JPH05225975A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH05225975A
JPH05225975A JP4075114A JP7511492A JPH05225975A JP H05225975 A JPH05225975 A JP H05225975A JP 4075114 A JP4075114 A JP 4075114A JP 7511492 A JP7511492 A JP 7511492A JP H05225975 A JPH05225975 A JP H05225975A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrochloric acid
alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4075114A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP4075114A priority Critical patent/JPH05225975A/en
Publication of JPH05225975A publication Critical patent/JPH05225975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve initial discharge capacity, and reduce charging and discharging cycles necessary for initial activation to improve productivity by using hydrogen storage alloy particles after treatment and removal of an oxide film with hydrochloric acid. CONSTITUTION:Each powder of Misch metal, nickel, cobalt and aluminum is so measured and mixed as to obtain the predetermined composition ratio, dissolved under heating by an arc melting method, and cooled, thereby forming a hydrogen storage alloy ingot. Thereafter, the ingot is pulverized to form hydrogen storage alloy powder comprising grains of 250-mesh size or less. Then, the alloy powder is immersed in hydrochloric acid having the predetermined concentration, a trace of oxide films generated on the surface of the alloy, for example, films of lanthanum oxide, lanthanum hydroxide, or the like is removed and, then, the alloy is subjected to a washing and drying process. A hydrogen storage alloy electrode comprising the hydrogen storage alloy particles after treatment and removal of the oxide film with hydrochloric acid is improved in initial discharge capacity at the time of manufacturing an H-M battery, and the number of charging and discharging cycles necessary for initial activation can be reduced, thereby enabling productivity to be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−水素電池な
どの負極に用いる水素吸蔵合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used for a negative electrode of a nickel-hydrogen battery or the like.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金を用いた電極を二次
電池の負極とし、正極には、例えばニッケル酸化物を用
い、電解液としてアルカリ水溶液を用いたエネルギー密
度の大きいニッケル−水素電池が提案されている。この
場合の負極用の水素吸蔵合金は、例えばLaNi系合
金、MmNi系合金などの各組成元素の複数種の金属
の各粉末を所定の組成比で秤量混合し、その混合粉をア
ーク溶解法により加熱溶融した後、冷却してインゴット
となし、これを機械的に粉砕して250メッシュ以下の
水素吸蔵合金粉末とし得られたものである。このように
して得られた水素吸蔵合金粉末に導電剤粉と結着剤とを
混ぜて合剤とし、これをニッケル金網などの多孔基板に
圧着して水素吸蔵合金電極を製造し、これを負極とし
て、密閉型ニッケル−水素電池に使用されている。
2. Description of the Related Art Conventionally, a nickel-hydrogen battery having a large energy density, which uses an electrode using a hydrogen storage alloy as a negative electrode of a secondary battery, uses nickel oxide for the positive electrode, and uses an alkaline aqueous solution as an electrolyte. Proposed. In this case, the hydrogen storage alloy for the negative electrode is, for example, LaNi 5 series alloy, MmNi 5 series alloy, and the like, powders of plural kinds of metals of respective composition elements are weighed and mixed at a predetermined composition ratio, and the mixed powder is arc-melted. After being heated and melted by the method, it is cooled to form an ingot, which is mechanically crushed to obtain a hydrogen storage alloy powder of 250 mesh or less. The hydrogen storage alloy powder thus obtained is mixed with a conductive agent powder and a binder to form a mixture, which is pressed onto a porous substrate such as a nickel wire mesh to produce a hydrogen storage alloy electrode, which is used as a negative electrode. As a sealed nickel-hydrogen battery.

【0003】[0003]

【発明が解決しようとする課題】上記従来の製造法で得
られた水素吸蔵合金電極を構成する水素吸蔵合金は、一
般に、その電池の初期活性化までに、即ち、安定した容
量を取り出せる状態になるまでに数サイクルの充放電の
繰り返しを必要とし、その所要サイクル回数を少なくて
すむ水素吸蔵合金電極の開発が望まれる。
The hydrogen-absorbing alloy constituting the hydrogen-absorbing alloy electrode obtained by the above conventional manufacturing method is generally prepared by the initial activation of the battery, that is, in a state in which a stable capacity can be taken out. It is necessary to develop a hydrogen storage alloy electrode that requires several cycles of charge and discharge until it becomes a reality, and can reduce the number of required cycles.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決し、上記の要望を満足した水素吸蔵合金電極を提供
するもので、塩酸処理を施された水素吸蔵合金粒子から
成る。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a hydrogen storage alloy electrode satisfying the above demands, which comprises hydrogen storage alloy particles treated with hydrochloric acid.

【0005】[0005]

【作用】本発明の水素吸蔵合金電極は、その主体を構成
する水素吸蔵合金の粒子は、既に塩酸処理によってその
表面の酸化被膜が除かれているので、これを負極とした
電池の初期活性化に際し、初回放電容量が増加し、初期
活性化に要する充放電サイクル数が減少する。
In the hydrogen storage alloy electrode of the present invention, the particles of the hydrogen storage alloy which are the main constituents of the hydrogen storage alloy electrode have the oxide film on the surface thereof already removed by the treatment with hydrochloric acid. At this time, the initial discharge capacity increases and the number of charge / discharge cycles required for initial activation decreases.

【0006】[0006]

【実施例】本発明の実施例につき詳述する。本発明の水
素吸蔵合金電極の主体である水素吸蔵合金材料の種類
は、LaNi系合金、MmNi系合金など任意のもので
良い。要は、本発明の水素吸蔵合金電極を構成する水素
吸蔵合金粒子は、その表面が塩酸処理を施されて居り、
その表面に生成の酸化被膜が除去されていることであ
る。その酸化被膜の除去処理は、水素吸蔵合金電極の製
造過程において、任意の段階で行うことができる。代表
的な例としては、所定の配合組成から成る水素吸蔵合金
インゴットを粉砕し、水素吸蔵合金粉末を得た段階で、
該合金粉末を所定の濃度の塩酸に浸漬し、その合金表面
に生成されている、例えば微量の酸化ランタン、水酸化
ランタンなど酸化被膜を除去する処理を行うか、上記の
合金粉末を用いて直ちに合剤を調製し、これを多孔集電
板に圧着して電極を製造した後、該電極を塩酸に浸漬し
て、該電極を構成する合金粒子の表面の酸化被膜を該塩
酸により除去することが考えられる。上記のいずれの場
合も、塩酸浸漬処理後、水洗、乾燥する。
EXAMPLES Examples of the present invention will be described in detail. The hydrogen storage alloy material, which is the main component of the hydrogen storage alloy electrode of the present invention, may be of any type such as LaNi-based alloy or MmNi-based alloy. In short, the hydrogen storage alloy particles constituting the hydrogen storage alloy electrode of the present invention, the surface is subjected to hydrochloric acid treatment,
That is, the oxide film formed on the surface is removed. The treatment for removing the oxide film can be performed at any stage in the manufacturing process of the hydrogen storage alloy electrode. As a typical example, at the stage of pulverizing a hydrogen storage alloy ingot having a predetermined composition to obtain a hydrogen storage alloy powder,
The alloy powder is immersed in hydrochloric acid having a predetermined concentration to remove the oxide film formed on the surface of the alloy, for example, a small amount of lanthanum oxide or lanthanum hydroxide, or immediately using the above alloy powder. A mixture is prepared, which is pressure-bonded to a porous collector plate to produce an electrode, which is then immersed in hydrochloric acid to remove the oxide film on the surface of alloy particles constituting the electrode with the hydrochloric acid. Can be considered. In any of the above cases, after the hydrochloric acid immersion treatment, washing with water and drying are performed.

【0007】次に、その実施例について説明する。 実施例1 市販のミッシュメタル、ニッケル、コバルト、アルミニ
ウムの各粉末を所定の組成比、例えばMmNi4.0
0.5Al0.5となるように秤量混合し、これらを
アーク溶解法により加熱溶解し、冷却して水素吸蔵合金
のインゴットを得た。次でこれを粉砕して250メッシ
ュ以下の粒子から成る水素吸蔵合金粉末を得た。次に、
この合金粉末に対して、導電剤としてカーボニルニッケ
ル粉末を15wt.%、結着剤として四フッ化エチレン
粉末を5wt.%添加して混合し、この合剤を多孔集電
板としてニッケル金網に圧着して板状水素吸蔵合金電極
を製造した。本発明によれば、該電極を0.5Nの塩酸
に室温で30分間浸漬し、次で水洗乾燥して、本発明の
酸化被膜の除かれた水素吸蔵合金粒子から成る水素吸蔵
合金電極Aとした。比較のため、かゝる塩酸処理を施さ
ない前記の従来法で製造した水素吸蔵合金電極を比較電
極Bとした。尚、このように製造した両電極中の水素吸
蔵合金粒子の重量は約1gであった。この夫々の電極を
負極とし、ニッケル板を対極として組み合わせ、アルカ
リ電解液として30wt.%の水酸化カリウム水溶液を
用いて開放型の試験セルA′,B′を作製した。この試
験セルA′,B′を用い、初回の充放電で取り出せる容
量を確認した。またその夫々に充放電を繰り返して、容
量が安定するまでに要した充放電サイクル数を調べた。
充放電は、試験セルA′,B′の夫々を、6mA/cm
の電流密度で水素吸蔵合金電極の電気化学的水素吸蔵
量の130%まで充電した後、10mA/cmの電流
密度で水素吸蔵合金電極の電圧が−0.75Vvs.H
g/HgOになるまで放電することによって行った。以
上の充放電試験結果を下記表1に示した。
Next, the embodiment will be described. Example 1 Commercially available powders of misch metal, nickel, cobalt, and aluminum were mixed in a predetermined composition ratio, for example, MmNi 4.0 C.
o 0.5 Al 0.5 were weighed and mixed, these were heated and melted by an arc melting method, and cooled to obtain a hydrogen storage alloy ingot. Next, this was pulverized to obtain a hydrogen storage alloy powder composed of particles of 250 mesh or less. next,
Carbonyl nickel powder as a conductive agent was added to the alloy powder in an amount of 15 wt. %, 5 wt.% Of tetrafluoroethylene powder as a binder. % And mixed, and this mixture was pressed onto a nickel wire mesh as a porous current collector plate to produce a plate-shaped hydrogen storage alloy electrode. According to the present invention, the electrode is immersed in 0.5N hydrochloric acid for 30 minutes at room temperature, then washed with water and dried to form a hydrogen storage alloy electrode A comprising hydrogen storage alloy particles from which the oxide film of the present invention is removed. did. For comparison, the hydrogen storage alloy electrode manufactured by the above-mentioned conventional method without such hydrochloric acid treatment was used as a reference electrode B. The weight of the hydrogen storage alloy particles in both electrodes manufactured in this way was about 1 g. Each of these electrodes was used as a negative electrode, and a nickel plate was combined as a counter electrode. % Of potassium hydroxide aqueous solution were used to prepare open test cells A'and B '. Using these test cells A'and B ', the capacity that can be taken out by the first charge and discharge was confirmed. The charge and discharge were repeated for each of them, and the number of charge and discharge cycles required until the capacity became stable was examined.
Charge / discharge is performed at 6 mA / cm in each of the test cells A ′ and B ′.
After charging with the second current density up to 130% of the electrochemical hydrogen storage capacity of the hydrogen storage alloy electrode, the voltage of the hydrogen storage alloy electrode at a current density of 10 mA / cm 2 is -0.75Vvs. H
It was carried out by discharging until g / HgO was reached. The above charge / discharge test results are shown in Table 1 below.

【0008】[0008]

【表1】 [Table 1]

【0009】該表1から明らかなように、塩酸処理を施
された本発明の水素吸蔵合金電極を用いた電池は、該塩
酸処理を施されない従来の吸蔵合金電極を用いた電池に
比し、初回放電容量が増加し、また、初期活性化間での
充放電サイクル数が減少することが分る。
As is clear from Table 1, the battery using the hydrogen storage alloy electrode of the present invention which has been subjected to the hydrochloric acid treatment, is compared with the battery using the conventional storage alloy electrode which is not subjected to the hydrochloric acid treatment, It can be seen that the initial discharge capacity increases and the number of charge / discharge cycles between initial activations decreases.

【0010】上記の塩酸処理は、室温で行ったが、塩酸
を適当に加温し、処理温度を適当に高くすることによ
り、処理時間の短縮に効果がある。また、処理すべき合
金表面の酸化被膜が除去され易い場合は、塩酸を更に水
で希釈して用いることができ、処理すべき水素吸蔵合金
の種類により、必要に応じ、塩酸濃度を高めて用いる。
Although the above-mentioned hydrochloric acid treatment was carried out at room temperature, it is effective to shorten the treatment time by appropriately heating the hydrochloric acid and raising the treatment temperature appropriately. If the oxide film on the surface of the alloy to be treated is easily removed, hydrochloric acid can be diluted with water and used. Depending on the type of hydrogen storage alloy to be treated, the concentration of hydrochloric acid should be increased to use. ..

【0011】実施例2 上記実施例1に記載したと同様にして得た粉砕直後の水
素吸蔵合金粉末を室温の上記の0.5N塩酸に30分間
浸漬し、次で、水洗、乾燥した。かくして、表面に生成
していた酸化被膜が除かれた水素吸蔵合金粒子から成る
水素吸蔵合金粉末を得た。このように塩酸処理を施され
た水素吸蔵合金粉末を得た。次でこれを用い、上記と同
様にして、本発明の水素吸蔵合金電極を製造した。これ
を負極として用いて上記と同じ試験セルを製造した。こ
の試験セルについて上記と同様の充放電を繰り返した
所、試験セルA′と同様に表1に示したと同様の結果を
得た。
Example 2 The hydrogen-absorbing alloy powder immediately after pulverization obtained in the same manner as in Example 1 was immersed in the above 0.5N hydrochloric acid at room temperature for 30 minutes, then washed with water and dried. Thus, a hydrogen storage alloy powder composed of hydrogen storage alloy particles from which the oxide film formed on the surface was removed was obtained. Thus, a hydrogen storage alloy powder that was treated with hydrochloric acid was obtained. Next, using this, the hydrogen storage alloy electrode of the present invention was manufactured in the same manner as above. Using this as a negative electrode, the same test cell as above was manufactured. When this test cell was repeatedly charged and discharged in the same manner as above, the same result as shown in Table 1 was obtained in the same manner as in the test cell A ′.

【0012】[0012]

【発明の効果】このように、塩酸により酸化被膜の除去
処理を行った水素吸蔵合金粒子から成る水素吸蔵合金電
極は、これを負極として水素−ニッケル電池などのH−
M電池を製造するときは、初回放電容量を向上せしめ、
更には初期活性化に要する充放電サイクル数の減少をも
たらし、生産性を向上する等の効果を有する。
As described above, the hydrogen storage alloy electrode composed of the hydrogen storage alloy particles whose oxide film has been subjected to the removal treatment with hydrochloric acid is used as a negative electrode in an H-metal alloy such as a hydrogen-nickel battery.
When manufacturing M batteries, improve the initial discharge capacity,
Further, the number of charge / discharge cycles required for initial activation is reduced, and the productivity is improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塩酸処理を施された水素吸蔵合金粒子か
ら成る水素吸蔵合金電極。
1. A hydrogen storage alloy electrode comprising hydrogen storage alloy particles treated with hydrochloric acid.
JP4075114A 1992-02-13 1992-02-13 Hydrogen storage alloy electrode Pending JPH05225975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4075114A JPH05225975A (en) 1992-02-13 1992-02-13 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075114A JPH05225975A (en) 1992-02-13 1992-02-13 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH05225975A true JPH05225975A (en) 1993-09-03

Family

ID=13566835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075114A Pending JPH05225975A (en) 1992-02-13 1992-02-13 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH05225975A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696823A1 (en) * 1994-02-25 1996-02-14 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
EP0845822A1 (en) * 1996-11-28 1998-06-03 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali battery
EP0832501A4 (en) * 1995-05-08 1998-06-10 Ovonic Battery Co Electrochemical hydrogen storage alloys and batteries fabricated from mg containing base alloys
EP0945907A1 (en) * 1996-06-26 1999-09-29 SANYO ELECTRIC Co., Ltd. Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
US5985057A (en) * 1996-11-29 1999-11-16 Sanyo Electric Co., Ltd. Method of fabricating hydrogen absorbing alloy electrode
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
US6221528B1 (en) 1998-06-17 2001-04-24 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacturing thereof
US6238822B1 (en) 1997-01-31 2001-05-29 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder and method of manufacturing the same
US6258482B1 (en) 1998-05-19 2001-07-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy electrode and method for fabrication thereof
US6270547B1 (en) 1997-09-30 2001-08-07 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for fabricating same
US6277519B1 (en) 1997-01-27 2001-08-21 Shin-Etsu Chemical Co., Ltd. Method for making hydrogen storage alloy powder and electrode comprising the alloy powder
US6329100B1 (en) 1998-12-22 2001-12-11 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for producing same
US6420068B1 (en) 1999-08-24 2002-07-16 Sanyo Electric Co., Ltd. Hydrogen storage alloy electrode and method for manufacture thereof
US6482277B2 (en) 2000-03-21 2002-11-19 Sanyo Electric Co., Ltd. Method of manufacturing hydrogen-absorbing alloy electrode
US6576367B1 (en) 1998-06-26 2003-06-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy for use in alkaline storage batteries and method for production thereof
WO2005038967A1 (en) * 2003-10-21 2005-04-28 Revolt Technology As Electrode, method of its production, metal-air fuel cell and metal hydride cell
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
KR20230110730A (en) 2020-11-20 2023-07-25 니혼 스핀들 세이조 가부시키가이샤 Manufacturing method of slurry for negative electrode and slurry for negative electrode

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696823A1 (en) * 1994-02-25 1996-02-14 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
EP0696823A4 (en) * 1994-02-25 1996-04-24 Yuasa Battery Co Ltd Hydrogen absorbing electrode and production method thereof
US5935732A (en) * 1994-02-25 1999-08-10 Yuasa Corporation Hydrogen absorbing electrode and its manufacturing method
EP0832501A4 (en) * 1995-05-08 1998-06-10 Ovonic Battery Co Electrochemical hydrogen storage alloys and batteries fabricated from mg containing base alloys
EP0945907A1 (en) * 1996-06-26 1999-09-29 SANYO ELECTRIC Co., Ltd. Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
EP0945907A4 (en) * 1996-06-26 2002-01-16 Sanyo Electric Co Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
EP0845822A1 (en) * 1996-11-28 1998-06-03 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali battery
US6068948A (en) * 1996-11-28 2000-05-30 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali secondary battery
US5985057A (en) * 1996-11-29 1999-11-16 Sanyo Electric Co., Ltd. Method of fabricating hydrogen absorbing alloy electrode
US6277519B1 (en) 1997-01-27 2001-08-21 Shin-Etsu Chemical Co., Ltd. Method for making hydrogen storage alloy powder and electrode comprising the alloy powder
US6238822B1 (en) 1997-01-31 2001-05-29 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder and method of manufacturing the same
US6270547B1 (en) 1997-09-30 2001-08-07 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for fabricating same
US6258482B1 (en) 1998-05-19 2001-07-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy electrode and method for fabrication thereof
US6440607B1 (en) 1998-06-08 2002-08-27 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
US6221528B1 (en) 1998-06-17 2001-04-24 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacturing thereof
US7078126B2 (en) 1998-06-26 2006-07-18 Sanyo Electric Co., Ltd. Method for production of hydrogen storage alloy for use in alkaline storage batteries
US6576367B1 (en) 1998-06-26 2003-06-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy for use in alkaline storage batteries and method for production thereof
US6329100B1 (en) 1998-12-22 2001-12-11 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for producing same
US6420068B1 (en) 1999-08-24 2002-07-16 Sanyo Electric Co., Ltd. Hydrogen storage alloy electrode and method for manufacture thereof
US6482277B2 (en) 2000-03-21 2002-11-19 Sanyo Electric Co., Ltd. Method of manufacturing hydrogen-absorbing alloy electrode
WO2005038967A1 (en) * 2003-10-21 2005-04-28 Revolt Technology As Electrode, method of its production, metal-air fuel cell and metal hydride cell
EA011752B1 (en) * 2003-10-21 2009-06-30 Револт Текнолоджи Лтд. Electrode, method of its production, metal-air fuel cell and metal hydride cell
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
US9859556B2 (en) 2012-02-09 2018-01-02 Santoku Corporation Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
KR20230110730A (en) 2020-11-20 2023-07-25 니혼 스핀들 세이조 가부시키가이샤 Manufacturing method of slurry for negative electrode and slurry for negative electrode

Similar Documents

Publication Publication Date Title
JPH05225975A (en) Hydrogen storage alloy electrode
US5935732A (en) Hydrogen absorbing electrode and its manufacturing method
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
US6740450B2 (en) Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
JP5142428B2 (en) Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP2019220276A (en) Method for producing negative electrode material for nickel metal hydride battery
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPH0756799B2 (en) Method for producing hydrogen storage alloy negative electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3399265B2 (en) Alkaline battery with nickel positive electrode and method of activating the same
JPH08333603A (en) Hydrogen storage alloy particle and its production
JPH04328252A (en) Hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JP3057737B2 (en) Sealed alkaline storage battery
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3010989B2 (en) Hydrogen storage electrode and method for producing the same
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JPH05225974A (en) Hydrogen storage alloy electrode
JPH05225976A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3530327B2 (en) Method for producing hydrogen storage alloy electrode
JP2022134586A (en) Nickel metal hydride storage battery
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JP2529898B2 (en) Hydrogen storage alloy electrode