en) Manufacturing method of nickel metal hydride storage battery
JP3505953B2 (en) Active material for nickel electrode and nickel positive electrode for alkaline storage battery using the same
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JP3118832B2 (en) Alkaline storage battery
JP3344234B2 (en) Paste-type nickel positive electrode for alkaline storage battery and its manufacturing method
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2987873B2 (en) Alkaline storage battery
US5547784A (en) Alkaline storage battery and method for producing the same
JP3118812B2 (en) Alkaline storage battery
JP2001297758A (en) Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3189361B2 (en) Alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH08222210A (en) Metal oxide/hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11