JPH05225976A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents
Hydrogen storage alloy electrode and manufacture thereofInfo
- Publication number
- JPH05225976A JPH05225976A JP4079433A JP7943392A JPH05225976A JP H05225976 A JPH05225976 A JP H05225976A JP 4079433 A JP4079433 A JP 4079433A JP 7943392 A JP7943392 A JP 7943392A JP H05225976 A JPH05225976 A JP H05225976A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- electrode
- storage alloy
- powder
- borohydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Powder Metallurgy (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、二次電池などの負極と
して用いられる水素吸蔵合金電極並にその製造法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a secondary battery or the like, and a method for producing the same.
【0002】[0002]
【従来の技術】従来、電気化学的に水素の吸蔵・放出が
可能な水素吸蔵合金を用いた電極を負極とし、正極に
は、ニッケル酸化物などを用い、電解液としてアルカリ
水溶液を用いたニッケル−水素二次電池などのMH電池
は、鉛蓄電池、ニッケルーカドミウム電池などより単位
重量または単位体積当たりのエネルギー密度が大きいの
で、注目されている。その負極には、LaNi系合金、
MmNi系合金などの各種の水素吸蔵合金電極が用いら
れている。2. Description of the Related Art Conventionally, an electrode using a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen is used as a negative electrode, nickel oxide is used as a positive electrode, and an alkaline aqueous solution is used as an electrolytic solution. -MH batteries such as hydrogen secondary batteries are attracting attention because they have a higher energy density per unit weight or unit volume than lead storage batteries, nickel-cadmium batteries and the like. For the negative electrode, LaNi alloy,
Various hydrogen storage alloy electrodes such as MmNi-based alloys are used.
【0003】[0003]
【発明が解決しようとする課題】従来の上記水素吸蔵合
金電極を負極として用いた上記電池の初回の充放電にお
ける放電容量は低く、定格容量に達せず、また、初期活
性化即ち、安定した容量を取り出せる迄に充放電を繰り
返す必要があるが、その充放電サイクルの回数を可及的
に少なくすることが望ましい。DISCLOSURE OF INVENTION Problems to be Solved by the Invention The discharge capacity in the first charge / discharge of the above-mentioned battery using the above-mentioned hydrogen storage alloy electrode as a negative electrode is low, does not reach the rated capacity, and is initially activated, that is, has a stable capacity. It is necessary to repeat charging / discharging until the battery can be taken out, but it is desirable to reduce the number of charging / discharging cycles as much as possible.
【0004】[0004]
【課題を解決するための手段】本発明は、上記の課題を
解決し、上記の要望を満足した水素吸蔵合金電極を提供
するもので、水素化アルミニウムリチウムLiAl
H4、水素化ホウ素リチウムLiBH4及び水素化ホウ
素アルミニウムAl(BH4)2から選んだ少なくとも
一種の処理剤により処理された水素吸蔵合金粒子から成
る。更に本発明は、上記本発明の水素吸蔵合金電極の製
造法を提供するもので、その1つの方法は、水素吸蔵合
金粉末を、LiAlH4、LiBH4及びAl(B
H4)2から選んだ少なくとも一種の処理剤を有機溶剤
に溶かして成る溶液に浸漬処理した後、該粉末を用いて
電極を製造することを特徴とする。その他の方法は、水
素吸蔵合金粉末を用いて電極を製造した後、該電極をL
iAlH4、LiBH4及びAl(BH4)2から選ん
だ少なくとも一種の処理剤を有機溶剤に溶かして成る溶
液に浸漬処理することを特徴とする。SUMMARY OF THE INVENTION The present invention solves the above problems and provides a hydrogen storage alloy electrode satisfying the above-mentioned demands. Lithium aluminum hydride LiAl
It comprises hydrogen storage alloy particles treated with at least one treating agent selected from H 4 , lithium borohydride LiBH 4 and aluminum borohydride Al (BH 4 ) 2 . Further, the present invention provides a method for producing the hydrogen storage alloy electrode of the present invention. One of the methods is to prepare a hydrogen storage alloy powder by adding LiAlH 4 , LiBH 4 and Al (B
It is characterized in that an electrode is produced using the powder after immersion treatment in a solution prepared by dissolving at least one treatment agent selected from H 4 ) 2 in an organic solvent. Another method is to produce an electrode using hydrogen storage alloy powder, and
It is characterized in that at least one kind of treatment agent selected from iAlH 4 , LiBH 4 and Al (BH 4 ) 2 is immersed in a solution prepared by dissolving it in an organic solvent.
【0005】[0005]
【作用】本発明の上記の製造法によれば、上記の処理剤
の溶液により処理すれば、水素吸蔵合金粉末を構成する
各粒子または電極を構成する該合金粒子は、理由は明ら
かでないが、その合金のもつ触媒作用により、その処理
剤の有する水素を取り込み、これにより結晶格子に残る
歪みが除去されるので、水素の吸蔵・放出を容易にし高
活性の状態となる。その結果、これを負極として用いた
電池の初回の放電容量を向上し、また初期活性化に要す
る充放電サイクルの回数が減少する。According to the above-mentioned production method of the present invention, the reason why the particles constituting the hydrogen-absorbing alloy powder or the alloy particles constituting the electrode is not clear when treated with the solution of the above-mentioned treating agent, Due to the catalytic action of the alloy, the hydrogen contained in the treating agent is taken in, and thereby the strain remaining in the crystal lattice is removed, so that the storage and release of hydrogen is facilitated and the state becomes highly active. As a result, the initial discharge capacity of a battery using this as a negative electrode is improved, and the number of charge / discharge cycles required for initial activation is reduced.
【0006】[0006]
【実施例】次に、本発明の実施例を詳述する。本発明の
水素吸蔵合金電極を製造する水素吸蔵合金の種類は、L
aNi系合金、MmNi系合金、La−Ni、Zr−N
i、Ti−Ni、Ti−Zr−Ni、Zr−V−Niな
どの夫々の系合金、その他任意の種類のもので良いが、
経済的な観点から、LaをMm(ミッシュメタル)に置
換した多元合金が好ましいので、これを用いて製造する
実施例で以下説明する。EXAMPLES Next, examples of the present invention will be described in detail. The type of hydrogen storage alloy for producing the hydrogen storage alloy electrode of the present invention is L
aNi-based alloy, MmNi-based alloy, La-Ni, Zr-N
i, Ti-Ni, Ti-Zr-Ni, Zr-V-Ni, or other respective alloys, or any other type alloy,
From an economical point of view, a multi-component alloy in which La is replaced with Mm (Misch metal) is preferable, and a description will be given below with respect to an example of manufacturing using this.
【0007】実施例1 市販のミッシュメタル、ニッケル、コバルト、アルミニ
ウムの各粉末を所定の組成比、例えばMmNi4.0C
o0.5Al0.5となるように秤量混合し、これらを
アーク溶解法により加熱溶融して水素吸蔵合金を得、こ
れを放冷して得られるこの合金インゴットを粉砕して2
50メッシュ以下の微粉末とした。この合金粉末に対し
て、導電剤としてカーボニルニッケル粉末を15wt.
%、結着剤として四フッ化エチレン粉末を5wt.%添
加して混合し、合剤を得た。この合剤を、多孔集電板、
例えば、ニッケル金網に圧着して水素吸蔵合金電極を作
製した。本発明によれば、このように作製した水素吸蔵
合金電極を、水素化アルミニウムリチウムLiAlH4
をエーテルに溶かし1モル/1の濃度の水素化アルミニ
ウムリチウム溶液に室温で1時間浸漬して、該処理剤を
該電極を構成する合金粒子に作用させた後、引上げ、乾
燥した。このように処理した電極を、便宜上、本発明電
極Aと称する。一方、比較のため、かゝる処理を行わな
い前記の電極を従来電極Bと称する。尚、両該電極中の
水素吸蔵合金粉末の重量は約1gであった。Example 1 Commercially available powders of misch metal, nickel, cobalt, and aluminum were mixed in a predetermined composition ratio, for example, MmNi 4.0 C.
o 0.5 Al 0.5 are weighed and mixed, and these are heated and melted by an arc melting method to obtain a hydrogen storage alloy, which is allowed to cool and the alloy ingot obtained is crushed to 2
Fine powder of 50 mesh or less was used. Carbonyl nickel powder as a conductive agent was added to the alloy powder in an amount of 15 wt.
%, 5 wt.% Of tetrafluoroethylene powder as a binder. %, And mixed to obtain a mixture. This mixture was used as a porous collector plate,
For example, a hydrogen storage alloy electrode was produced by pressure bonding to a nickel wire mesh. According to the present invention, the hydrogen storage alloy electrode thus produced is used for lithium aluminum hydride LiAlH 4
Was dissolved in ether and immersed in a lithium aluminum hydride solution having a concentration of 1 mol / 1 at room temperature for 1 hour to allow the treatment agent to act on the alloy particles constituting the electrode, and then pulled up and dried. The electrode thus treated is referred to as an electrode A of the present invention for convenience. On the other hand, for comparison, the above-mentioned electrode not subjected to such treatment is referred to as a conventional electrode B. The weight of the hydrogen storage alloy powder in both electrodes was about 1 g.
【0008】このように作製した本発明電極Aと従来電
極Bとを夫々作用極とし、ニッケル板を対極として組み
合わせ、アルカリ電解液として30wt.%の水酸化カ
リウム水溶液を用いて解放型試験セルA′,B′を夫々
作製した。この試験セルA′,B′を用いて、初回の充
放電で取り出せる夫々の容量を測定した。また、更に充
放電を繰り返して、容量が安定するのに要した充放電サ
イクル数、即ち初期活性化までに要した充放電サイクル
数を測定した。充放電は、試験セルを6mA/cm2の
電流密度で水素吸蔵電極の電気化学的水素吸蔵量の13
0%まで充電した後、10mA/cm2の電流密度で水
素吸蔵合金電極の電圧が−0.75Vvs.Hg/Hg
Oになるまで放電することによって行った。以上の試験
結果を下記表1に示す。The electrode A of the present invention and the conventional electrode B thus produced were used as working electrodes and a nickel plate was combined as a counter electrode. % Of potassium hydroxide aqueous solution were used to produce open test cells A'and B ', respectively. Using these test cells A'and B ', the respective capacities that can be taken out by the first charge and discharge were measured. Further, the charge and discharge were repeated, and the number of charge and discharge cycles required for stabilizing the capacity, that is, the number of charge and discharge cycles required until the initial activation was measured. Charging and discharging were carried out in a test cell at a current density of 6 mA / cm 2 at an electrochemical hydrogen storage capacity of 13 of the hydrogen storage electrode.
After charging to 0%, the voltage of the hydrogen storage alloy electrode was -0.75 V vs. at a current density of 10 mA / cm 2 . Hg / Hg
It was performed by discharging until O was reached. The above test results are shown in Table 1 below.
【0009】[0009]
【表1】 [Table 1]
【0010】該表1から明らかなように、水素化アルミ
ニウムリチウムにより電極を処理することにより、初回
放電容量が増加し、また初期活性化サイクル数が減少す
ることが判る。次に、上記の本発明の水素吸蔵合金電極
を負極として、AAサイズ1000mAhのニッケル−
水素電池を作製し、充放電を行った所、初回の充放電か
ら定格を満足する容量を得た。As is clear from Table 1, the treatment of the electrodes with lithium aluminum hydride increases the initial discharge capacity and reduces the number of initial activation cycles. Next, using the above-mentioned hydrogen storage alloy electrode of the present invention as a negative electrode, AA size 1000 mAh nickel-
When a hydrogen battery was manufactured and charged and discharged, a capacity satisfying the rating was obtained from the first charge and discharge.
【0011】実施例2 上記実施例1の本発明電極Aの製造法に使用したと同じ
250メッシュ以下の微粉末から成る水素吸蔵合金粉末
を、直ちに、水素化アルミニウムリチウムLiAlH4
をエーテルに溶かして1モル/1の濃度の水素化アルミ
ニウムリチウムの溶液に、室温で1時間浸漬した後、乾
燥した。このように処理剤で処理した合金粉を用い、実
施例1と同様にして本発明の水素吸蔵合金電極を得た。
この電極を用いて実施例1と同様に、試験セルを作製
し、これに上記と同じ充放電サイクル試験を行った。そ
の結果、表1の試験セルA′と同様の初回放電容量の向
上と初期活性化サイクル数の減少が認められた。また、
この電極を負極し、AAサイズ1000mAhのニッケ
ル−水素電池を作製し、充放電を行った所、初回の充放
電から定格を満足する容量を得た。Example 2 The same hydrogen-absorbing alloy powder as the fine powder of 250 mesh or less used in the manufacturing method of the electrode A of the present invention in Example 1 was immediately added to lithium aluminum hydride LiAlH 4
Was dissolved in ether, immersed in a solution of lithium aluminum hydride having a concentration of 1 mol / 1 at room temperature for 1 hour, and then dried. Using the alloy powder thus treated with the treating agent, a hydrogen storage alloy electrode of the present invention was obtained in the same manner as in Example 1.
Using this electrode, a test cell was prepared in the same manner as in Example 1, and the same charge / discharge cycle test as described above was performed on the test cell. As a result, it was confirmed that the initial discharge capacity was improved and the number of initial activation cycles was decreased as in the test cell A ′ in Table 1. Also,
When this electrode was used as a negative electrode and a nickel-hydrogen battery of AA size of 1000 mAh was produced and charged and discharged, a capacity satisfying the rating was obtained from the first charge and discharge.
【0012】実施例3 実施例1において、処理剤として使用した水素化アルミ
ニウムリチウムに代えて、水素化ホウ素リチウムLiB
H4を使用し、エーテルに溶解して1モル/1の濃度の
水素化ホウ素リチウムの溶液を調製した以外は、実施例
1と同じに実施して本発明の水素吸蔵合金電極を作製し
た。これを本発明電極Cと称する。該本発明電極Cを用
い、実施例1と同様に試験セルC′を作製し、これにつ
き、実施例1と同様の条件で充放電サイクル試験を行
い、初回放電容量と初期活性化サイクル数を調べた。そ
の結果、表1に示すように初回放電容量は、従来電極B
を用いた試験セルB′と比較し、238mAh/gと向
上し、初期活性化サイクル数は2回と減少した。また、
この電極を負極し、AAサイズ1000mAhのニッケ
ル−水素電池を作製し、充放電を行った所、初回の充放
電から定格を満足する容量を得た。Example 3 Lithium borohydride LiB was used in place of the lithium aluminum hydride used as the treating agent in Example 1.
A hydrogen storage alloy electrode of the present invention was produced in the same manner as in Example 1 except that H 4 was used and dissolved in ether to prepare a solution of lithium borohydride having a concentration of 1 mol / 1. This is referred to as an electrode C of the present invention. Using the electrode C of the present invention, a test cell C ′ was prepared in the same manner as in Example 1, and a charge / discharge cycle test was performed under the same conditions as in Example 1 to determine the initial discharge capacity and the number of initial activation cycles. Examined. As a result, as shown in Table 1, the initial discharge capacity was
Compared with the test cell B ′ using the same, it was improved to 238 mAh / g and the number of initial activation cycles was reduced to 2 times. Also,
When this electrode was used as a negative electrode and a nickel-hydrogen battery having an AA size of 1000 mAh was produced and charged and discharged, a capacity satisfying the rating was obtained from the first charge and discharge.
【0013】実施例4 実施例2において、処理剤として使用した水素化アルミ
ニウムリチウムに代えて、水素化ホウ素リチウムLiB
H4を使用し、これをエーテルに溶解して1モル/1の
濃度の水素化ホウ素リチウムの溶液を調製した以外は、
実施例2と同じに実施して本発明の水素吸蔵電極を作製
した。これを用いて、実施例1と同様に試験セルを作製
し、その初回放電容量と初期活性化サイクル数を調べた
所、表1の試験セルC′と同様の成績を得た。また、こ
の電極を負極し、AAサイズ1000mAhのニッケル
−水素電池を作製し、充放電を行った所、初回の充放電
から定格を満足する容量を得た。Example 4 Lithium borohydride LiB was used instead of lithium aluminum hydride used as a treating agent in Example 2.
H 4 was used, except that this was dissolved in ether to prepare a solution of lithium borohydride having a concentration of 1 mol / 1.
It carried out like Example 2 and produced the hydrogen storage electrode of the present invention. Using this, a test cell was prepared in the same manner as in Example 1, and the initial discharge capacity and the number of initial activation cycles were examined. As a result, the same result as that of the test cell C ′ in Table 1 was obtained. Further, when this electrode was used as a negative electrode and a nickel-hydrogen battery of AA size 1000 mAh was prepared and charged and discharged, a capacity satisfying the rating was obtained from the first charge and discharge.
【0014】実施例5 実施例1において、処理剤として使用した水素化アルミ
ニウムリチウムに代えて、水素化ホウ素アルミニウムA
l(BH4)2を使用し、これをエーテルに溶解して1
モル/1の濃度の水素化ホウ素アルミニウムの溶液を調
製した以外は、実施例1と同様に実施して本発明の水素
吸蔵合金電極を作製した。これを本発明電極Dと称す
る。該本発明電極Dを用い、実施例1と同様に試験セル
D′を作製し、これにつき、実施例1と同様の条件で充
放電サイクル試験を行い、初回放電容量と初期活性化サ
イクル数を調べた。その結果、表1に示すように初回放
電容量は、従来電極Bを用いた試験セルB′と比較し、
242mAh/gと向上し、初期活性化サイクル数は2
回と減少した。また、この電極を負極し、AAサイズ1
000mAhのニッケル−水素電池を作製し、充放電を
行った所、初回の充放電から定格を満足する容量を得
た。Example 5 Instead of lithium aluminum hydride used as a treating agent in Example 1, aluminum borohydride A was used.
1 (BH 4 ) 2 was used and dissolved in ether to give 1
A hydrogen storage alloy electrode of the present invention was produced in the same manner as in Example 1 except that a solution of aluminum borohydride having a concentration of mol / 1 was prepared. This is referred to as an electrode D of the present invention. Using the electrode D of the present invention, a test cell D ′ was prepared in the same manner as in Example 1, and a charge / discharge cycle test was conducted under the same conditions as in Example 1 to determine the initial discharge capacity and the initial activation cycle number. Examined. As a result, as shown in Table 1, the initial discharge capacity was compared with the test cell B ′ using the conventional electrode B,
242 mAh / g, and the number of initial activation cycles is 2
It decreased with times. Also, with this electrode as a negative electrode, AA size 1
When a nickel-hydrogen battery of 000 mAh was produced and charged and discharged, a capacity satisfying the rating was obtained from the first charge and discharge.
【0015】実施例6 実施例2において、処理剤として使用した水素化アルミ
ニウムリチウムに代えて、水素化ホウ素アルミニウムA
l(BH4)2を使用し、これをエーテルに溶解して1
モル/1の濃度の水素化ホウ素アルミニウムの溶液を調
製した以外は、実施例2と同様に実施して本発明の水素
吸蔵電極を作製した。これを用いて、実施例1と同様に
試験セルを作製し、その初回放電容量と初期活性化サイ
クル数を調べた所、表1の試験セルD′と同様の成績を
得た。また、この電極を負極し、AAサイズ1000m
Ahのニッケル−水素電池を作製し、充放電を行った
所、初回の充放電から定格を満足する容量を得た。Example 6 Instead of lithium aluminum hydride used as a treating agent in Example 2, aluminum borohydride A was used.
1 (BH 4 ) 2 was used and dissolved in ether to give 1
A hydrogen storage electrode of the present invention was produced in the same manner as in Example 2 except that a solution of aluminum borohydride having a concentration of mol / 1 was prepared. Using this, a test cell was prepared in the same manner as in Example 1, and the initial discharge capacity and the number of initial activation cycles were examined. As a result, the same result as that of the test cell D ′ in Table 1 was obtained. Also, with this electrode as a negative electrode, AA size of 1000 m
When a nickel-hydrogen battery of Ah was produced and charged and discharged, the capacity satisfying the rating was obtained from the first charge and discharge.
【0016】尚、上記のいずれの実施例においても、そ
の処理剤の溶液の温度や濃度は、適当に変えることがで
き、処理温度を高くするときは処理時間の短縮に効果が
ある。また、処理すべき合金の種類に応じ、活性化し易
いものではその濃度を低濃度とし、活性化し難いもので
は高濃度とすることができる。また、上記処理剤を2種
以上有機溶剤に溶解した溶液を用いても同様に有効であ
った。In any of the above embodiments, the temperature and concentration of the solution of the treating agent can be appropriately changed, and increasing the treating temperature is effective in shortening the treating time. Further, depending on the type of alloy to be treated, the concentration can be set to a low concentration if it is easy to activate, and a high concentration if it is difficult to activate. Further, the same effect was obtained by using a solution prepared by dissolving two or more of the above treating agents in an organic solvent.
【0017】[0017]
【発明の効果】上記のように、本発明によれば、水素化
アルミニウムリチウム、水素化ホウ素リチウム及び水素
化ホウ素アルミニウムの少なくとも2種を有機溶剤に溶
かして成る溶液に、水素吸蔵合金粉末、或いは該水素吸
蔵合金粉末を用いて作製した電極を浸漬処理することに
より、該処理剤で処理された水素吸蔵合金粒子から成る
水素吸蔵合金電極が得られるので、該電極を負極とした
電池の初回放電容量の増大、初期活性化サイクル数の減
少をもたらす効果を有する。As described above, according to the present invention, a hydrogen storage alloy powder, or a hydrogen storage alloy powder, is added to a solution prepared by dissolving at least two kinds of lithium aluminum hydride, lithium borohydride and aluminum borohydride in an organic solvent. By dipping the electrode prepared by using the hydrogen storage alloy powder, a hydrogen storage alloy electrode composed of the hydrogen storage alloy particles treated with the treatment agent can be obtained. It has the effect of increasing the capacity and reducing the number of initial activation cycles.
Claims (3)
4、水素化ホウ素リチウムLiBH4及び水素化ホウ素
アルミニウムAl(BH4)2から選んだ少なくとも一
種の処理剤により処理された水素吸蔵合金粒子から成る
水素吸蔵合金電極。1. Lithium aluminum hydride LiAlH
4. A hydrogen storage alloy electrode comprising hydrogen storage alloy particles treated with at least one treatment agent selected from lithium borohydride LiBH 4 and aluminum borohydride Al (BH 4 ) 2 .
iBH4及びAl(BH4)2から選んだ少なくとも一
種の処理剤を有機溶剤に溶かして成る溶液に浸漬処理し
た後、該粉末を用いて電極を製造することを特徴とする
水素吸蔵合金電極の製造法。2. A hydrogen storage alloy powder is added to LiAlH 4 , L
A hydrogen storage alloy electrode, characterized in that an electrode is produced using the powder after immersion treatment in a solution prepared by dissolving at least one treatment agent selected from iBH 4 and Al (BH 4 ) 2 in an organic solvent. Manufacturing method.
た後、該電極をLiAlH4、LiBH4及びAl(B
H4)2から選んだ少なくとも一種の処理剤を有機溶剤
に溶かして成る溶液に浸漬処理することを特徴とする水
素吸蔵合金電極の製造法。3. After manufacturing an electrode using a hydrogen storage alloy powder, the electrode is formed with LiAlH 4 , LiBH 4 and Al (B
A method for producing a hydrogen storage alloy electrode, comprising dipping treatment in a solution prepared by dissolving at least one treating agent selected from H 4 ) 2 in an organic solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4079433A JPH05225976A (en) | 1992-02-17 | 1992-02-17 | Hydrogen storage alloy electrode and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4079433A JPH05225976A (en) | 1992-02-17 | 1992-02-17 | Hydrogen storage alloy electrode and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05225976A true JPH05225976A (en) | 1993-09-03 |
Family
ID=13689749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4079433A Pending JPH05225976A (en) | 1992-02-17 | 1992-02-17 | Hydrogen storage alloy electrode and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05225976A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6613471B2 (en) * | 2000-03-13 | 2003-09-02 | Energy Conversion Devices, Inc. | Active material for fuel cell anodes incorporating an additive for precharging/activation thereof |
-
1992
- 1992-02-17 JP JP4079433A patent/JPH05225976A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6613471B2 (en) * | 2000-03-13 | 2003-09-02 | Energy Conversion Devices, Inc. | Active material for fuel cell anodes incorporating an additive for precharging/activation thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05225975A (en) | Hydrogen storage alloy electrode | |
CN109830676A (en) | Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof | |
JP2595967B2 (en) | Hydrogen storage electrode | |
JPH03152868A (en) | Treatment of hydrogen storage alloy for alkaline second battery | |
JP3200822B2 (en) | Nickel-metal hydride storage battery | |
JPH05225976A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JP2537084B2 (en) | Hydrogen storage alloy electrode | |
JP2983426B2 (en) | Production method and electrode for hydrogen storage alloy | |
JPH04328252A (en) | Hydrogen storage alloy electrode | |
JP3399265B2 (en) | Alkaline battery with nickel positive electrode and method of activating the same | |
JPH097591A (en) | Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy | |
JPH04319258A (en) | Hydrogen storage alloy electrode | |
JP3520573B2 (en) | Method for producing nickel-metal hydride battery | |
JP2529898B2 (en) | Hydrogen storage alloy electrode | |
JP3057737B2 (en) | Sealed alkaline storage battery | |
JP3229801B2 (en) | Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same | |
JPH08333603A (en) | Hydrogen storage alloy particle and its production | |
JP3746086B2 (en) | Method for manufacturing nickel-metal hydride battery | |
JPH0756802B2 (en) | Manufacturing method of hydrogen storage electrode | |
JPH0992276A (en) | Manufacture of hydrogen storage alloy powder for battery | |
JPH06145849A (en) | Hydrogen storage alloy electrode | |
JP2857148B2 (en) | Construction method of sealed nickel-hydrogen storage battery | |
JP2750793B2 (en) | Nickel-metal hydride battery | |
JPH03226539A (en) | Hydrogen storage alloy electrode | |
JP3362400B2 (en) | Nickel-metal hydride storage battery |