JP3092222B2 - Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same - Google Patents

Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same

Info

Publication number
JP3092222B2
JP3092222B2 JP03194923A JP19492391A JP3092222B2 JP 3092222 B2 JP3092222 B2 JP 3092222B2 JP 03194923 A JP03194923 A JP 03194923A JP 19492391 A JP19492391 A JP 19492391A JP 3092222 B2 JP3092222 B2 JP 3092222B2
Authority
JP
Japan
Prior art keywords
nickel
active material
nickel hydroxide
positive electrode
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03194923A
Other languages
Japanese (ja)
Other versions
JPH0541212A (en
Inventor
宗久 生駒
徳勝 阿久津
雅史 榎戸
史彦 吉井
英男 海谷
信吾 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03194923A priority Critical patent/JP3092222B2/en
Priority to US07/795,845 priority patent/US5700596A/en
Priority to EP91120178A priority patent/EP0523284B1/en
Priority to DE69118525T priority patent/DE69118525T2/en
Publication of JPH0541212A publication Critical patent/JPH0541212A/en
Application granted granted Critical
Publication of JP3092222B2 publication Critical patent/JP3092222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、正極にニッケル酸化
物、負極に電気化学的に水素の吸蔵放出反応が可能な水
素吸蔵合金、カドミウムあるいは亜鉛を用いたアルカリ
蓄電池に関し、詳しくはそのニッケル酸化物(水酸化ニ
ッケル)と正極特性の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery using nickel oxide for a positive electrode, a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen, cadmium or zinc for a negative electrode. (Nickel hydroxide) and the improvement of the positive electrode characteristics.

【0002】[0002]

【従来の技術】現在実用化されている鉛蓄電池やニッケ
ル・カドミウム蓄電池(以下、ニカド電池と記す)は、
ポ−タブル機器に幅広く使用されている。鉛蓄電池は安
価ではあるが、一般に単位重量当たりのエネルギ−密度
(Wh/kg)が低く、サイクル寿命等に課題があり、小
型軽量のポ−タブル機器の電源としては好適とは言えな
い。
2. Description of the Related Art Lead-acid batteries and nickel-cadmium batteries (hereinafter referred to as nickel-cadmium batteries) that are currently in practical use are:
Widely used in portable equipment. Although lead-acid batteries are inexpensive, they generally have low energy density per unit weight (Wh / kg) and have problems in cycle life, etc., and are not suitable as a power source for small and lightweight portable devices.

【0003】一方、ニカド電池は、鉛蓄電池に比べ単位
重量および体積当たりのエネルギ−密度が高く、サイク
ル寿命等の信頼性に優れているため、種々のポ−タブル
機器用の電源として幅広く使用されている。しかしなが
ら、ポ−タブル機器の高付加価値に伴い電池への負荷が
増大するため、さらに高エネルギ−密度の二次電池がポ
−タブル機器用の電源として切望されている。ニカド電
池の分野において、従来の焼結式ニッケル正極を用いた
ニカド電池よりも30〜60%高容量であるニカド電池
が開発されている。また、ニカド電池よりもさらに高容
量である負極に水素吸蔵合金を用いたニッケル・水素蓄
電池(焼結式ニッケル正極を用いたニカド電池の2倍以
上)が開発されている。これらの高容量アルカリ蓄電池
は、正極のエネルギ−密度を向上させるために、高多孔
度(90%以上)の3次元の発泡ニッケル多孔体やニッ
ケル繊維多孔体に水酸化ニッケル粉末を高密度に充填し
ている。その結果、従来の焼結式ニッケル正極のエネル
ギ−密度が400〜450mAh/cm3であるのに対し、前
記ニッケル正極のそれは500〜630mAh/cm3であ
る。
On the other hand, nickel-cadmium batteries have a higher energy density per unit weight and volume than lead-acid batteries, and are superior in reliability such as cycle life. Therefore, nickel-cadmium batteries are widely used as power sources for various portable devices. ing. However, since the load on the battery increases with the added value of the portable device, a secondary battery with a higher energy density has been desired as a power source for the portable device. In the field of nickel-cadmium batteries, nickel-cadmium batteries having 30 to 60% higher capacity than conventional nickel-cadmium batteries using sintered nickel positive electrodes have been developed. A nickel-hydrogen storage battery using a hydrogen storage alloy for a negative electrode having a higher capacity than a nickel-cadmium battery (more than twice as large as a nickel-cadmium battery using a sintered nickel positive electrode) has been developed. In order to improve the energy density of the positive electrode, these high-capacity alkaline storage batteries have a high density (more than 90%) of a three-dimensional porous nickel foam or nickel fiber porous body filled with nickel hydroxide powder at a high density. doing. As a result, the energy of a conventional sintered nickel positive electrode - whereas density of 400~450mAh / cm 3, it said nickel positive electrode is 500~630mAh / cm 3.

【0004】ところが、発泡ニッケルやニッケル繊維多
孔体中に水酸化ニッケル粉末を高密度に充填した正極
は、エネルギ−密度が高いがサイクル寿命特性が低下す
るという問題がある。この原因は充電時に高体積のγ−
NiOOHが正極に生成して正極を膨脹させ、セパレ−
タ中に存在する電解液を吸収し、電池の内部抵抗を上昇
させて放電容量が低下するためである。この問題点を解
決するために、以下の方法が提案されている。 (1)水酸化ニッケル粉末に酸化カドミウム粉末を添加
し、γ−NiOOHの生成を抑制する方法。 (2)水酸化ニッケル粉末に亜鉛、酸化亜鉛、亜鉛化合
物の粉末を添加し充電時に生成するγ−NiOOHを抑
制する方法(特開昭59−112574)。 (3)水酸化ニッケル粉末内部にカドミウム酸化物を含
有させる方法や、亜鉛やカドミウムを固溶体として3〜
10wt%添加し、且つ細孔半径が30Å以上の内 部繊維
細孔の発達を阻止し、さらに全空孔体積を0.05cm3/
g以下に制御し、充電時に生成するγ−NiOOHを抑
制する方法(特開昭61−104565、特開平2−3
0061、USP−4844999)。
However, a positive electrode in which nickel hydroxide powder is densely filled in foamed nickel or a porous nickel fiber has a problem that the cycle life characteristic is deteriorated although the energy density is high. This is due to the high volume of γ-
NiOOH is formed on the positive electrode to expand the positive electrode,
This is because the battery absorbs the electrolyte present in the battery, increases the internal resistance of the battery, and decreases the discharge capacity. In order to solve this problem, the following methods have been proposed. (1) A method of adding cadmium oxide powder to nickel hydroxide powder to suppress generation of γ-NiOOH. (2) A method of adding zinc, zinc oxide, and zinc compound powder to nickel hydroxide powder to suppress γ-NiOOH generated during charging (JP-A-59-112574). (3) A method of containing cadmium oxide inside nickel hydroxide powder, or a method of using zinc or cadmium as a solid solution to form
The addition of 10 wt% prevents the development of internal fiber pores with a pore radius of 30 mm or more, and further reduces the total pore volume to 0.05 cm 3 /
g or less to suppress γ-NiOOH generated during charging (Japanese Patent Application Laid-Open No. 61-104565,
0061, USP-4844999).

【0005】[0005]

【発明が解決しようとする課題】このような従来提案さ
れている前記(1)および(2)の方法では、水酸化ニ
ッケル粉末に酸化カドミウムや酸化亜鉛粉末を添加する
ことにより、γ−NiOOHの生成を抑制し、サイクル
寿命特性を向上させているが、飛躍的に寿命特性は改善
されない。特に、電池容量が増大、すなわち正極のエネ
ルギ−密度が向上するにしたがい、酸化カドミウムや酸
化亜鉛粉末の添加効果は減少する。低温(0℃)雰囲気
下では、600mAh/cm3のエネルギ−密度を有する正極
を用いたアルカリ蓄電池のサイクル寿命は、200サイ
クル程度である。この原因は、高エネルギ−密度化にと
もない酸化カドミウムや酸化亜鉛粉末を添加するだけで
は、γ−NiOOHの生成を抑制することは困難である
ことを示唆している。したがって、活物質粉末の粒子構
造あるいは結晶構造を改善する必要がある。
According to the above-mentioned methods (1) and (2), cadmium oxide and zinc oxide powders are added to nickel hydroxide powder to obtain γ-NiOOH. Although the generation is suppressed and the cycle life characteristics are improved, the life characteristics are not dramatically improved. In particular, as the battery capacity increases, that is, as the energy density of the positive electrode increases, the effect of adding cadmium oxide or zinc oxide powder decreases. Under a low temperature (0 ° C.) atmosphere, the cycle life of an alkaline storage battery using a positive electrode having an energy density of 600 mAh / cm 3 is about 200 cycles. This suggests that it is difficult to suppress the generation of γ-NiOOH only by adding cadmium oxide or zinc oxide powder with increasing energy density. Therefore, it is necessary to improve the particle structure or crystal structure of the active material powder.

【0006】また、前記(3)の方法では、従来から提
案されている方法と同様に、水酸化ニッケル粉末の結晶
内部にカドミウム酸化物、亜鉛やカドミウムを固溶体と
して存在させているため、酸化カドミウムや酸化亜鉛粉
末を水酸化ニッケルと混合する場合よりも充電時に生成
するγ−NiOOHは抑制され、サイクル寿命は向上す
る。しかし、30Å以上の内部繊維細孔の発達を阻止し
ているため電解液が水酸化ニッケルの粒子内部に浸入し
にくく、充放電初期の活物質利用率が70%程度と低
い。
In the method (3), cadmium oxide, zinc or cadmium is present as a solid solution inside the crystal of the nickel hydroxide powder, as in the conventionally proposed method. Γ-NiOOH generated during charging is suppressed as compared with the case where zinc oxide powder is mixed with nickel hydroxide, and the cycle life is improved. However, since the development of internal fiber pores of 30 ° or more is prevented, the electrolyte does not easily enter the inside of the nickel hydroxide particles, and the active material utilization rate at the initial stage of charge / discharge is as low as about 70%.

【0007】また、電解液が水酸化ニッケルの粒子内部
に浸入しにくいため、水酸化ニッケル粒子内部で電解液
の不均一化がおこり局部的に電流密度が増大し、γ−N
iOOHが生成しやすくなる。その結果、低温(0℃)
雰囲気下でのサイクル寿命は、300サイクル程度であ
る。
In addition, since the electrolyte does not easily enter the inside of the nickel hydroxide particles, the electrolyte becomes uneven inside the nickel hydroxide particles, and the current density locally increases, and the γ-N
iOOH is easily generated. As a result, low temperature (0 ° C)
The cycle life under an atmosphere is about 300 cycles.

【0008】また、このような水酸化ニッケルを製造す
る工程において、硫酸アンモニウムを使用しているた
め、水酸化ニッケル粉末に不純物としてアンモニウムが
存在し、このアンモニウムが電池の自己放電を促進させ
る。
Further, in the process of producing such nickel hydroxide, ammonium sulfate is used, so that ammonium is present as an impurity in the nickel hydroxide powder, and this ammonium promotes self-discharge of the battery.

【0009】本発明はこのような課題を解決するもの
で、簡単な構成により、充放電初期の活物質利用率が高
く、低温でのサイクル寿命特性や自己放電特性に優れ
た、水酸化ニッケル活物質とニッケル正極およびこれを
用いたアルカリ蓄電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems. A nickel hydroxide active material having a simple structure, having a high utilization rate of active materials at the initial stage of charge and discharge, and having excellent cycle life characteristics and self-discharge characteristics at low temperatures. It is an object of the present invention to provide a substance, a nickel positive electrode, and an alkaline storage battery using the same.

【0010】[0010]

【課題を解決するための手段】この課題を解決するため
に本発明は、ニッケル正極に用いる水酸化ニッケル活物
質粉末は、カドミウム、カルシウム、亜鉛、マグネシウ
ム、鉄、コバルトおよびマンガンからなる群のうちの少
なくとも一種を水酸化ニッケル活物質粉末中に1〜7wt
%含有し、0.1μm以下の一次粒子が無数に集合した
粒子であり、30Å以上の細孔半径を有する空間体積が
全空間体積に対して20〜70%となるようにしたもの
である。
According to the present invention, a nickel hydroxide active material powder used for a nickel positive electrode is selected from the group consisting of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese. 1 to 7 wt% of nickel hydroxide active material powder
% Of the primary particles are particles in which countless primary particles of 0.1 μm or less are aggregated, and a space volume having a pore radius of 30 ° or more accounts for 20 to 70% of the total space volume.

【0011】この水酸化ニッケル粉末にコバルト、水酸
化コバルト、酸化亜鉛、亜鉛、カドミウムおよび酸化カ
ドミウムからなる群のうちの少なくとも一種を加えて3
次元多孔体または平板に充填あるいは塗着したニッケル
正極である。
[0011] At least one member selected from the group consisting of cobalt, cobalt hydroxide, zinc oxide, zinc, cadmium and cadmium oxide is added to the nickel hydroxide powder.
It is a nickel positive electrode filled or coated on a three-dimensional porous body or a flat plate.

【0012】さらに、ニッケル酸化物を主成分とするニ
ッケル正極と、電気化学的に水素の吸蔵放出反応が可能
な水素吸蔵合金を主体とするかあるいは酸化カドミウム
を主体とする負極と、アルカリ電解液と、セパレ−タと
からなるアルカリ蓄電池において、初充放電前に前記ニ
ッケル正極はカドミウム、カルシウム、亜鉛、マグネシ
ウム、鉄、コバルトおよびマンガンからなる群のうちの
少なくとも一種を水酸化ニッケル活物質粉末中に1〜7
wt%含有し、0.1μm以下の一次粒子が無数に集合し
た粒子であり、30Å以上の細孔半径を有する空間体積
が全空間体積に対して20〜70%である水酸化ニッケ
ル粉末にコバルト、水酸化コバルト、酸化亜鉛、亜鉛、
カドミウムおよび酸化カドミウムからなる群のうちの少
なくとも一種を加えた粉末を支持し、導電性を付与する
3次元多孔体あるいは平板から主に構成されるニッケル
正極を用い、アルカリ電解液の比重は1.23〜1.4
であり、電池容量1Ah当たりの電解液量は1.0〜
2.0cm3/Ahに保った構成としたものである。
Further, a nickel positive electrode mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy or cadmium oxide capable of electrochemically storing and releasing hydrogen, and an alkaline electrolyte And before the first charge and discharge, the nickel positive electrode contains at least one member selected from the group consisting of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese in a nickel hydroxide active material powder. 1-7
A nickel hydroxide powder containing 0.1% or less by mass of primary particles having a pore radius of 30 ° or more with respect to a total volume of 20 to 70% of the total space volume. , Cobalt hydroxide, zinc oxide, zinc,
A nickel positive electrode mainly composed of a three-dimensional porous body or a flat plate that supports a powder to which at least one of the group consisting of cadmium and cadmium oxide is added and imparts conductivity is used, and the specific gravity of the alkaline electrolyte is 1. 23-1.4
And the amount of electrolyte per 1 Ah of battery capacity is 1.0 to
The configuration was maintained at 2.0 cm 3 / Ah.

【0013】[0013]

【作用】この構成により、すなわち、30Å以上の細孔
半径を有する空間体積を全空間体積に対して20〜70
%とすることにより、電解液の粒子内部への浸入が容易
であり、電解液の粒子内部での偏在によるγ−NiOO
Hの生成が抑制される。
According to this structure, a space volume having a pore radius of 30 ° or more is added to the entire space volume by 20 to 70%.
%, It is easy for the electrolyte to enter the inside of the particles, and γ-NiOO due to uneven distribution of the electrolyte inside the particles.
H generation is suppressed.

【0014】さらに、0.1μm以下の一次粒子が無数
に集合した粒子であることと、電解液の粒子内部への浸
入が容易であるため、充放電初期の活物質利用率が向上
する。また、ニッケル正極としては本発明の水酸化ニッ
ケル粉末にコバルトおよび水酸化コバルトを添加するこ
とで、活物質の利用率が向上し、酸化亜鉛、亜鉛、カド
ミウムおよび酸化カドミウムのうちのいずれかを添加す
ることでニッケル正極の膨脹が抑制され充放電サイクル
寿命が向上する。したがって、本発明の水酸化ニッケル
粉末と前記の添加物とを3次元多孔体または平板に充填
あるいは塗着することにより、エネルギ−密度が高く、
サイクル寿命特性に優れた正極が得られる。
Furthermore, since the primary particles having a particle size of 0.1 μm or less are innumerably aggregated and the electrolyte can easily enter the inside of the particles, the utilization rate of the active material at the initial stage of charge / discharge is improved. In addition, as a nickel positive electrode, by adding cobalt and cobalt hydroxide to the nickel hydroxide powder of the present invention, the utilization rate of the active material is improved, and any one of zinc oxide, zinc, cadmium and cadmium oxide is added. By doing so, the expansion of the nickel positive electrode is suppressed, and the charge / discharge cycle life is improved. Therefore, by filling or applying the nickel hydroxide powder of the present invention and the additive to a three-dimensional porous body or a flat plate, the energy density is high,
A positive electrode having excellent cycle life characteristics can be obtained.

【0015】本発明の正極と、電気化学的に水素の吸蔵
放出反応が可能な水素吸蔵合金を主体とするかあるいは
酸化カドミウムを主体とする負極と、アルカリ電解液
と、セパレ−タとからなるアルカリ蓄電池においては、
アルカリ電解液の比重を1.23〜1.4にすることで
水酸化ニッケルに対するプロトンの供給が容易になり、
初期の充放電効率が向上する。また、電解液量を1.0
〜2.0cm3/Ahとすることにより、正極と負極およびセ
パレ−タ中に電解液を適切に分布させることが可能であ
り、優れたサイクル寿命を有するアルカリ蓄電池が得ら
れることとなる。
The positive electrode of the present invention comprises a negative electrode mainly composed of a hydrogen storage alloy or cadmium oxide capable of electrochemically storing and releasing hydrogen, an alkaline electrolyte, and a separator. In alkaline storage batteries,
By setting the specific gravity of the alkaline electrolyte to 1.23 to 1.4, the supply of protons to nickel hydroxide becomes easy,
The initial charge / discharge efficiency is improved. When the amount of the electrolyte is 1.0
By setting it to 2.0 cm 3 / Ah, the electrolyte can be appropriately distributed in the positive electrode, the negative electrode and the separator, and an alkaline storage battery having an excellent cycle life can be obtained.

【0016】[0016]

【実施例】以下、本発明をその実施例により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0017】(実施例1) 本実施例に用いた水酸化ニッケル粉末は、以下のように
作成した。水酸化ニッケル粉末は水酸化ニッケル中にコ
バルトおよび亜鉛がそれぞれ0.3wt%および3.5
wt%固溶体として含有した組成とした。硫酸ニッケル
と硫酸コバルトと硫酸亜鉛とを所定の割合で水に溶解さ
せ、ニッケルとコバルトと亜鉛の各イオンが溶解した混
合水溶液を作成した。次に、この混合水溶液と水酸化ナ
トリウムを反応槽に一定量供給しながら温度を35℃、
pHを11.3と一定に保ち,激しく攪拌を行い、0.
1μm以下の一次粒子を作成し、この粒子を核にしなが
ら一次粒子が無数に集合した水酸化ニッケルを連続的に
作成した。
Example 1 The nickel hydroxide powder used in this example was prepared as follows. The nickel hydroxide powder contains 0.3 wt% and 3.5 wt% of cobalt and zinc in nickel hydroxide, respectively.
The composition was contained as a wt% solid solution. Nickel sulfate, cobalt sulfate and zinc sulfate were dissolved in water at a predetermined ratio to prepare a mixed aqueous solution in which ions of nickel, cobalt and zinc were dissolved. Next, while supplying a fixed amount of this mixed aqueous solution and sodium hydroxide to the reaction vessel, the temperature was increased to 35 ° C.
The pH was kept constant at 11.3, and the mixture was vigorously stirred.
Primary particles having a particle size of 1 μm or less were prepared, and nickel hydroxide in which the primary particles were innumerably aggregated was continuously formed using the particles as nuclei.

【0018】この水酸化ニッケル粉末を、水酸化ナトリ
ウムや硫酸ニッケル等の金属塩を除去するために50℃
の水中で水洗し、80℃で乾燥を行い水酸化ニッケル粉
末を作成した。
The nickel hydroxide powder is heated at 50 ° C. to remove metal salts such as sodium hydroxide and nickel sulfate.
Was washed with water and dried at 80 ° C. to prepare a nickel hydroxide powder.

【0019】この方法によると、アンモニウムにより錯
体を生成することなしに連続的に水酸化ニッケルを製造
することが可能である。次に、前記と同様な方法で反応
槽のpHのみを11.0,11.1,11.5および1
1.6に変化させ、連続的に水酸化ニッケル粉末を作成
した。
According to this method, nickel hydroxide can be produced continuously without forming a complex with ammonium. Next, only the pH of the reaction tank was adjusted to 11.0, 11.1, 11.5 and 1 in the same manner as described above.
It changed to 1.6 and the nickel hydroxide powder was produced continuously.

【0020】図1に示したように、これらの作成した水
酸化ニッケル粉末は、一次粒子径は0.1μm以下であ
る。次に、種々のpH条件で作成した水酸化ニッケルの
物性を(表1)に示す。
As shown in FIG. 1, these prepared nickel hydroxide powders have a primary particle diameter of 0.1 μm or less. Next, the physical properties of nickel hydroxide prepared under various pH conditions are shown in (Table 1).

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)の空間体積比は細孔半径が10〜
200Åの全空間体積に対する30Å以上の空間体積の
割合である。また、原子吸光分析によりNo.A〜Eの
水酸化ニッケル粉末中に含まれるZnおよびCoを分析
した結果、Znは3.45wt%Coは0.32wt%含有
されている。なお、10Å以下の細孔分布は窒素ガスの
吸着による方法では測定が困難であり、実際には10Å
以下の細孔を有する空間は存在するものと考えられる。
また、タップ密度は重量Agの20ccのメスシリンダ−
に水酸化ニッケル粉末を充填し、200回タッピング
後、メスシリンダ−の重量(水酸化ニッケル粉末を含
む)Bgと水酸化ニッケルの体積Dccを測定し、次式
により求めた。タップ密度=(B−A)/D次に、これ
らのNo.A〜Eの5種類の水酸化ニッケル粉末を用い
て以下の方法で正極を作成した。水酸化ニッケル粉末と
コバルト粉末と水酸化コバルト粉末を重量比で100:
7:5の割合で混合し、これに水を加えて練合しペ−ス
ト状にした後、支持体である多孔度95%、面密度30
0g/m2の発泡状ニッケル多孔体へ充填し、乾燥、加圧
後、フッ素樹脂粉末が分散した水溶液に浸漬した。この
後再度乾燥後、所定の寸法に切断して1400mAhの容
量を有するニッケル正極を作成した。負極は以下の方法
で作成した。合金組成はMmNi3.6Co0.7Mn
0.4Al0.3(Mmはミッシュメタルで希土類元素
の混合物)とした。希土類元素の混合物であるミッシュ
メタルMmとNi,Co,Mn,Alの各試料をア−ク
炉に入れて、10-4〜10-5torrまで真空状態にした
後、アルゴンガス雰囲気下の減圧状態でア−ク放電し、
加熱溶解させた。試料の均質化を図るために真空中、1
050℃で6時間熱処理を行った。得られた合金塊を粗
粉砕後、湿式ボ−ルミルを用いて平均粒子径20μmの
粉末を得た。この粉末を80℃の7.2mol水酸化カ
リウム水溶液中で1時間攪拌しながら処理を施した後、
合金粉末から水酸化カリウムを除去するために水洗を行
い、乾燥することにより負極に用いる水素吸蔵合金粉末
を得た。この水素吸蔵合金粉末に水とカルボキシメチル
セルロ−ス(CMC)を加えてペ−スト状にし、多孔度
95%の発泡状ニッケル多孔体へ充填、乾燥、加圧後、
所定の寸法に切断し、水素吸蔵合金負極を作成した。セ
パレ−タはポリプロピレンとポリエチレンとからなる不
織布をスルホン化したスルホン化セパレ−タを用いた。
The spatial volume ratio in Table 1 is such that the pore radius is 10
The ratio of the space volume of 30 ° or more to the total space volume of 200 °. In addition, No. 1 was determined by atomic absorption analysis. As a result of analyzing Zn and Co contained in the nickel hydroxide powders of A to E, 3.45 wt% of Zn was contained and 0.32 wt% of Co was contained. In addition, it is difficult to measure the pore distribution of 10 ° or less by the method using adsorption of nitrogen gas.
It is considered that a space having the following pores exists.
The tap density is a 20cc graduated cylinder with a weight of Ag.
Was charged with nickel hydroxide powder, and after tapping 200 times, the weight (including nickel hydroxide powder) Bg of the graduated cylinder and the volume Dcc of nickel hydroxide were measured and determined by the following equation. Tap density = (BA) / D A positive electrode was prepared by the following method using five types of nickel hydroxide powders A to E. Nickel hydroxide powder, cobalt powder and cobalt hydroxide powder in a weight ratio of 100:
After mixing at a ratio of 7: 5, water was added to the mixture and kneaded to form a paste. The support had a porosity of 95% and an areal density of 30.
The foamed nickel porous body of 0 g / m 2 was filled, dried, pressurized, and immersed in an aqueous solution in which a fluororesin powder was dispersed. Then, after drying again, it was cut into a predetermined size to prepare a nickel positive electrode having a capacity of 1400 mAh. The negative electrode was prepared by the following method. The alloy composition is MmNi3.6Co0.7Mn
0.4 Al0.3 (Mm is a misch metal and a mixture of rare earth elements). The misch metal Mm, which is a mixture of rare earth elements, and each sample of Ni, Co, Mn, and Al are put in an arc furnace, evacuated to 10 -4 to 10 -5 torr, and then decompressed in an argon gas atmosphere. Arc discharge in the state,
It was dissolved by heating. In vacuum to homogenize the sample, 1
Heat treatment was performed at 050 ° C. for 6 hours. After coarsely pulverizing the obtained alloy ingot, a powder having an average particle diameter of 20 μm was obtained using a wet ball mill. This powder was treated while being stirred for 1 hour in a 7.2 mol aqueous potassium hydroxide solution at 80 ° C.
The powder was washed with water to remove potassium hydroxide from the alloy powder, and dried to obtain a hydrogen storage alloy powder used for the negative electrode. Water and carboxymethyl cellulose (CMC) are added to the hydrogen storage alloy powder to form a paste, which is filled into a foamed nickel porous body having a porosity of 95%, dried, pressurized.
The resultant was cut into a predetermined size to prepare a hydrogen storage alloy negative electrode. As the separator, a sulfonated separator obtained by sulfonating a nonwoven fabric made of polypropylene and polyethylene was used.

【0023】上記のように作成した負極1と正極2とを
セパレ−タ3を介して渦巻き状に旋回し、負極端子を兼
ねるケ−ス4に挿入した。その後、比重が1.30であ
る水酸化カリウム水溶液中に水酸化リチウムを20g/l
溶解したアルカリ電解液を2.4cm3注液して、正極端
子5と安全弁6を備えた封口板7によりケ−ス4を封口
し、正極で電池容量を規制した1400mAhの容量をも
つ4/5Aサイズの密閉形ニッケル・水素蓄電池を構成
した。作成した電池の構造を図2に示した。図中、8は
絶縁ガスケット、9は正極2と封口板7とを電気的に接
続する正極集電体を示す。正極の水酸化ニッケルが異な
る5種類(上記A〜Eに対応)の電池を図2と同様な構
成で作成した。これらの電池を用いて、以下の条件によ
り正極活物質である水酸化ニッケルの活物質利用率の試
験を行った。20℃の環境下で0.1CmAの充電電流
で正極容量すなわち水酸化ニッケル活物質から計算され
る理論容量の150%充電し、1時間休止を行い、0.
2CmA一定の放電電流で1.0Vまで連続放電を行っ
た。この方法で充放電を5回繰り返し、各サイクルにお
ける活物質利用率を算出した。活物質利用率は以下の次
式で計算した。活物質利用率=(1.0Vまでの放電容
量/水酸化ニッケル理論容量)×100(表2)に、A
〜Eの水酸化ニッケルを用いた電池で活物質利用率を調
べた結果を示す。
The negative electrode 1 and the positive electrode 2 formed as described above were swirled through a separator 3 and inserted into a case 4 also serving as a negative electrode terminal. Then, 20 g / l of lithium hydroxide was added to an aqueous solution of potassium hydroxide having a specific gravity of 1.30.
2.4 cm 3 of the dissolved alkaline electrolyte was injected, the case 4 was sealed with a sealing plate 7 provided with a positive electrode terminal 5 and a safety valve 6, and a battery having a capacity of 1400 mAh in which the battery capacity was regulated by the positive electrode. A 5 A size sealed nickel-metal hydride storage battery was constructed. FIG. 2 shows the structure of the prepared battery. In the drawing, 8 is an insulating gasket, 9 is a positive electrode current collector for electrically connecting the positive electrode 2 and the sealing plate 7. Five types of batteries (corresponding to the above A to E) having different nickel hydroxides of the positive electrode were prepared with the same configuration as in FIG. Using these batteries, an active material utilization test of nickel hydroxide, which was a positive electrode active material, was performed under the following conditions. In a 20 ° C. environment, the battery was charged at a charging current of 0.1 CmA at a charging current of 0.1 CmA, that is, 150% of the theoretical capacity calculated from the nickel hydroxide active material, paused for 1 hour, and then stopped at 0.
Continuous discharge was performed up to 1.0 V at a constant discharge current of 2 CmA. Charge / discharge was repeated 5 times by this method, and the active material utilization rate in each cycle was calculated. The active material utilization was calculated by the following equation. Active material utilization rate = (discharge capacity up to 1.0 V / theoretical nickel hydroxide capacity) × 100 (Table 2)
9 shows the results of examining the active material utilization rates in the batteries using the nickel hydroxides of Nos. To E.

【0024】[0024]

【表2】 [Table 2]

【0025】(表2)から明らかなようにNo.Aの水
酸化ニッケルの利用率は、1サイクル目が80%であ
り、5サイクル充放電を繰り返した後の利用率は85%
である。この原因は30Å以上の細孔半径を有する空間
体積が全空間体積に対して17%である。このことは比
表面積が8.6m2/gで全空間体積が0.01cm3/gと小
さいことに相関している。したがって、水酸化ニッケル
粒子の細孔内部への電解液の浸入が困難であり、その結
果、充放電反応に関与する有効な水酸化ニッケルが減少
するため、1サイクル目の利用率が80%と低い。ま
た、充放電サイクルを繰り返しても5%程度しか利用率
は向上しない。No.Eの水酸化ニッケル粉末は空間体
積比が78%で、比表面積が25.6m2/gおよび全空間
体積が0.06cm3/gである。したがって、この水酸化
ニッケル粉末中には電解液が十分含有することが可能で
あり、1サイクル目の利用率が95%と高い。しかし、
タップ密度が1.8g/cm3と低いために充填性が低下し
充填密度すなわち容量密度が低下する。
As apparent from (Table 2), no. The utilization rate of nickel hydroxide of A is 80% in the first cycle, and the utilization rate after repeating 5 cycles of charge / discharge is 85%.
It is. This is because the space volume having a pore radius of 30 ° or more is 17% of the total space volume. This correlates with a specific surface area of 8.6 m 2 / g and a small total space volume of 0.01 cm 3 / g. Therefore, it is difficult for the electrolyte solution to penetrate into the inside of the pores of the nickel hydroxide particles, and as a result, the effective nickel hydroxide involved in the charge / discharge reaction decreases. Low. Further, even if the charge / discharge cycle is repeated, the utilization rate is improved only by about 5%. No. The nickel hydroxide powder of E has a space volume ratio of 78%, a specific surface area of 25.6 m 2 / g and a total space volume of 0.06 cm 3 / g. Therefore, the nickel hydroxide powder can sufficiently contain an electrolytic solution, and the utilization rate in the first cycle is as high as 95%. But,
Since the tap density is as low as 1.8 g / cm 3 , the filling property is reduced, and the packing density, that is, the capacity density is reduced.

【0026】以上のことから、水酸化ニッケルが10〜
200Åの細孔半径を有し、空間体積比が20〜70%
であれば優れた活物質利用率を示す。このような特性を
有する球状水酸化ニッケルは反応pHを11.3±0.
2の範囲に制御することにより得ることができる。な
お、BET比表面積や細孔の空間体積は空間体積比に相
関を有し、比表面積と空間体積をそれぞれ本発明のN
o.B,C,Dに示した10〜20m2/gと0.015〜
0.04cm3/gになるように制御することが好ましい。
また、水酸化ニッケル粉末のタップ密度や平均粒子径は
電極への充填性に重要であり、タップ密度が小さいと水
酸化ニッケルの電極への充填密度すなわち容量密度が低
下し、実質的な電池容量が低下する。平均粒子径は水酸
化ニッケルを含有するペ−ストの粘性に関係し、適切な
粒子径に制御することにより支持体への充填や塗着が可
能となる。したがって、タップ密度と平均粒子径はそれ
ぞれ1.9g/cm3以上と7〜20μmが好ましい。
From the above, it is apparent that nickel hydroxide is
Has a pore radius of 200 ° and a space volume ratio of 20 to 70%
Indicates an excellent active material utilization rate. Spherical nickel hydroxide having such properties has a reaction pH of 11.3 ± 0.3.
It can be obtained by controlling in the range of 2. The BET specific surface area and the space volume of the pores have a correlation with the space volume ratio.
o. 10 to 20 m 2 / g shown in B, C and D and 0.015 to
It is preferable to control so as to be 0.04 cm 3 / g.
In addition, the tap density and average particle size of the nickel hydroxide powder are important for the filling property of the electrode. If the tap density is low, the filling density of the nickel hydroxide in the electrode, that is, the capacity density, is reduced, and the actual battery capacity is reduced. Decrease. The average particle size is related to the viscosity of the paste containing nickel hydroxide. By controlling the average particle size to an appropriate value, it becomes possible to fill or coat the support. Therefore, the tap density and the average particle diameter are preferably 1.9 g / cm 3 or more and 7 to 20 μm, respectively.

【0027】(実施例2) 水酸化ニッケル中にアンモニアが残留した場合にNo.
Cと同様な構成の電池の自己放電特性がどのように変化
するか調べるために、電池内にアンモニアを水酸化ニッ
ケルに対して0.05〜0.01wt%を含有するNo.
C−1とC−2の電池をそれぞれ作成した。この他は実
施例1のNo.Cと同様な電池構成条件とした。自己放
電特性は以下の条件で試験を行った。20℃の雰囲気下
で充電を0.1CmAで15時間行い、1時間休止した
後、0.2CmAの放電電流で1.0Vまで放電を行
い、放電容量(A)を計算により求めた。次に、20℃
の雰囲気下で充電を0.1CmAで15時間行い、充電
状態で45℃の環境下に14日間放置し、その後、20
℃の雰囲気下で0.2CmAの放電電流で1.0Vまで
放電を行い、放電容量(B)を計算により求めた。次
に、自己放電特性を表す容量維持率を次式により求め
た。容量維持率(%)=放電容量(B)/放電容量
(A)×100(表3)に本発明のNo.Cの電池と比
較例のNo.C−1,C−2の電池の自己放電特性を示
す。
Example 2 When ammonia remained in nickel hydroxide, no.
In order to examine how the self-discharge characteristics of a battery having the same configuration as that of battery No. C change, in the battery containing no.
C-1 and C-2 batteries were prepared, respectively. Other than the above, No. 1 of Example 1 was used. Battery configuration conditions similar to C were set. The self-discharge characteristics were tested under the following conditions. In an atmosphere of 20 ° C., charging was performed at 0.1 CmA for 15 hours, and after resting for 1 hour, discharging was performed to 1.0 V with a discharging current of 0.2 CmA, and the discharge capacity (A) was calculated. Next, at 20 ° C
Under an atmosphere of 0.1 CmA for 15 hours, and left in a charged state at 45 ° C. for 14 days.
The battery was discharged to 1.0 V at a discharge current of 0.2 CmA in an atmosphere of ° C., and the discharge capacity (B) was calculated. Next, a capacity retention ratio representing a self-discharge characteristic was obtained by the following equation. Capacity maintenance rate (%) = discharge capacity (B) / discharge capacity (A) × 100 (Table 3) C and the comparative example No. 5 shows the self-discharge characteristics of the batteries C-1 and C-2.

【0028】[0028]

【表3】 [Table 3]

【0029】(表3)の結果から明らかなように、アン
モニアを含有した場合、高温で放置した場合の容量維持
率は低下する。したがって、アンモニアの錯体を作成し
て水酸化ニッケルを製造する場合、水洗を十分におこな
ってもアンモニアが水酸化ニッケル粉末中に残留するた
め自己放電特性は低下する。一方、本発明の水酸化ニッ
ケル粉末は製造過程においてアンモニアを含有しないた
め優れた自己放電特性を示すこととなる。
As is evident from the results in Table 3, when ammonia is contained, the capacity retention rate when left at a high temperature decreases. Therefore, in the case of producing nickel hydroxide by forming a complex of ammonia, the self-discharge characteristic is lowered because ammonia remains in the nickel hydroxide powder even if washing is performed sufficiently. On the other hand, the nickel hydroxide powder of the present invention does not contain ammonia in the production process, and thus exhibits excellent self-discharge characteristics.

【0030】(実施例3) 実施例1のNo.Cと同様な水酸化ニッケル粉末を用
い、(表4)に示す組成(重量比)の正極を作成した。
正極も実施例1と同様な方法で作成した。
(Embodiment 3) Using the same nickel hydroxide powder as in C, a positive electrode having the composition (weight ratio) shown in Table 4 was prepared.
The positive electrode was prepared in the same manner as in Example 1.

【0031】[0031]

【表4】 [Table 4]

【0032】次に、No.F〜Iの正極を用い実施例1
で用いた負極と組合せ、実施例1と同じ電池を作成し
た。これらの電池を用いて、以下の条件により正極活物
質である水酸化ニッケルの活物質利用率と充放電サイク
ル寿命の試験を行った。活物質利用率は、20℃の環境
下で0.1CmAの充電電流で正極容量すなわち水酸化
ニッケル活物質から計算される理論容量の150%充電
し、1時間休止を行い、0.2CmA一定の放電電流で
1.0Vまで連続放電を行った。この方法で充放電を2
回繰り返し、2サイクル目における活物質利用率を算出
した。活物質利用率は次式で計算した。活物質利用率=
(1.0Vまでの放電容量/水酸化ニッケル理論容量)
×100充放電サイクル寿命は、0℃の環境下で1Cm
Aの充電電流で1.3時間充電し、その後1CmAの放
電電流で1.0Vまで連続放電を行った。
Next, No. Example 1 using positive electrodes F to I
The same battery as in Example 1 was produced in combination with the negative electrode used in Example 1. Using these batteries, a test of the active material utilization rate and the charge / discharge cycle life of nickel hydroxide as a positive electrode active material was performed under the following conditions. The active material utilization rate was set to a constant current of 0.2 CmA at a charging current of 0.1 CmA under an environment of 20 ° C., charging 150% of the positive electrode capacity, that is, the theoretical capacity calculated from the nickel hydroxide active material, performing a 1-hour pause. Continuous discharge was performed to a discharge current of 1.0 V. Charge and discharge by this method
Repeated times, the active material utilization rate in the second cycle was calculated. The active material utilization was calculated by the following equation. Active material utilization rate =
(Discharge capacity up to 1.0 V / nickel hydroxide theoretical capacity)
× 100 charge / discharge cycle life is 1 Cm under 0 ° C environment
The battery was charged for 1.3 hours with a charging current of A, and then continuously discharged to 1.0 V with a discharging current of 1 CmA.

【0033】この条件で充放電を繰り返し、初期の連続
放電時間に対して60%まで放電時間が低下した時点を
サイクル寿命とした。「表5」にNo.F〜Iの活物質
利用率とサイクル寿命の結果を示す。
The charge and discharge were repeated under these conditions, and the point at which the discharge time was reduced to 60% of the initial continuous discharge time was defined as the cycle life. No. in “Table 5” The results of the active material utilization rates and the cycle life of FI are shown.

【0034】[0034]

【表5】 [Table 5]

【0035】実施例1で示した本発明の水酸化ニッケル
粉末を用いた場合においても、(表4)に示した正極組
成により活物質利用率や充放電サイクル寿命特性が異な
る。No.Fの本発明の水酸化ニッケル粉末のみで正極
を構成した場合、活物質利用率は82.3%と低い。一
方、本発明の正極No.G〜Iを用いた場合、活物質利
用率は94.8〜95.5%と優れた特性を示すことが
わかる。本発明の水酸化ニッケルを用いた場合、利用率
を向上させるためにはコバルトあるいは水酸化コバルト
を水酸化ニッケルと共存させることが必要である。な
お、コバルトと水酸化コバルトの添加量は、実質的な放
電容量の点から水酸化ニッケル粉末100重量部に対し
てそれぞれ4〜18重量部、0〜10重量部の範囲が好
ましい。すなわち、コバルトが4重量部より低下すると
利用率が低下し、実質的な放電容量が低下する。また、
18重量部よりコバルト添加量が増大すると活物質利用
率は95%以上と良好であるが、充填密度が低下するた
め実質的な放電容量が低下する。水酸化コバルトの添加
量も同様な傾向を示すため、前記の範囲が好ましい。
Even when the nickel hydroxide powder of the present invention shown in Example 1 was used, the active material utilization and the charge / discharge cycle life characteristics differed depending on the positive electrode composition shown in (Table 4). No. When the positive electrode is composed only of the nickel hydroxide powder of the present invention F, the utilization ratio of the active material is as low as 82.3%. On the other hand, the positive electrode No. When G to I are used, the active material utilization is 94.8 to 95.5%, which indicates excellent characteristics. When the nickel hydroxide of the present invention is used, it is necessary to make cobalt or cobalt hydroxide coexist with nickel hydroxide in order to improve the utilization factor. The addition amounts of cobalt and cobalt hydroxide are preferably in the range of 4 to 18 parts by weight and 0 to 10 parts by weight, respectively, with respect to 100 parts by weight of nickel hydroxide powder from the viewpoint of substantial discharge capacity. That is, when the cobalt content is less than 4 parts by weight, the utilization rate decreases, and the actual discharge capacity decreases. Also,
When the addition amount of cobalt is more than 18 parts by weight, the utilization rate of the active material is as good as 95% or more, but the packing density is reduced, so that the substantial discharge capacity is reduced. The above range is preferable since the amount of cobalt hydroxide added shows a similar tendency.

【0036】充放電サイクル寿命はNo.F〜Iの正極
組成であれば0℃の雰囲気下においても500回以上の
充放電サイクルが可能である。酸化亜鉛を含有したN
o.Iの正極を用いた場合、サイクル寿命特性は750
サイクルと非常に良好である。したがって、さらに優れ
た寿命特性を有するためには酸化亜鉛を水酸化ニッケル
粉末と共存させることが必要である。添加量は、水酸化
ニッケル100重量部に対して0〜10重量部が適切で
あり、10重量部以上添加すると活物質利用率が90%
以下に低下する。なお、酸化カドミウム・カドミウム・
亜鉛等もサイクル寿命を向上させる同様な効果を示し、
これらの添加量は、0〜10重量部の範囲が好ましい。
The charge / discharge cycle life was No. With a positive electrode composition of F to I, 500 or more charge / discharge cycles are possible even in an atmosphere at 0 ° C. N containing zinc oxide
o. When the positive electrode of I was used, the cycle life characteristic was 750.
Very good with the cycle. Therefore, it is necessary to make zinc oxide coexist with nickel hydroxide powder in order to have better life characteristics. The addition amount is suitably from 0 to 10 parts by weight with respect to 100 parts by weight of nickel hydroxide.
It falls below. In addition, cadmium oxide, cadmium,
Zinc and the like also show a similar effect of improving cycle life,
These addition amounts are preferably in the range of 0 to 10 parts by weight.

【0037】本実施例では、支持体に面密度が300g/
m2の発泡状ニッケル多孔体を用いたが、面密度が200
〜700g/m2の範囲であれば同様な効果を示す。また、
発泡状ニッケル多孔体の他に3次元多孔体の一種である
パンチングメタルや平板を用いても同様な効果を示す。 (実施例4) 実施例1のNo.Cの水酸化ニッケル粉末と実施例2の
No.Iの正極とを用い、電解液の比重と量を変化させ
て、実施例1と同様な電池を作成した。作成した電池の
No.と電解液の比重と液量との関係を(表6)に示
す。これらの電池を用いて実施例3と同じ条件で利用率
およびサイクル寿命試験を行った結果もあわせて(表
6)に示した。
In this embodiment, the support has a surface density of 300 g /
m 2 foamed nickel porous material was used, but the area density was 200
The same effect is exhibited in the range of up to 700 g / m 2 . Also,
Similar effects can be obtained by using a punched metal or a flat plate, which is a kind of three-dimensional porous body, in addition to the foamed nickel porous body. (Example 4) C and the nickel hydroxide powder of Example 2 Using the positive electrode of I and changing the specific gravity and amount of the electrolytic solution, a battery similar to that of Example 1 was produced. No. of the created battery The relationship between the specific gravity of the electrolyte and the electrolyte and the amount of the electrolyte is shown in (Table 6). The results obtained by performing a utilization factor and a cycle life test under the same conditions as in Example 3 using these batteries are also shown in (Table 6).

【0038】[0038]

【表6】 [Table 6]

【0039】No.Jの電池は電解液比重が1.20と
低い場合、利用率は88.2%となり電池容量が低下す
る。また、電解液比重が1.43と高いNo.Nの場合
サイクル寿命が450サイクルと低下する。一方、N
o.K〜Mの場合は利用率が93.5〜96%であり、
サイクル寿命は650〜770と優れた特性を示すこと
がわかる。したがって、電解液比重はNo.K〜Mの電
池の1.23〜1.40の範囲が最適である。電解液量
が1.3ccであるNo.Oの電池は、本発明の水酸化ニ
ッケルに対して液不足であるため、利用率およびサイク
ル寿命とも低下する。また、電解液量が3.0ccである
No.Sの電池は利用率が95%と良好であるがサイク
ル寿命が2.8ccの場合よりも低下する。これは、電解
液量が多量であるため1CmAの電流値で充電した場
合、過充電時に正極から発生する酸素ガスの負極での吸
収反応が低下し、安全弁からガスや電解液が漏液しサイ
クル寿命が低下する。No.P〜Rの電池容量は1.4
AhであるからAh当たりの電解液量はそれぞれ1.
0,1.43,2.0である。以上のことから、アルカ
リ電解液の比重は1.23〜1.40であり、電解液量
は1.0〜2.0cm3/Ahであることが好ましい。なお、
電解液中に含有する水酸化リチウム(LiOH)は10
g/l以下になると、放電電圧が著しく低下することから
10g/l以上含有することが好ましい。本実施例では、
負極にAB5系水素吸蔵合金を用いた場合を示したがチ
タン系等のAB,AB2系水素吸蔵合金やカドミウム負
極、亜鉛負極を用いても同様な効果が得られる。
No. In the case of the battery of J, when the specific gravity of the electrolyte is as low as 1.20, the utilization factor is 88.2%, and the battery capacity is reduced. In addition, the electrolyte having a specific gravity of 1.43, which is high, had a specific gravity of 1.43. In the case of N, the cycle life is reduced to 450 cycles. On the other hand, N
o. In the case of K to M, the utilization rate is 93.5 to 96%,
The cycle life is 650 to 770, which indicates excellent characteristics. Accordingly, the specific gravity of the electrolyte solution was No. The range of 1.23 to 1.40 for batteries KM is optimal. No. 1 having an electrolyte volume of 1.3 cc. Since the O battery is insufficient for the nickel hydroxide of the present invention, both the utilization factor and the cycle life decrease. In addition, in the case of No. 3 in which the amount of the electrolytic solution was 3.0 cc. The S battery has a good utilization rate of 95%, but has a lower cycle life than the case of 2.8 cc. This is because when the battery is charged with a current value of 1 CmA because of the large amount of electrolyte, the absorption reaction of oxygen gas generated from the cathode during overcharge at the anode decreases at the anode, and the gas and electrolyte leak from the safety valve. The life is shortened. No. The battery capacity of P to R is 1.4
Since it is Ah, the amount of electrolyte per Ah is 1.
0, 1.43, and 2.0. From the above, it is preferable that the specific gravity of the alkaline electrolyte is 1.23 to 1.40 and the amount of the electrolyte is 1.0 to 2.0 cm 3 / Ah. In addition,
The lithium hydroxide (LiOH) contained in the electrolyte is 10%.
When the content is not more than g / l, the discharge voltage is significantly reduced. In this embodiment,
Although the case where an AB 5 -based hydrogen storage alloy is used for the negative electrode is shown, similar effects can be obtained by using an AB or AB 2 -based hydrogen storage alloy such as titanium, a cadmium negative electrode, or a zinc negative electrode.

【0040】[0040]

【発明の効果】以上のように、本発明によればニッケル
正極に用いる水酸化ニッケル活物質粉末は、カドミウ
ム、亜鉛、カルシウム、マグネシウム、鉄、コバルトお
よびマンガンからなる群のうちの少なくとも一種を前記
水酸化ニッケル活物質粉末中に1〜7wt%含有し、0.
1μm以下の一次粒子が無数に集合した粒子であり、3
0Å以上の細孔半径を有する空間体積が全空間体積に対
して20〜70%としたものである。
As described above, according to the present invention, the nickel hydroxide active material powder used for the nickel positive electrode contains at least one of the group consisting of cadmium, zinc, calcium, magnesium, iron, cobalt and manganese. Nickel hydroxide active material powder contains 1 to 7 wt%,
Particles in which primary particles of 1 μm or less are innumerably aggregated.
The space volume having a pore radius of 0 ° or more is 20 to 70% of the total space volume.

【0041】さらに、水酸化ニッケル粉末を主成分と
し、この水酸化ニッケル粉末を支持し、導電性を付与す
る3次元多孔体あるいは平板からなるニッケル正極にお
いて、カドミウム、カルシウム、亜鉛、マグネシウム、
鉄、コバルトおよびマンガンからなる群のうちの少なく
とも一種を水酸化ニッケル活物質粉末中に1〜7wt%含
有し、0.1μm以下の一次粒子が無数に集合した粒子
であり、30Å以上の細孔半径を有する空間体積が全空
間体積に対して20〜70%である水酸化ニッケル粉末
とコバルト、水酸化コバルト、酸化亜鉛、亜鉛、カドミ
ウムおよび酸化カドミウムからなる群のうちの少なくと
も一種とから構成されているニッケル正極としたもので
ある。
Further, in a nickel positive electrode comprising a nickel hydroxide powder as a main component, a three-dimensional porous body or a flat plate which supports the nickel hydroxide powder and imparts conductivity, cadmium, calcium, zinc, magnesium,
1 to 7 wt% of at least one selected from the group consisting of iron, cobalt and manganese is contained in the nickel hydroxide active material powder. It is composed of a nickel hydroxide powder having a space volume having a radius of 20 to 70% of the total space volume and at least one member of the group consisting of cobalt, cobalt hydroxide, zinc oxide, zinc, cadmium and cadmium oxide. Nickel positive electrode.

【0042】また、ニッケル酸化物を主成分とするニッ
ケル正極と、電気化学的に水素の吸蔵放出反応が可能な
水素吸蔵合金を主体とする負極あるいは酸化カドミウム
を主体とする負極と、アルカリ電解液と、セパレ−タと
これらを挿入するケ−スと安全弁を備えた封口板からな
るアルカリ蓄電池において、初充放電前に前記ニッケル
正極は、カドミウム、カルシウム、亜鉛、マグネシウ
ム、鉄、コバルトおよびマンガンからなる群のうちの少
なくとも一種を水酸化ニッケル活物質粉末中に1〜7wt
%含有し、0.1μm以下の一次粒子が無数に集合した
粒子であり、30Å以上の細孔半径を有する空間体積が
全空間体積に対して20〜70%である水酸化ニッケル
粉末にコバルト、水酸化コバルト、酸化亜鉛、亜鉛、カ
ドミウムおよび酸化カドミウムの少なくとも一種とこれ
らの粉末を支持し、導電性を付与する3次元多孔体ある
いは平板から主に構成されるニッケル正極を用い、アル
カリ電解液の比重は1.23〜1.4、電池容量1Ah
当たりの電解液量は1.0〜2.0cm3/Ahとしたアルカ
リ蓄電池である。
A nickel positive electrode mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen or a negative electrode mainly composed of cadmium oxide, and an alkaline electrolyte And an alkaline storage battery comprising a separator, a case into which these are inserted, and a sealing plate provided with a safety valve, the nickel positive electrode is made of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese before the first charge and discharge. At least one of the group consisting of 1 to 7 wt.
% Nickel particles having a pore volume of 30 ° or more are 20 to 70% of the total space volume, and cobalt is Using a nickel positive electrode mainly composed of a three-dimensional porous body or a flat plate that supports at least one of cobalt hydroxide, zinc oxide, zinc, cadmium and cadmium oxide and these powders and imparts conductivity, Specific gravity 1.23 to 1.4, battery capacity 1Ah
This is an alkaline storage battery in which the amount of electrolyte per unit is 1.0 to 2.0 cm 3 / Ah.

【0043】以上のような簡単な構成により、水酸化ニ
ッケル活物質の利用率と低温のサイクル寿命が向上し優
れた容量と信頼性を有する水酸化ニッケル、ニッケル正
極およびアルカリ蓄電池を提供することが可能になる。
また、粉末作成時にアンモニア等を使用しないため、自
己放電特性に優れたアルカリ蓄電池を提供することが可
能になる。
With the simple structure as described above, it is possible to provide a nickel hydroxide, a nickel positive electrode and an alkaline storage battery having improved capacity and reliability of a nickel hydroxide active material and a low cycle life, and having excellent capacity and reliability. Will be possible.
Further, since ammonia or the like is not used at the time of preparing the powder, it is possible to provide an alkaline storage battery having excellent self-discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で作成した球状水酸化ニッケル粉末の粒
子構造を示す電子顕微鏡写真
FIG. 1 is an electron micrograph showing the particle structure of a spherical nickel hydroxide powder prepared according to the present invention.

【図2】本発明で作成したニッケル・水素蓄電池の断面
FIG. 2 is a cross-sectional view of a nickel-metal hydride storage battery prepared according to the present invention.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3 セパレ−タ 4 ケ−ス 6 安全弁 7 封口板 DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Separator 4 Case 6 Safety valve 7 Sealing plate

フロントページの続き (72)発明者 吉井 史彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 津田 信吾 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.7,DB名) H01M 4/52 Continuing on the front page (72) Inventor Fumihiko Yoshii 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Inventor Shingo Tsuda 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/52

Claims (27)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電池活物質としての水酸化ニッケル活物
質粉末は、カドミウム、カルシウム、亜鉛、マグネシウ
ム、鉄、コバルトおよびマンガンからなる群のうちの少
なくとも一種を前記水酸化ニッケル活物質粉末に1〜7
wt%含有し、0.1μm以下の一次粒子が無数に集合
した粒子であり、30Å以上の細孔半径を有する空間体
積が、細孔半径が10〜200Åの全空間体積に対して
20〜70%であることを特徴とする水酸化ニッケル活
物質。
The nickel hydroxide active material powder as a battery active material contains at least one selected from the group consisting of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese in the nickel hydroxide active material powder in an amount of 1 to 4. 7
wt%, and particles in which primary particles of 0.1 μm or less are aggregated innumerably, and a space volume having a pore radius of 30 ° or more is 20 to 70 % with respect to a total space volume having a pore radius of 10 to 200 °. % Of the nickel hydroxide active material.
【請求項2】 水酸化ニッケル活物質粉末は球状である
請求項1記載の水酸化ニッケル活物質。
2. The nickel hydroxide active material according to claim 1, wherein the nickel hydroxide active material powder is spherical.
【請求項3】 活物質粉末は、窒素ガスの吸着により測
定されるBET比表面積が10〜20m2/gである請
求項1記載の水酸化ニッケル活物質。
3. The nickel hydroxide active material according to claim 1, wherein the active material powder has a BET specific surface area of 10 to 20 m 2 / g measured by nitrogen gas adsorption.
【請求項4】 活物質粉末は、平均粒子径が7〜20μ
mであり、タップ密度が1.9g/cm3以上である請
求項1記載の水酸化ニッケル活物質。
4. The active material powder has an average particle diameter of 7 to 20 μm.
2. The nickel hydroxide active material according to claim 1, wherein the nickel hydroxide active material has a tap density of 1.9 g / cm 3 or more.
【請求項5】 前記細孔半径が10〜200Åの全空間
体積0.015〜0.04cm3/gである請求項1
記載の水酸化ニッケル活物質。
5. A method according to claim 1 wherein the pore radius of the total pore volume 10~200Å is 0.015~0.04cm 3 / g
The nickel hydroxide active material as described.
【請求項6】 活物質粉末は、硫酸ニッケル、硫酸亜鉛
および硫酸コバルトの混合水溶液と水酸化ナトリウム水
溶液とにより、水酸化ニッケルの生成における反応pH
を制御して得られた粒子である請求項1記載の水酸化ニ
ッケル活物質。
6. An active material powder is prepared by reacting a mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate with an aqueous sodium hydroxide solution to form a reaction pH in the production of nickel hydroxide.
The nickel hydroxide active material according to claim 1, wherein the particles are particles obtained by controlling the following.
【請求項7】 反応pHが11.3±0.2である請求
項6記載の水酸化ニッケル活物質。
7. The nickel hydroxide active material according to claim 6, wherein the reaction pH is 11.3 ± 0.2.
【請求項8】 水酸化ニッケル粉末を主成分とし、前記
水酸化ニッケル粉末を支持し、導電性を付与する3次元
多孔体あるいは平板からなるニッケル正極において、カ
ドミウム、カルシウム、亜鉛、マグネシウム、鉄、コバ
ルトおよびマンガンからなる群のうちの少なくとも一種
を水酸化ニッケル活物質粉末中に1〜7wt%含有し、
0.1μm以下の一次粒子が無数に集合した粒子であ
り、30Å以上の細孔半径を有する空間体積が、細孔半
径が10〜200Åの全空間体積に対して20〜70%
である水酸化ニッケル粉末とコバルト、水酸化コバル
ト、酸化亜鉛、亜鉛、カドミウムおよび酸化カドミウム
からなる群のうちの少なくとも一種とから構成されてい
ることを特徴とするニッケル正極。
8. A nickel positive electrode comprising a nickel hydroxide powder as a main component, a three-dimensional porous body or a flat plate which supports the nickel hydroxide powder and imparts conductivity, wherein cadmium, calcium, zinc, magnesium, iron, At least one of the group consisting of cobalt and manganese is contained in the nickel hydroxide active material powder in an amount of 1 to 7 wt%,
0.1 μm or less primary particles are innumerably aggregated particles, and a space volume having a pore radius of 30 °
20-70 % of the total space volume with a diameter of 10-200mm
A nickel positive electrode comprising: nickel hydroxide powder, and at least one selected from the group consisting of cobalt, cobalt hydroxide, zinc oxide, zinc, cadmium, and cadmium oxide.
【請求項9】 重量比で水酸化ニッケル:コバルト:水
酸化コバルト:酸化亜鉛および/又は酸化カドミウム:
カドミウムおよび/又は亜鉛=100:4〜18:0〜
10:0〜10:0〜10の割合である請求項8記載の
ニッケル正極。
9. Nickel hydroxide: cobalt: cobalt hydroxide: zinc oxide and / or cadmium oxide by weight ratio:
Cadmium and / or zinc = 100: 4-18: 0-0
The nickel positive electrode according to claim 8, wherein the ratio is 10: 0 to 10: 0 to 10.
【請求項10】 3次元多孔体は、発泡状ニッケル多孔
体あるいはパンチングメタルである請求項8記載のニッ
ケル正極。
10. The nickel positive electrode according to claim 8, wherein the three-dimensional porous body is a foamed nickel porous body or a punched metal.
【請求項11】 水酸化ニッケル活物質粉末は、窒素ガ
スの吸着により測定されるBET比表面積が10〜20
2/gである請求項8記載のニッケル正極。
11. The nickel hydroxide active material powder has a BET specific surface area of 10 to 20 measured by adsorption of nitrogen gas.
The nickel positive electrode according to claim 8, wherein m 2 / g.
【請求項12】 水酸化ニッケル活物質粉末は、平均粒
子径が7〜20μmであり、タップ密度が1.9g/c
3以上の球状粒子である請求項8記載のニッケル正
極。
12. The nickel hydroxide active material powder has an average particle diameter of 7 to 20 μm and a tap density of 1.9 g / c.
m 3 or more nickel positive electrode according to claim 8, wherein the spherical particles.
【請求項13】 前記、細孔半径が10〜200Åの全
空間体積0.015〜0.04cm3/gである請求
項8記載のニッケル正極。
13. The nickel positive electrode according to claim 8, wherein the total volume of the space having a pore radius of 10 to 200 ° is 0.015 to 0.04 cm 3 / g.
【請求項14】 発泡状ニッケル多孔体は、その面密度
が200〜700g/m2である請求項8記載のニッケ
ル正極。
14. The nickel positive electrode according to claim 8, wherein the foamed porous nickel body has an areal density of 200 to 700 g / m 2 .
【請求項15】 活物質粉末が硫酸ニッケル、硫酸亜鉛
および硫酸コバルトの混合水溶液と水酸化ナトリウム水
溶液とにより、水酸化ニッケルの生成における反応pH
を制御して得られた粒子である請求項8記載のニッケル
正極。
15. The reaction pH in the production of nickel hydroxide, wherein the active material powder is made of a mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate and an aqueous sodium hydroxide solution.
The nickel positive electrode according to claim 8, wherein the nickel positive electrode is a particle obtained by controlling the following.
【請求項16】 反応pHが11.3±0.2である請
求項15記載のニッケル正極。
16. The nickel positive electrode according to claim 15 , wherein the reaction pH is 11.3 ± 0.2.
【請求項17】 ニッケル酸化物を主成分とするニケッ
ル正極と、電気化学的に水素の吸蔵放出反応が可能な水
素吸蔵合金を主体とする負極かあるいは酸化カドミウム
を主体とする負極と、アルカリ電解液と、セパレータと
これらの発電要素を挿入するケースと、安全弁を備えた
封口板とからなるアルカリ蓄電池において、初充放電前
に前記ニッケル正極は、カドミウム、カルシウム、亜
鉛、マグネシウム、鉄、コバルトおよびマンガンからな
る群のうちの少なくとも一種を水酸化ニッケル活物質粉
末中に1〜7wt%含有し、0.1μm以下の一次粒子
が無数に集合した粒子であり、30Å以上の細孔半径を
有する空間体積が細孔半径が10〜200Åの全空間体
積に対して20〜70%である水酸化ニッケル粉末にコ
バルト、水酸化コバルト、酸化亜鉛、亜鉛、カドミウム
および酸化カドミウムからなる群のうちの少なくとも一
種とこれらの粉末を支持し、導電性を付与する3次元多
孔体あるいは平板から主に構成されるニッケル正極を用
い、アルカリ電解液の比重は1.23〜1.4であり、
電池容量1Ah当たりの電解液量は1.0〜2.0cm
3/Ahであることを特徴とするアルカリ蓄電池。
17. A nickel positive electrode mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen or a negative electrode mainly composed of cadmium oxide, and an alkaline electrolysis. Liquid, a separator and a case for inserting these power generating elements, and an alkaline storage battery comprising a sealing plate provided with a safety valve, the nickel positive electrode before the first charge and discharge, cadmium, calcium, zinc, magnesium, iron, cobalt and A space in which at least one member of the group consisting of manganese is contained in the nickel hydroxide active material powder in an amount of 1 to 7 wt%, in which primary particles of 0.1 μm or less are aggregated innumerably, and have a pore radius of 30 ° or more. volume cobalt nickel hydroxide powder is 20% to 70% pore radius of the total pore volume 10~200A, hydroxide cobaltite Alkaline electrolysis using a nickel positive electrode mainly composed of a three-dimensional porous body or a flat plate that supports at least one of the group consisting of zinc oxide, zinc, cadmium and cadmium oxide and provides these powders and imparts conductivity. The specific gravity of the liquid is 1.23 to 1.4,
The amount of electrolyte per 1 Ah of battery capacity is 1.0 to 2.0 cm
3 / Ah.
【請求項18】 ニッケル正極は重量比で、水酸化ニッ
ケル:コバルト:水酸化コバルト:酸化亜鉛および/又
は酸化カドミウム:カドミウムおよび/又は亜鉛=10
0:4〜18:0〜10:0〜10:0〜10の割合で
ある請求項17記載のアルカリ蓄電池。
18. The nickel positive electrode has a weight ratio of nickel hydroxide: cobalt: cobalt hydroxide: zinc oxide and / or cadmium oxide: cadmium and / or zinc = 10.
The alkaline storage battery according to claim 17 , wherein the ratio is 0: 4 to 18: 0 to 10: 0 to 10: 0 to 10.
【請求項19】 3次元多孔体が、発泡状ニッケル多孔
体あるいはパンチングメタルである請求項17記載のア
ルカリ蓄電池。
19. The alkaline storage battery according to claim 17 , wherein the three-dimensional porous body is a foamed nickel porous body or a punched metal.
【請求項20】 発泡状ニッケル多孔体は、その面密度
が200〜700g/m2である請求項17記載のアル
カリ蓄電池。
20. The alkaline storage battery according to claim 17 , wherein the foamed nickel porous body has an areal density of 200 to 700 g / m 2 .
【請求項21】 水酸化ニッケル活物質粉末は、平均粒
子径が7〜20μmであり、タップ密度が1.9g/c
3以上の粒子である請求項17記載のアルカリ蓄電
池。
21. The nickel hydroxide active material powder has an average particle size of 7 to 20 μm and a tap density of 1.9 g / c.
alkaline storage battery according to claim 17 wherein m is 3 or more particles.
【請求項22】 水酸化ニッケル活物質粉末は、窒素ガ
スの吸着により測定されるBET比表面積が10〜20
2/gである請求項17記載のアルカリ蓄電池。
22. The nickel hydroxide active material powder has a BET specific surface area of 10 to 20 as measured by adsorption of nitrogen gas.
The alkaline storage battery according to claim 17 , wherein m 2 / g.
【請求項23】 前記、細孔半径が10〜200Åの全
空間体積0.015〜0.04cm3/gである請求
17記載のアルカリ蓄電池。
23. The alkaline storage battery according to claim 17 , wherein the total volume of the space having a pore radius of 10 to 200 ° is 0.015 to 0.04 cm 3 / g.
【請求項24】 水酸化ニッケルが、硫酸ニッケル、硫
酸亜鉛および硫酸コバルトの混合水溶液と水酸化ナトリ
ウム水溶液とにより生成され、水酸化ニッケルの生成反
応における反応pHを制御して得られた粒子である請求
17記載のアルカリ蓄電池。
24. Nickel hydroxide is a particle produced by a mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate and an aqueous sodium hydroxide solution, and obtained by controlling a reaction pH in a nickel hydroxide production reaction. The alkaline storage battery according to claim 17 .
【請求項25】 水酸化ニッケルの生成反応における反
応pHが、11.3±0.2である請求項24記載のア
ルカリ蓄電池。
25. The alkaline storage battery according to claim 24 , wherein the reaction pH in the nickel hydroxide production reaction is 11.3 ± 0.2.
【請求項26】 アルカリ電解液が、水酸化カリウムと
水酸化ナトリウムのうちの少なくとも一種と水酸化リチ
ウムからなる請求項17記載のアルカリ蓄電池。
26. The alkaline storage battery according to claim 17 , wherein the alkaline electrolyte comprises at least one of potassium hydroxide and sodium hydroxide and lithium hydroxide.
【請求項27】 水酸化リチウム(LiOH)が電解液
中に10g/l以上含有されている請求項26記載のア
ルカリ蓄電池。
27. The alkaline storage battery according to claim 26, wherein lithium hydroxide (LiOH) is contained in the electrolytic solution in an amount of 10 g / l or more.
JP03194923A 1991-07-08 1991-07-08 Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same Expired - Lifetime JP3092222B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03194923A JP3092222B2 (en) 1991-07-08 1991-07-08 Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same
US07/795,845 US5700596A (en) 1991-07-08 1991-11-21 Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
EP91120178A EP0523284B1 (en) 1991-07-08 1991-11-26 Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
DE69118525T DE69118525T2 (en) 1991-07-08 1991-11-26 Active material made of nickel hydroxide powder, positive nickel electrode, and its use in an alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03194923A JP3092222B2 (en) 1991-07-08 1991-07-08 Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JPH0541212A JPH0541212A (en) 1993-02-19
JP3092222B2 true JP3092222B2 (en) 2000-09-25

Family

ID=16332596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03194923A Expired - Lifetime JP3092222B2 (en) 1991-07-08 1991-07-08 Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP3092222B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568971B2 (en) * 1993-03-30 1997-01-08 古河電池株式会社 Nickel-hydrogen secondary battery
JP2984806B2 (en) * 1993-03-30 1999-11-29 古河電池 株式会社 Sealed nickel-hydrogen secondary battery
US5674643A (en) * 1995-02-14 1997-10-07 Sanyo Electric Co., Ltd. Non-sintered nickel electrode for alkaline storage cell
US7393612B2 (en) 1996-12-17 2008-07-01 Toshiba Battery Co., Ltd. Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
WO1998031063A1 (en) * 1997-01-09 1998-07-16 Sanyo Electric Co., Ltd. Alkaline storage battery and method for charging battery
EP0940865A3 (en) * 1998-03-05 2004-11-03 Matsushita Electric Industrial Co., Ltd Active materials for the positive electrode in alkaline storage battery and the manufacturing method of them
US6416903B1 (en) * 1998-08-17 2002-07-09 Ovonic Battery Company, Inc. Nickel hydroxide electrode material and method for making the same
CN1233055C (en) 2000-06-16 2005-12-21 松下电器产业株式会社 Anode active material for alkali storage battery, anode including samd, and alkali storage battery
JP4330832B2 (en) 2001-12-07 2009-09-16 パナソニック株式会社 Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
JP4573510B2 (en) * 2003-09-30 2010-11-04 三洋電機株式会社 Alkaline storage battery and battery pack
KR101903362B1 (en) * 2011-01-10 2018-10-02 바스프 에스이 Method for producing transition metal hydroxides
US10128492B2 (en) 2013-12-10 2018-11-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for alkaline storage batteries and alkaline storage battery
CN114613950B (en) * 2022-03-08 2024-04-19 三峡大学 Preparation method of high-capacity composite positive electrode material of water-based zinc-nickel battery

Also Published As

Publication number Publication date
JPH0541212A (en) 1993-02-19

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
EP0523284B1 (en) Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP3092222B2 (en) Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same
JP3136668B2 (en) Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same
Geng et al. Charging/discharging stability of a metal hydride battery electrode
JP3505953B2 (en) Active material for nickel electrode and nickel positive electrode for alkaline storage battery using the same
Geng et al. Characteristics of the High‐Rate Discharge Capability of a Nickel/Metal Hydride Battery Electrode
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
Kaiya et al. Improvement in cycle life performance of high capacity nickel-metal hydride battery
JP2001076730A (en) Nickel-hydrogen secondary battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3695927B2 (en) Non-sintered nickel positive electrode for alkaline storage battery, electrolytic solution for alkaline storage battery, and alkaline storage battery using these nickel positive electrode and electrolytic solution
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP2875822B2 (en) Method for manufacturing nickel-hydrogen secondary battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
Chen et al. The effect of Zn (OH) 2 addition on the electrode properties of nickel hydroxide electrodes
JP4531874B2 (en) Nickel metal hydride battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH03285270A (en) Alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

EXPY Cancellation because of completion of term