JPH04319258A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH04319258A
JPH04319258A JP3177843A JP17784391A JPH04319258A JP H04319258 A JPH04319258 A JP H04319258A JP 3177843 A JP3177843 A JP 3177843A JP 17784391 A JP17784391 A JP 17784391A JP H04319258 A JPH04319258 A JP H04319258A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
hypophosphorous acid
alloy electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3177843A
Other languages
Japanese (ja)
Inventor
Shinjiro Wakao
若尾 慎二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3177843A priority Critical patent/JPH04319258A/en
Publication of JPH04319258A publication Critical patent/JPH04319258A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a hydrogen storage alloy electrode which can give the stable and high capacity even in a charge-discharge initial stage and is able to lessen the number of charge-discharge cycles necessary to activate initially. CONSTITUTION:Hydrogen storage alloy powder is immersed in and treated with hypophosphorus acid in the stage of either being powder or being formed in an electrode and thus an electrode formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、二次電池などの負極に
用いる電気化学的に水素の吸蔵・放出が可能な水素吸蔵
合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode capable of electrochemically storing and desorbing hydrogen for use as a negative electrode of a secondary battery or the like.

【0002】0002

【従来の技術】従来、二次電池としては、ニッケル−カ
ドミウム電池、鉛電池が良く知られているが、これらの
電池は単位重量又は単位体積当たりのエネルギー密度が
比較的小さい欠点がある。そこで、電気化学的に多量の
水素の吸蔵・放出が可能な水素吸蔵合金を用いた電極を
負極とし、正極にはニッケル酸化物を用い、電解液とし
てアルカリ水溶液を用いたエネルギー密度の大きいニッ
ケル−水素電池が提案されていた。ここでの負極にはL
aNi5の他、改良型としてLaNi5のNiの一部を
Co、Al、Mn等で置換し多元化すると共に、経済的
な観点から、Laを希土類元素の混合物であるMn(ミ
ッシュメタル)に置換した合金が用いられている。又、
最近ではZr−V−Ni系等のラベス相AB2型の水素
吸蔵合金などの適用が提案されている。
2. Description of the Related Art Conventionally, nickel-cadmium batteries and lead batteries have been well known as secondary batteries, but these batteries have the drawback of relatively low energy density per unit weight or unit volume. Therefore, we used an electrode made of a hydrogen storage alloy that can electrochemically absorb and release a large amount of hydrogen as the negative electrode, a nickel oxide as the positive electrode, and an alkaline aqueous solution as the electrolyte. Hydrogen batteries were proposed. The negative electrode here is L
In addition to aNi5, as an improved version, part of the Ni in LaNi5 was replaced with Co, Al, Mn, etc. to make it more diversified, and from an economical point of view, La was replaced with Mn (misch metal), which is a mixture of rare earth elements. Alloys are used. or,
Recently, the application of Laves phase AB2 type hydrogen storage alloys such as Zr-V-Ni has been proposed.

【0003】0003

【発明が解決しようとする課題】上記改良型の水素吸蔵
合金は、サイクル寿命が比較的長く改良の効果は認めら
れる。しかし、これらの合金は一般に初期活性化した、
即ち安定した容量を取り出せる状態になるまでに充放電
の繰り返しを多数回必要とする。従って、これらの合金
から成る水素吸蔵合金電極を負極として組み込み、密閉
型ニッケル−水素電池を作製すると、充放電サイクルの
初期には、水素吸蔵合金電極から殆ど容量が取り出せな
いために、電池容量が定格容量を大きく下回るなどの不
都合が生じていた。従って、初期活性化に要する充放電
回数が少なく、而も充放電サイクルの初期から高容量が
取り出せる水素吸蔵合金電極が望まれる。
Problems to be Solved by the Invention The improved hydrogen storage alloy described above has a relatively long cycle life, and the effects of improvement are recognized. However, these alloys generally have initial activation,
That is, charging and discharging must be repeated many times before a stable capacity can be obtained. Therefore, when a sealed nickel-metal hydride battery is manufactured by incorporating a hydrogen storage alloy electrode made of these alloys as a negative electrode, the battery capacity decreases because almost no capacity can be extracted from the hydrogen storage alloy electrode at the beginning of the charge/discharge cycle. There were problems such as the capacity being significantly lower than the rated capacity. Therefore, a hydrogen storage alloy electrode is desired that requires fewer charging/discharging times for initial activation and can provide high capacity from the beginning of the charging/discharging cycle.

【0004】0004

【課題を解決するための手段】本発明は、上記の要望を
満足する水素吸蔵合金電極に係り、常法により作製した
水素吸蔵合金電極を次亜りん酸で浸漬処理するか、常法
により作製した水素吸蔵合金粉末を次亜りん酸で浸漬処
理したものを用いて電極を構成するかである。
[Means for Solving the Problems] The present invention relates to a hydrogen storage alloy electrode that satisfies the above-mentioned requirements, and involves immersing a hydrogen storage alloy electrode prepared by a conventional method in hypophosphorous acid, or by immersing a hydrogen storage alloy electrode prepared by a conventional method. The electrode is constructed using hydrogen storage alloy powder that has been immersed in hypophosphorous acid.

【0005】[0005]

【作用】本発明の作用は明らかでないが、該次亜りん酸
は還元剤であることから、合金粒子表面に生成している
酸化膜を除去し、合金の活性を高め且つ酸化防止のりん
酸被膜を形成するからであると考えられる。
[Function] Although the function of the present invention is not clear, since the hypophosphorous acid is a reducing agent, it removes the oxide film formed on the surface of the alloy particles, increases the activity of the alloy, and uses the phosphorous acid to prevent oxidation. This is thought to be because it forms a film.

【0006】[0006]

【実施例】次に本発明の実施例を説明する。市販のミッ
シュメタル、ニッケル、コバルト、アルミニウムの各粉
末を所定の組成比、例えばMmNi4.0Co0.5A
l0.5となるように秤量混合し、これらをアーク溶解
法により加熱溶融して水素吸蔵合金のインゴットを粗粉
砕し、次でこれを不活性ガスの雰囲気下でボールミルな
どで粉砕して、250メッシュ以下の粉末とした。この
粉末に対して導電剤としてカーボニルニッケル粉末を1
5wt.%、結着剤として四フッ化エチレン粉末を5w
t.%添加して混合し、これをニッケル金網に圧着して
水素吸蔵合金電極を作製した。この電極を次亜りん酸(
濃度:30%)に室温で1時間浸漬した本発明の水素吸
蔵合金電極を作製した。以下これを本発明電極と言う。 比較のため、前記の次亜りん酸への浸漬を行わなかった
水素吸蔵合金電極を用意した。これを比較電極と言う。 尚、その夫々の電極中の水素吸蔵合金粉末の重量は約1
gである。上記の本発明電極と比較電極とを、夫々作用
極とし、ニッケル板を対極として組み合わせ、アルカリ
電解液として30wt.%の水酸化カリウム水溶液を用
いて開放型の試験セルを夫々作製した。この各試験セル
を用いて、初回の充放電で取り出せる容量を確認した。 又、更に充放電を繰り返して、容量が安定するのに要し
た充放電サイクル数を調べた。充放電は、各試験セルを
6mA/cm2の電流密度で各水素吸蔵合金電極の電気
化学的水素吸蔵量の130%まで充電した後、10mA
/cm2の電流密度で各水素吸蔵合金電極の電圧が−0
.75Vvs.Hg/HgOになるまで放電することに
よって行った。以上の試験結果を下記表1にまとめて示
した。
[Example] Next, an example of the present invention will be described. Commercially available misch metal, nickel, cobalt, and aluminum powders were mixed at a predetermined composition ratio, for example, MmNi4.0Co0.5A.
They were weighed and mixed to give a total of 0.5 liters, and then heated and melted using an arc melting method to coarsely crush a hydrogen storage alloy ingot, which was then crushed in a ball mill or the like in an inert gas atmosphere to obtain a 250 mm It was made into a powder with a size smaller than mesh. Add 1 portion of carbonyl nickel powder as a conductive agent to this powder.
5wt. %, 5w of tetrafluoroethylene powder as a binder
t. % was added and mixed, and this was pressed onto a nickel wire gauze to produce a hydrogen storage alloy electrode. Add this electrode to hypophosphorous acid (
A hydrogen storage alloy electrode of the present invention was prepared by immersing it in a solution (concentration: 30%) for 1 hour at room temperature. Hereinafter, this will be referred to as the electrode of the present invention. For comparison, a hydrogen storage alloy electrode that was not immersed in hypophosphorous acid was prepared. This is called a reference electrode. The weight of the hydrogen storage alloy powder in each electrode is approximately 1
It is g. The above-mentioned electrode of the present invention and reference electrode were combined as working electrodes and a nickel plate as a counter electrode, and 30 wt. % potassium hydroxide aqueous solution was used to prepare open-type test cells. Using each of these test cells, the capacity that could be taken out during the first charge and discharge was confirmed. Further, charging and discharging were repeated, and the number of charging and discharging cycles required for the capacity to become stable was determined. Charging and discharging were carried out by charging each test cell at a current density of 6 mA/cm2 to 130% of the electrochemical hydrogen storage capacity of each hydrogen storage alloy electrode, and then at a current density of 10 mA.
At a current density of /cm2, the voltage of each hydrogen storage alloy electrode is -0
.. 75V vs. This was done by discharging until Hg/HgO. The above test results are summarized in Table 1 below.

【0007】[0007]

【表1】[Table 1]

【0008】該表1の結果から分かるように、次亜りん
酸で浸漬処理して成る本発明電極は、処理しない比較電
極に比し初回放電容量が増加し、又、初期活性化サイク
ル数が減少する。かゝる効果は、本発明の次亜りん酸で
の処理により、電極中の合金粒子は還元され高活性とな
るからであると考えられる。次に、本発明電極と比較電
極の分極特性を測定した。測定は電位走査法により走査
速度を10mV/Secとし、−0.75〜−0.90
Vvs.Hg/H/Oの範囲で行った。この時の電位と
電流の関係を図1に示す。図1から分かるように、次亜
りん酸で処理した本発明電極は、次亜りん酸で処理しな
い比較電極に比し分極特性が著しく向上していることが
分かる。上記実施例では、次亜りん酸での浸漬粉砕処理
を室温で行ったが、該次亜りん酸の処理温度を高くする
ことは処理時間の短縮に効果がある。又、合金表面の酸
化物が還元され易い場合は、次亜りん酸を水で希釈して
用いることができる。上記の本発明電極を用いてAAサ
イズ1000mAhの二次電池を作製した所、初回の充
放電時から定格を満足する容量を取り出すことができた
。上記の実施例では、常法により水素吸蔵合金電極を作
製した後、その電極板の状態で次亜りん酸での浸漬処理
を行った場合を示したが、電極に作製する前の常法によ
り合金インゴットの粗砕粉を微粉化して得た水素吸蔵合
金粉末の段階において、これに次亜りん酸での浸漬処理
を行い、水洗、乾燥後、この次亜りん酸処理ずみの合金
粉末を用いて常法により上記と同様にしてその水素吸蔵
合金電極とした場合も、上記と同様の効果が得られた。 尚、この乾燥工程は、60℃で数時間乾燥したが、該合
金粉末は酸化や発火することなく安定であった。その理
由は、該合金粉末の表面にニッケル−りん酸の酸化防止
膜が形成されているからであると考えられる。本発明に
より処理すべき対象となる水素吸蔵合金としては、上記
のMm−Ni系合金の他に、Zr−Ni、Ti−Ni、
La−Ni、La−NiのNiの一部をCo、Al、M
n等で置換して成る多元合金、Ti−Zr−Ni、Zr
−V−Ni系、Ti−Feなどが挙げられる。
As can be seen from the results in Table 1, the electrode of the present invention which is immersed in hypophosphorous acid has an increased initial discharge capacity and a lower initial activation cycle number than the untreated comparative electrode. Decrease. Such an effect is thought to be due to the fact that the alloy particles in the electrode are reduced and become highly active by the treatment with hypophosphorous acid of the present invention. Next, the polarization characteristics of the electrode of the present invention and the comparative electrode were measured. The measurement was performed using the potential scanning method at a scanning rate of 10 mV/Sec, and the range was -0.75 to -0.90.
V vs. It was carried out in the range of Hg/H/O. The relationship between potential and current at this time is shown in FIG. As can be seen from FIG. 1, the electrode of the present invention treated with hypophosphorous acid has significantly improved polarization characteristics compared to the comparative electrode not treated with hypophosphorous acid. In the above examples, the immersion pulverization treatment with hypophosphorous acid was performed at room temperature, but increasing the treatment temperature of the hypophosphorous acid is effective in shortening the treatment time. Furthermore, if the oxide on the alloy surface is easily reduced, hypophosphorous acid can be used diluted with water. When a secondary battery of AA size 1000 mAh was produced using the above electrode of the present invention, a capacity satisfying the rating could be obtained from the first charge/discharge. In the above example, a hydrogen storage alloy electrode was prepared by a conventional method, and then the electrode plate was immersed in hypophosphorous acid. At the stage of hydrogen-absorbing alloy powder obtained by pulverizing coarse powder of alloy ingot, it is immersed in hypophosphorous acid, washed with water, and after drying, this hypophosphorous acid-treated alloy powder is used. When the hydrogen storage alloy electrode was prepared using a conventional method in the same manner as above, the same effect as above was obtained. Although this drying step was carried out at 60° C. for several hours, the alloy powder remained stable without oxidation or ignition. The reason for this is thought to be that a nickel-phosphoric acid anti-oxidation film is formed on the surface of the alloy powder. In addition to the above-mentioned Mm-Ni alloy, hydrogen storage alloys to be treated by the present invention include Zr-Ni, Ti-Ni,
La-Ni, a part of Ni in La-Ni is Co, Al, M
Multi-component alloys made by substituting n, etc., Ti-Zr-Ni, Zr
-V-Ni type, Ti-Fe, etc. are mentioned.

【0009】[0009]

【発明の効果】常法により製造した水素吸蔵合金電極を
次亜りん酸で浸漬処埋したもの、或いは常法により製造
した水素吸蔵合金粉末に次亜りん酸で浸漬処理したもの
を用いて製造した水素吸蔵合金電極は、高活性であり且
つ耐酸化性を有するので、初期活性化に要する充放電サ
イクル回数を減少でき而も充放電の初期から安定した高
容量を得ることができる効果をもたらす。
[Effect of the invention] Manufactured using a hydrogen storage alloy electrode manufactured by a conventional method and immersed in hypophosphorous acid, or a hydrogen storage alloy powder manufactured by a conventional method and immersed in hypophosphorous acid. The hydrogen-absorbing alloy electrode has high activity and oxidation resistance, so it can reduce the number of charge/discharge cycles required for initial activation, and has the effect of obtaining stable high capacity from the initial stage of charge/discharge. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の電極と比較電極との分極特性の比較グ
ラフを示す。
FIG. 1 shows a comparison graph of polarization characteristics between an electrode of the present invention and a comparison electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  次亜りん酸で浸漬処理して成る水素吸
蔵合金電極。
Claim: 1. A hydrogen storage alloy electrode obtained by immersion treatment in hypophosphorous acid.
【請求項2】  次亜りん酸で浸漬処埋した水素吸蔵合
金粉末を用いて構成した水素吸蔵合金電極。
2. A hydrogen storage alloy electrode constructed using hydrogen storage alloy powder immersed in hypophosphorous acid.
JP3177843A 1991-04-17 1991-04-17 Hydrogen storage alloy electrode Pending JPH04319258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177843A JPH04319258A (en) 1991-04-17 1991-04-17 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177843A JPH04319258A (en) 1991-04-17 1991-04-17 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH04319258A true JPH04319258A (en) 1992-11-10

Family

ID=16038088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177843A Pending JPH04319258A (en) 1991-04-17 1991-04-17 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH04319258A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645833A1 (en) * 1993-08-31 1995-03-29 SANYO ELECTRIC Co., Ltd. Method for producing a hydrogen absorbing alloy electrode
WO1995023435A1 (en) * 1994-02-25 1995-08-31 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
EP0837515A1 (en) * 1996-10-16 1998-04-22 Shin-Etsu Chemical Co., Ltd. Method of surface treating of a hydrogen absorbing alloy powder, and electrode using hydrogen absorbing alloy powder produced by said method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645833A1 (en) * 1993-08-31 1995-03-29 SANYO ELECTRIC Co., Ltd. Method for producing a hydrogen absorbing alloy electrode
CN1066857C (en) * 1993-08-31 2001-06-06 三洋电机株式会社 Method for producing a hydrogen absorbing alloy electrode
WO1995023435A1 (en) * 1994-02-25 1995-08-31 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
EP0837515A1 (en) * 1996-10-16 1998-04-22 Shin-Etsu Chemical Co., Ltd. Method of surface treating of a hydrogen absorbing alloy powder, and electrode using hydrogen absorbing alloy powder produced by said method
US5932034A (en) * 1996-10-16 1999-08-03 Shin-Etsu Chemical Co., Ltd. Method of producing hydrogen absorbing alloy powder, and electrode using hydrogen absorbing alloy powder produced by said method

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
JPH05225975A (en) Hydrogen storage alloy electrode
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
JPH04319258A (en) Hydrogen storage alloy electrode
JPS6119063A (en) Hydrogen occlusion electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JP2823301B2 (en) Hydrogen storage alloy electrode
JP2537084B2 (en) Hydrogen storage alloy electrode
JP3198896B2 (en) Nickel-metal hydride battery
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0992276A (en) Manufacture of hydrogen storage alloy powder for battery
JP2529898B2 (en) Hydrogen storage alloy electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3057737B2 (en) Sealed alkaline storage battery
JP2750793B2 (en) Nickel-metal hydride battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP3525519B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH05225976A (en) Hydrogen storage alloy electrode and manufacture thereof