JP2925604B2 - Processing method of hydrogen storage alloy for alkaline secondary battery - Google Patents

Processing method of hydrogen storage alloy for alkaline secondary battery

Info

Publication number
JP2925604B2
JP2925604B2 JP1291976A JP29197689A JP2925604B2 JP 2925604 B2 JP2925604 B2 JP 2925604B2 JP 1291976 A JP1291976 A JP 1291976A JP 29197689 A JP29197689 A JP 29197689A JP 2925604 B2 JP2925604 B2 JP 2925604B2
Authority
JP
Japan
Prior art keywords
battery
hydrogen storage
storage alloy
acid
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1291976A
Other languages
Japanese (ja)
Other versions
JPH03152868A (en
Inventor
誠司 亀岡
修弘 古川
光造 野上
幹朗 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1291976A priority Critical patent/JP2925604B2/en
Publication of JPH03152868A publication Critical patent/JPH03152868A/en
Application granted granted Critical
Publication of JP2925604B2 publication Critical patent/JP2925604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ二次電池の負極に用いられる水素
吸蔵合金の処理方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for treating a hydrogen storage alloy used for a negative electrode of an alkaline secondary battery.

従来の技術 近年、負極にかドミウムを用いるニッケル−カドミウ
ム二次電池に変わる新しいアルカリ二次電池として、負
極に水素吸蔵合金を用いたニッケル水素電池の研究開発
が盛んに行われている。このニッケル−水素電池は負極
に水素吸蔵合金の組成種類を選択することにより、長寿
命且つ高エネルギー密度化が可能である。
2. Description of the Related Art In recent years, as a new alkaline secondary battery replacing a nickel-cadmium secondary battery using cadmium for the negative electrode, research and development of a nickel-metal hydride battery using a hydrogen storage alloy for the negative electrode have been actively performed. The nickel-hydrogen battery can have a long life and a high energy density by selecting the composition type of the hydrogen storage alloy for the negative electrode.

ところが、上記水素吸蔵合金は、合金の粉砕工程や電
極の作製工程において表面酸化を受け易く、特に上記粉
砕時には表面に緻密な酸化皮膜が生成される。そして、
このような緻密な酸化皮膜が形成された水素吸蔵合金粉
体を電極として用いると、合金の初期活性化が疎害され
たり、電極の電気伝導性が低下して、急速充放電時の充
放電効率が低下する等の課題を生じることになる。
However, the hydrogen storage alloy is susceptible to surface oxidation during the alloy pulverization step and the electrode preparation step, and a dense oxide film is formed on the surface particularly during the pulverization. And
When the hydrogen storage alloy powder on which such a dense oxide film is formed is used as an electrode, the initial activation of the alloy is impaired or the electrical conductivity of the electrode is reduced, and the charge and discharge during rapid charge and discharge are performed. Problems such as a decrease in efficiency will occur.

そこで、合金の粉砕工程や電極の作製工程における酸
化を抑制すべく、以下に示すような方法が提案されてい
る。
Therefore, the following methods have been proposed to suppress oxidation in the alloy pulverizing step and the electrode manufacturing step.

上記両工程を不活性雰囲気下で行う方法。A method in which both of the above steps are performed under an inert atmosphere.

特開昭61−285658号公報に示すように、粉砕後の水素
吸蔵合金をアルカリ水溶液で処理して、合金表面の溶解
し易い金属を予め除去しておく方法。
As disclosed in JP-A-61-285658, a method in which a pulverized hydrogen-absorbing alloy is treated with an aqueous alkali solution to remove in advance metals that are easily dissolved on the alloy surface.

発明が解決しようとする課題 しかしながら、上記の方法では工程が煩雑化して生
産性が低下するため、電池の製造コストが高騰する。
Problems to be Solved by the Invention However, in the above-described method, the steps are complicated and productivity is reduced, so that the manufacturing cost of the battery is increased.

また、上記の方法では、酸化物の化学的性質より緻
密な酸化皮膜を十分に除去することができず、合金の初
期活性化や電極の電気伝導性を十分に向上させることが
できないという課題を有していた。
In addition, the above-mentioned method has a problem that a dense oxide film cannot be sufficiently removed due to the chemical properties of the oxide, and the initial activation of the alloy and the electrical conductivity of the electrode cannot be sufficiently improved. Had.

本発明はかかる現状に鑑みてなされたものであり、生
産性を低下させることなく合金の初期活性化や電極の電
気伝導性の向上を十分に図ることができるアルカリ二次
電池用水素吸蔵合金の処理方法を提供することを目的と
する。
The present invention has been made in view of such circumstances, and a hydrogen storage alloy for an alkaline secondary battery capable of sufficiently improving the initial activation of the alloy and the electrical conductivity of the electrode without lowering the productivity. It is an object to provide a processing method.

課題を解決するための手段 本発明は上記目的を達成するために、水素吸蔵合金を
作製した後、これを粉砕する第1ステップと、上記粉砕
された水素吸蔵合金を、塩酸、フッ素、リン酸、ホウ酸
から選択された少なくとも1種の酸性水溶液で処理する
第2ステップと、上記酸処理終了後の水素吸蔵合金をア
ルカリ水溶液で処理する第3ステップとを有することを
特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides a first step of preparing a hydrogen storage alloy and then pulverizing the hydrogen storage alloy, and converting the pulverized hydrogen storage alloy into hydrochloric acid, fluorine, and phosphoric acid. And a third step of treating the hydrogen storage alloy after completion of the acid treatment with an alkaline aqueous solution, wherein the second step is a treatment with at least one acidic aqueous solution selected from boric acid.

作用 上記第2ステップに示すように、粉砕された水素吸蔵
合金を酸性水溶液で処理すれば、第1ステップの合金粉
砕時に合金表面に生成した緻密な酸化物皮膜はその化学
的性質により、十分に除去されることになる。
Action As shown in the above second step, if the pulverized hydrogen storage alloy is treated with an acidic aqueous solution, the dense oxide film formed on the alloy surface during the pulverization of the alloy in the first step can be sufficiently reduced due to its chemical properties. Will be removed.

また、第3ステップに示すように、酸処理終了後の水
素吸蔵合金をアルカリ水溶液で処理すれば、合金表面は
水酸化物を主体とするポーラスな皮膜で覆われる。これ
により、その後合金が空気に曝されても、合金表面に緻
密な酸化物皮膜が生成されることはない。尚、上記ポー
ラスな皮膜は、電池内で生成する膜と酷似しているの
で、負極に用いても電池の電気化学的な活性度が損なわ
れることはない。
Further, as shown in the third step, if the hydrogen storage alloy after the acid treatment is treated with an alkaline aqueous solution, the alloy surface is covered with a porous film mainly composed of hydroxide. Thereby, even if the alloy is subsequently exposed to air, a dense oxide film is not formed on the alloy surface. Since the porous film is very similar to a film formed in the battery, the electrochemical activity of the battery is not impaired even when used as a negative electrode.

〔実施例I〕[Example I]

先ず、市販のミッシュメタルMm(La,Ce,Nd,Pr等希土
類元素の混合物),Ni,Co及びMnを用い、元素比でMm:Ni:
Co:Mnが1:3:1.25:0.75となるように秤量して混合した。
次に、この混合物をアルゴン不活性雰囲気アーク炉にて
溶解し、MmNi3Co1.25Mn0.75で表される合金を作成し
た。次いで、この合金を機械的に30μm以下の粒度に粉
砕した後、この合金粉体をpH=3の塩酸水溶液中で撹拌
しながら約8時間処理する。この後、上澄み液を除去し
た後、過剰量のpH=15のKOH水溶液で処理する。しかる
後、上記処理後の合金粉体を純水で洗浄,乾燥する。
First, using commercially available misch metal Mm (a mixture of rare earth elements such as La, Ce, Nd, and Pr), Ni, Co, and Mn, Mm: Ni:
It was weighed and mixed so that Co: Mn was 1: 3: 1.25: 0.75.
Next, this mixture was melted in an arc furnace with an inert atmosphere of argon to prepare an alloy represented by MmNi 3 Co 1.25 Mn 0.75 . Next, the alloy is mechanically pulverized to a particle size of 30 μm or less, and the alloy powder is treated in a hydrochloric acid aqueous solution having a pH of 3 for about 8 hours while stirring. Thereafter, after removing the supernatant, the mixture is treated with an excess amount of an aqueous KOH solution at pH = 15. Thereafter, the treated alloy powder is washed with pure water and dried.

しかる後、上記処理が施された合金粉体に結着剤とし
てのポリテトラフルオロエチレン(PTFE)を添加した
後、これらを混練してペーストを作成した。次に、この
ペーストを集電体の両面に圧着して水素吸蔵合金負極
(以下、水素極と略す)を作製した後、この水素極と公
知の焼結式ニッケル正極(容量:0.6Ahr)とを不繊布か
ら成るセパレータを介して巻取って電極体を作製した。
次いで、この電極体を電池缶内に挿入した後、電池缶内
に電解液(30wt%のKOH溶液)を注入する。最後に、電
池缶の封口を行なって密閉型ニッケル−水素電池を作製
した。
Thereafter, polytetrafluoroethylene (PTFE) as a binder was added to the alloy powder that had been subjected to the above treatment, and these were kneaded to prepare a paste. Next, this paste is pressed against both surfaces of the current collector to form a hydrogen storage alloy negative electrode (hereinafter abbreviated as a hydrogen electrode). The hydrogen electrode and a known sintered nickel positive electrode (capacity: 0.6 Ahr) Was wound through a separator made of a non-woven fabric to produce an electrode body.
Next, after inserting the electrode body into the battery can, an electrolyte (30 wt% KOH solution) is injected into the battery can. Finally, the battery can was sealed to produce a sealed nickel-hydrogen battery.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.

〔実施例II,III〕(Examples II and III)

下記第1表に示すように、酸性溶液としてリン酸及び
フッ酸を用いる他は、上記実施例Iと同様にして電池を
作製した。
As shown in Table 1 below, a battery was prepared in the same manner as in Example I except that phosphoric acid and hydrofluoric acid were used as the acidic solution.

このようにして作製した電池を、以下それぞれ(A2
電池、(A3)電池と称する。
The batteries fabricated in this manner are referred to below as (A 2 )
Battery, referred to as (A 3 ) battery.

〔比較例I〕[Comparative Example I]

下記第1表に示すように、水素吸蔵合金の粉砕後に酸
及びアルカリ処理を施さない他は、上記実施例Iと同様
にして電池を作製した。
As shown in Table 1 below, a battery was produced in the same manner as in Example I above, except that no acid or alkali treatment was applied after the pulverization of the hydrogen storage alloy.

このようにして作製した電池を、以下(X1)電池と称
する。
The battery fabricated in this manner is hereinafter referred to as (X 1 ) battery.

〔比較例II,III〕(Comparative Examples II and III)

下記第1表に示すように、水素吸蔵合金の粉砕後にア
ルカリ処理を施さない他は、上記実施例Iと同様にして
電池を作製した。尚、比較例IIIにおいては酸のpHは実
施例Iと同様3に設定しているが、比較例IIにおいて
は、酸のpHを1に設定している。
As shown in Table 1 below, a battery was fabricated in the same manner as in Example I, except that the alkali treatment was not performed after the pulverization of the hydrogen storage alloy. In Comparative Example III, the pH of the acid was set to 3 as in Example I, but in Comparative Example II, the pH of the acid was set to 1.

このようにして作製した電池を、以下それぞれ(X2
電池,(X3)電池と称する。
The batteries fabricated in this way are referred to below as (X 2 )
Cell, referred to as (X 3) batteries.

〔比較例IV〜VI〕(Comparative Examples IV to VI)

下記第1表に示すように、水素吸蔵合金の粉砕後にア
ルカリ処理を施さない他は、上記実施例IIと同様にして
電池を作製した。尚、比較例Vにおいては酸のpHは実施
例IIと同様3に設定しているが、比較例IV及び比較例VI
においては、酸のpHをそれぞれ1及び6に設定してい
る。
As shown in Table 1 below, a battery was produced in the same manner as in Example II except that the alkali treatment was not performed after the pulverization of the hydrogen storage alloy. In Comparative Example V, the pH of the acid was set to 3 as in Example II. However, Comparative Example IV and Comparative Example VI
In, the pH of the acid is set to 1 and 6, respectively.

このようにして作製した電池を、以下それぞれ(X4
電池,(X5)電池,(X6)電池と称する。
The batteries fabricated in this manner are referred to below as (X 4 )
Battery, (X 5) cell, referred to as (X 6) cells.

〔比較例VII〜IX〕(Comparative Examples VII to IX)

下記第1表に示すように、水素吸蔵合金の粉砕後にア
ルカリ処理を施さない他は、上記実施例IIIと同様にし
て電池を作製した。尚、比較例VIIIにおいては酸のpHは
実施例IIIと同様3に設定しているが、比較例VII及び比
較例IXにおいては、酸のpHをそれぞれ1及び6に設定し
ている。
As shown in Table 1 below, a battery was manufactured in the same manner as in Example III except that the alkali treatment was not performed after the pulverization of the hydrogen storage alloy. In Comparative Example VIII, the pH of the acid was set to 3 as in Example III, but in Comparative Examples VII and IX, the pH of the acid was set to 1 and 6, respectively.

このようにして作製した電池を、以下それぞれ(X7
電池,(X8)電池,(X9)電池と称する。
Thus the battery thus fabricated is hereinafter respectively (X 7)
Battery, (X 8) cell, referred to as (X 9) cells.

〔実験I〕 上記本発明の処理を施した水素吸蔵合金を用いた
(A1)電池と酸及びアルカリ処理を施していない水素吸
蔵合金を用いた(X1)電池とにおける、サイクル数と電
池容量及び電池重量減少との関係を調べたので、その結
果を第1図に示す。尚、実験条件は、水素吸蔵合金の単
位重量当たりの電流が250mAで充電量0.72Ahまで充電し
た後、電池電圧が1.0Vに達するまで放電するという条件
で行った。
[Experiment I] The number of cycles and the batteries in the (A 1 ) battery using the hydrogen storage alloy treated according to the present invention and the (X 1 ) battery using the hydrogen storage alloy not treated with acid and alkali. The relationship between the capacity and the decrease in battery weight was examined, and the results are shown in FIG. The experimental conditions were such that the hydrogen storage alloy was charged at a current per unit weight of 250 mA to a charge amount of 0.72 Ah, and then discharged until the battery voltage reached 1.0 V.

第1図から明らかなように、(X1)電池では1サイク
ル目の電池容量が小さいのに対して、(A1)電池では1
サイクル目から電池容量が大きくなっていることが認め
られる。これにより、(A1)電池では当初より合金の活
性化が速かに進行していることが伺える。
As apparent from FIG. 1, the battery capacity of the (X 1 ) battery in the first cycle is small, whereas the battery capacity of the (A 1 ) battery is 1
From the cycle, it is recognized that the battery capacity has increased. This indicates that the activation of the alloy in the (A 1 ) battery has progressed rapidly from the beginning.

加えて、充放電サイクルを繰り返した場合に、(X1
電池では電池容量の低下が著しく且つ電池重量も大幅に
減少しているのに対して、(A1)電池では電池容量が余
り低下せず且つ電池重量も若干減少しているに過ぎない
ことが認められる。これにより、(A1)電池では充放電
時の負極の充放電効率が向上していることが伺える。
In addition, when the charge and discharge cycle is repeated, (X 1 )
In the case of the battery, the battery capacity is significantly reduced and the battery weight is also significantly reduced, whereas in the case of the (A 1 ) battery, the battery capacity is not significantly reduced and the battery weight is only slightly reduced. Is recognized. This indicates that the charge / discharge efficiency of the negative electrode during charge / discharge is improved in the (A 1 ) battery.

〔実験II〕(Experiment II)

上記本発明の処理を施した水素吸蔵合金を用いた
(A1)電池〜(A3)電池と、酸及びアルカリ処理を施し
ていない水素吸蔵合金を用いた(X1)電池,アルカリ処
理のみを施していない水素吸蔵合金を用いた(X2)電池
〜(X9)電池とにおける電池重量減少量を調べたので、
その結果を上記第1表に併せて示す。尚、電池重量減少
量の値は100サイクル目の値である。
(A 1 ) to (A 3 ) batteries using the hydrogen storage alloy treated according to the present invention, (X 1 ) batteries using the hydrogen storage alloy not subjected to acid and alkali treatment, only alkali treatment (X 2 ) to (X 9 ) using hydrogen-absorbing alloys that were not subjected to hydrogen storage, the battery weight loss was investigated.
The results are shown in Table 1 above. Note that the value of the battery weight reduction amount is the value at the 100th cycle.

第1表より明らかなように、(A1)電池〜(A3)電池
では電池重量減少量が0.01〜0.03gであるのに対して、
(X1)電池では0.54g,酸処理を施した(X2)電池〜
(X9)電池でも0.06〜0.14gであることが認められる。
このように、(A1)電池〜(A3)電池では電池重量減少
量が著しく減少するので、充放電効率が上昇することが
判る。
As is clear from Table 1, the battery weight reduction of (A 1 ) to (A 3 ) is 0.01 to 0.03 g,
(X 1 ) battery: 0.54 g, acid-treated (X 2 ) battery ~
(X 9 ) It is also recognized that the battery weighs 0.06 to 0.14 g.
As described above, in the (A 1 ) battery to the (A 3 ) battery, since the battery weight reduction amount is significantly reduced, it can be seen that the charge / discharge efficiency is increased.

尚、硝酸若しくは硫酸を用いて酸処理を行った水素吸
蔵合金を用いた電池は、上記実施例で示した酸(塩酸、
リン酸、フッ酸)で処理したものに比べると、電池重量
減少量が多くなる。これは、陰イオンはアルカリ処理に
て殆ど除去されるが、若干電池系に不純物として混入す
る場合がある。この場合において、例えば酸に硝酸、硫
酸を用いると、NO3 -、SO4 2-イオンによって電池内で自
己放電が生じる。この結果、硝酸、硫酸を使用して得た
電池では、電池重量減少量が多くなる。したがって、酸
としては電池系に悪影響を与えないイオンからなる酸、
即ち上記実施例に示す塩酸、リン酸、フッ酸或いは実施
例には示さないが同様の効果のあることを確認している
ホウ酸とする必要がある。
In addition, the battery using the hydrogen storage alloy subjected to the acid treatment with nitric acid or sulfuric acid is the same as the acid (hydrochloric acid,
(Phosphoric acid, hydrofluoric acid), the amount of weight loss of the battery is increased. Although most of the anions are removed by the alkali treatment, the anions may be slightly mixed into the battery system as impurities. In this case, for example, nitric acid, with sulfuric acid, NO 3 -, self-discharge occurs in the cell by SO 4 2-ions. As a result, in the battery obtained by using nitric acid and sulfuric acid, the amount of reduction in battery weight increases. Therefore, acid composed of ions that do not adversely affect the battery system as the acid,
That is, it is necessary to use hydrochloric acid, phosphoric acid, hydrofluoric acid or boric acid which is not shown in the above-described embodiments but has been confirmed to have the same effect.

また、上記実施例の結果より、酸性水溶液のpHとして
は1〜6の範囲が良い。
Further, from the results of the above example, the pH of the acidic aqueous solution is preferably in the range of 1 to 6.

更に、アルカリ水溶液としては、平易に取扱いできる
pH=8〜16程度のものが良い。また、アルカリ水溶液と
しては、電池の電解液として一般に用いられる水酸化カ
リウムを主体とする水溶液が望ましい。
Furthermore, as an alkaline aqueous solution, it can be easily handled.
Those having a pH of about 8 to 16 are preferred. As the alkaline aqueous solution, an aqueous solution mainly composed of potassium hydroxide, which is generally used as an electrolyte for a battery, is desirable.

加えて、水素吸蔵合金としては上記実施例に示すもの
に限定するものではなく、全ての組成の合金に本発明を
適用しうることは勿論である。
In addition, the hydrogen storage alloy is not limited to the one shown in the above-described embodiment, and it goes without saying that the present invention can be applied to alloys of all compositions.

発明の効果 以上説明したように本発明によれば、水素吸蔵合金粉
体を塩酸、フッ酸、リン酸、ホウ酸から選択された少な
くとも1種の酸性水溶液による酸処理することにより、
粉砕時に合金表面は生成した緻密な酸化膜が除去され
る。したがって、このような粉体で電極を構成すれば、
初期活性化を十分に図ることができると共に、粒子間の
接触抵抗が低減され且つ電極の電気伝導性が向上するの
で、急速充電時の充放電効率を向上させることができ
る。
Effects of the Invention As described above, according to the present invention, hydrogen-absorbing alloy powder is subjected to acid treatment with at least one acidic aqueous solution selected from hydrochloric acid, hydrofluoric acid, phosphoric acid, and boric acid,
During the pulverization, a dense oxide film formed on the alloy surface is removed. Therefore, if the electrode is composed of such powder,
Since the initial activation can be sufficiently achieved, the contact resistance between the particles is reduced, and the electric conductivity of the electrode is improved, so that the charging / discharging efficiency at the time of rapid charging can be improved.

また、酸処理終了後にアルカリ処理を行って陰イオン
を除去しているが、これに伴って合金の表面にはポーラ
スな水酸化物の皮膜が生成する。したがって、その後合
金が空気に曝されても、合金表面に緻密な酸化物皮膜が
生成されることはなく、生産性の向上を図ることが可能
となる。
In addition, after the acid treatment is completed, an alkali treatment is performed to remove anions, but a porous hydroxide film is formed on the surface of the alloy. Therefore, even if the alloy is subsequently exposed to air, a dense oxide film is not formed on the alloy surface, and the productivity can be improved.

加えて、両処理は不活性雰囲気下で行う必要がないの
で、この点からも生産性の向上を図ることができるとい
う結果を奏する。
In addition, both processes do not need to be performed in an inert atmosphere, so that the productivity can be improved from this point as well.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の処理を施した水素吸蔵合金を用いた
(A1)電池と、酸及びアルカリ処理を施していない水素
吸蔵合金を用いた(X1)電池とにおける、サイクル数と
電池容量及び電池重量減少との関係を示すグラフであ
る。
FIG. 1 shows the number of cycles and the number of batteries in the battery (A 1 ) using the hydrogen storage alloy treated according to the present invention and the battery (X 1 ) using the hydrogen storage alloy not treated with acid or alkali. 5 is a graph showing a relationship between capacity and battery weight reduction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田所 幹朗 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭64−54669(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/38 H01M 4/24 - 4/26 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Mikiro Tadokoro 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-64-54669 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 4/38 H01M 4/24-4/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金を作製した後、これを粉砕す
る第1ステップと、 上記粉砕された水素吸蔵合金を、塩酸、フッ酸、リン
酸、ホウ酸から選択された少なくとも1種の酸性水溶液
で処理する第2ステップと、 上記酸処理終了後の水素吸蔵合金をアルカリ水溶液で処
理する第3ステップとを有することを特徴とするアルカ
リ二次電池用水素吸蔵合金の処理方法。
A first step of pulverizing the hydrogen storage alloy after preparing the hydrogen storage alloy; and removing the pulverized hydrogen storage alloy from at least one acid selected from hydrochloric acid, hydrofluoric acid, phosphoric acid and boric acid. A method for treating a hydrogen storage alloy for an alkaline secondary battery, comprising: a second step of treating with an aqueous solution; and a third step of treating the hydrogen storage alloy after completion of the acid treatment with an alkaline aqueous solution.
JP1291976A 1989-11-09 1989-11-09 Processing method of hydrogen storage alloy for alkaline secondary battery Expired - Fee Related JP2925604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291976A JP2925604B2 (en) 1989-11-09 1989-11-09 Processing method of hydrogen storage alloy for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291976A JP2925604B2 (en) 1989-11-09 1989-11-09 Processing method of hydrogen storage alloy for alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH03152868A JPH03152868A (en) 1991-06-28
JP2925604B2 true JP2925604B2 (en) 1999-07-28

Family

ID=17775902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291976A Expired - Fee Related JP2925604B2 (en) 1989-11-09 1989-11-09 Processing method of hydrogen storage alloy for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2925604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107165A (en) * 1999-09-30 2001-04-17 Toshiba Corp Hydrogen storage alloy, its producing method and secondary battery and electric vehicle using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384760B1 (en) * 1995-04-05 2003-08-19 산요 덴키 가부시키가이샤 Manufacturing method of hydrogen storage alloy for alkaline storage battery and manufacturing method of hydrogen storage alloy electrode
US6110304A (en) 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries
DE69736393T2 (en) * 1996-06-26 2007-08-09 Sanyo Electric Co., Ltd., Moriguchi Process for producing a hydrogen-absorbing alloy electrode
US6238822B1 (en) 1997-01-31 2001-05-29 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder and method of manufacturing the same
JP2982805B1 (en) 1998-02-19 1999-11-29 松下電器産業株式会社 Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
JP3606097B2 (en) * 1999-03-18 2005-01-05 松下電器産業株式会社 Activation treatment method of hydrogen storage alloy for battery
JP3995383B2 (en) 2000-02-15 2007-10-24 三洋電機株式会社 Method for producing hydrogen storage alloy electrode
TW202224240A (en) 2020-11-20 2022-06-16 日商日本斯頻德製造股份有限公司 Method for producing slurry for negative electrode, and slurry for negative electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107165A (en) * 1999-09-30 2001-04-17 Toshiba Corp Hydrogen storage alloy, its producing method and secondary battery and electric vehicle using the same
JP4659936B2 (en) * 1999-09-30 2011-03-30 株式会社東芝 Hydrogen storage alloy, method for producing the same, secondary battery using the same, and electric vehicle

Also Published As

Publication number Publication date
JPH03152868A (en) 1991-06-28

Similar Documents

Publication Publication Date Title
JPH05225975A (en) Hydrogen storage alloy electrode
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
US20010054458A1 (en) Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
JP4497828B2 (en) Nickel-hydrogen storage battery and battery pack
JP2899849B2 (en) Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP3432870B2 (en) Method for producing metal hydride electrode
JP2823301B2 (en) Hydrogen storage alloy electrode
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2987873B2 (en) Alkaline storage battery
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JPH0613077A (en) Hydrogen storage electrode
JP3144879B2 (en) Metal-hydrogen alkaline storage battery
JP3547905B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP2755682B2 (en) Metal-hydrogen alkaline storage battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JP2950895B2 (en) Metal-hydrogen alkaline storage battery
JP2925612B2 (en) Method for producing metal-hydrogen alkaline storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees