JPH05225974A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH05225974A
JPH05225974A JP4069910A JP6991092A JPH05225974A JP H05225974 A JPH05225974 A JP H05225974A JP 4069910 A JP4069910 A JP 4069910A JP 6991092 A JP6991092 A JP 6991092A JP H05225974 A JPH05225974 A JP H05225974A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
battery
alloy powder
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4069910A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP4069910A priority Critical patent/JPH05225974A/en
Publication of JPH05225974A publication Critical patent/JPH05225974A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To lower the internal pressure of a battery with the reduction of hydrogen gas generated at the time of a charging process, and extend the service life thereof by manufacturing an electrode using hydrogen storage alloy powder available from treatment and removal of particulates with nitric acid. CONSTITUTION:Alloy powder containing approximately 15% of particulates of 10mum or less grain size is immersed in nitric acid water solution of pertinent concentration, for example, in 0.1N nitric acid at 25 deg.C for 15 minutes. Thereafter, colloidal supernatant is removed by a gradient method and, then, a product so obtained is washed, filtrated and dried, thereby obtaining hydrogen storage alloy powder. This powder contains only 1% of particulates of 10mum or less grain size, and almost all particulates initially contained are dissolved by nitric acid, or become colloidal. The colloidal particulates are separated and removed, and hydrogen storage alloy powder comprising the hydrogen storage alloy particles of 10mum or above grain size is obtained. Thereafter, this powder is used for a hydrogen storage electrode. A sealed storage battery using the electrode as a cathode electrode can restrain the internal pressure due to hydrogen gas generated at the time of charging, and the service life of the battery can be extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二次電池などの負極に
用いる電気化学的に水素の吸蔵・放出が可能な水素吸蔵
合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode capable of electrochemically storing and releasing hydrogen used for a negative electrode of a secondary battery or the like.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金を用いた電極を二次
電池の負極とし、正極にはニッケル酸化物を用い、電解
液としてアルカリ水溶液を用いたエネルギー密度の大き
いニッケル−水素電池が提案されている。この場合の負
極用の水素吸蔵合金は、例えばLaNi系合金、MmN
i系合金などの各組成元素の複数種の金属の各粉末を所
定の組成比で秤量混合し、その混合粉をアーク溶解法に
より加熱溶融した後、冷却してインゴットとなし、これ
を機械的に粉砕して250メッシュ以下の水素吸蔵合金
粉末とし得られたものである。このようにして得られた
水素吸蔵合金粉末に導電剤粉と結着剤とを混ぜて合剤と
し、これをニッケル金網などの多孔基板に圧着して水素
吸蔵合金電極を製造し、これを負極として、密閉型ニッ
ケル−水素電池を組み立てている。
2. Description of the Related Art Heretofore, a nickel-hydrogen battery having a large energy density has been proposed in which an electrode using a hydrogen storage alloy is used as a negative electrode of a secondary battery, nickel oxide is used as a positive electrode, and an alkaline aqueous solution is used as an electrolytic solution. ing. In this case, the hydrogen storage alloy for the negative electrode is, for example, LaNi-based alloy, MmN.
Powders of multiple kinds of metals such as i-type alloys are weighed and mixed in a predetermined composition ratio, and the mixed powder is heated and melted by an arc melting method, and then cooled to form an ingot. It was obtained by pulverizing into a hydrogen storage alloy powder of 250 mesh or less. The hydrogen-absorbing alloy powder thus obtained is mixed with a conductive agent powder and a binder to form a mixture, and the mixture is pressed onto a porous substrate such as a nickel wire mesh to produce a hydrogen-absorbing alloy electrode. As a result, a sealed nickel-hydrogen battery is assembled.

【0003】[0003]

【発明が解決しようとする課題】上記従来の水素吸蔵合
金粉末を用いて上記の密閉型ニッケル−水素電池の負極
とした場合、充電時に水素を発生し易く、充電末期に内
圧の上昇が大きく、その内圧が所定圧を越えると安全弁
が作動し、ガスを外部へ排出するように構成されている
が、その排気が頻繁におこると、内部の電解液の減少が
著しく、電池寿命の短縮をもたらす。
When the above conventional hydrogen storage alloy powder is used as the negative electrode of the above sealed nickel-hydrogen battery, hydrogen is easily generated at the time of charging, and the internal pressure increases largely at the end of charging. When the internal pressure exceeds a predetermined pressure, the safety valve is activated to discharge the gas to the outside, but if the gas is exhausted frequently, the amount of the electrolyte inside will be significantly reduced and the battery life will be shortened. ..

【0004】[0004]

【課題を解決するための手段】本発明は、水素吸蔵合金
粉末を用いて製造した負極を組み込んで成る密閉型ニッ
ケル−水素密閉電池の上記従来の不都合を解決した水素
吸蔵合金電極を提供するもので、硝酸により、含有する
微細粒子を除去処理して得られた水素吸蔵合金粉末を用
いて製造して成る。
DISCLOSURE OF THE INVENTION The present invention provides a hydrogen storage alloy electrode which solves the above-mentioned conventional inconvenience of a sealed nickel-hydrogen sealed battery incorporating a negative electrode manufactured by using hydrogen storage alloy powder. Then, it is manufactured by using the hydrogen storage alloy powder obtained by removing the contained fine particles with nitric acid.

【0005】[0005]

【作用】本発明の水素吸蔵合金粉末は、微細粒子が除去
されているので、これを用いて負極を製造し、これを負
極とした密閉型ニッケル−水素電池は、充電を行って
も、水素ガスの発生が減少し、内圧を低下でき、長寿命
の電池をもたらす。この場合、粒径10μm未満の微細
粒子が除去された水素吸蔵合金粉末を負極製造に用いる
ことが一般であり好ましい。
Since the hydrogen-absorbing alloy powder of the present invention has fine particles removed, a negative electrode is manufactured by using this powder, and a sealed nickel-hydrogen battery using this as a negative electrode can be charged with hydrogen even if it is charged. The gas generation is reduced, the internal pressure can be lowered, and the battery has a long life. In this case, it is general and preferable to use the hydrogen storage alloy powder from which the fine particles having a particle size of less than 10 μm have been removed, for producing the negative electrode.

【0006】[0006]

【実施例】次に本発明の実施例につき詳述する。本発明
に使用する水素吸蔵合金材料の種類は問わない。例え
ば、LaLiのNiの一部をCo、Al、Mnなどの
一種又はそれ以上の金属で置換したLa・Ni系合金な
どでも良いが、経済的な見地から、Laをミッシュメタ
ル(Mm)に代えた各種の水素吸蔵合金を使用すること
が望ましい。従って、MmNi系水素合金粉を例にと
り、以下説明する。市販のミッシュメタル、ニッケル、
コバルト、アルミニウムの各粉末を所定の組成比、例え
ばMmNi4.0Co0.5Al0.5となるように秤
量混合し、これらをアーク溶解法により加熱溶融して水
素吸蔵合金のインゴットを製造し、次でこれを機械的に
粉砕し、250メッシュ以下の水素吸蔵合金粉末を得
た。この合金粉末には、粒径10μm以下の微細粒子が
約15%含まれていた。本発明によれば、この合金粉末
を、適宜濃度の硝酸水溶液、例えば0.1Nの硝酸に2
5℃で15分間浸漬した。その後、傾斜法によりコロイ
ド状の上澄み液を除き、次で水洗、炉過、乾燥して本発
明の水素吸蔵合金粉末を得た。この合金粉末には、10
μm以下の微細粒子は僅か1%含有しているにすぎなか
った。即ち、当初含有していた大部分の微細粒子は上記
の硝酸により溶解し、或いはコロイド粒子となるので、
これを分離除去し、実質上粒径10μm以上の水素吸蔵
合金粒子から成る水素吸蔵合金粉末が得られる。上記の
ようにして得られた水素吸蔵合金粉末に対し、導電剤と
してカーボニルニッケル粉を15wt.%及び結着剤と
して四フッ化エチレン粉を5wt.%添加、混合して合
剤を調製した。この合剤を、常法によって、多孔金属集
電板に、例えばニッケル金網に、その所定量を圧着、成
形して、本発明の水素吸蔵合金電極板を作製した。
EXAMPLES Next, examples of the present invention will be described in detail. The type of hydrogen storage alloy material used in the present invention does not matter. For example, a La / Ni-based alloy in which a part of Ni of LaLi 5 is replaced with one or more metals such as Co, Al, and Mn may be used, but from the economical viewpoint, La is a misch metal (Mm). It is desirable to use various hydrogen storage alloys replaced. Therefore, the MmNi-based hydrogen alloy powder will be described below as an example. Commercially available misch metal, nickel,
Cobalt and aluminum powders are weighed and mixed so as to have a predetermined composition ratio, for example, MmNi 4.0 Co 0.5 Al 0.5, and these are heated and melted by an arc melting method to produce a hydrogen storage alloy ingot. Then, this was mechanically pulverized to obtain a hydrogen storage alloy powder of 250 mesh or less. This alloy powder contained about 15% of fine particles having a particle size of 10 μm or less. According to the present invention, this alloy powder is diluted with an aqueous solution of nitric acid having an appropriate concentration, for example, 0.1N nitric acid
It was immersed at 5 ° C for 15 minutes. After that, the colloidal supernatant was removed by the gradient method, and then washed with water, filtered and dried to obtain the hydrogen storage alloy powder of the present invention. This alloy powder has 10
It contained only 1% of fine particles of less than μm. That is, since most of the fine particles initially contained are dissolved by the above nitric acid or become colloidal particles,
This is separated and removed to obtain a hydrogen storage alloy powder consisting of hydrogen storage alloy particles having a particle size of substantially 10 μm or more. With respect to the hydrogen storage alloy powder obtained as described above, 15 wt. % And 5 wt.% Of tetrafluoroethylene powder as a binder. %, And mixed to prepare a mixture. This mixture was pressure-bonded to a porous metal current collector plate, for example, a nickel wire mesh, by a conventional method, and a predetermined amount thereof was pressure-molded to produce a hydrogen storage alloy electrode plate of the present invention.

【0007】上記の本発明の水素吸蔵合金極板を負極と
し、公知のペースト式ニッケル極板を陽極とし、セパレ
ータを介して積層し、捲回して捲回極板群とし、これを
円筒状電池容器に収容し、電解液として30%水酸化カ
リウム水溶液を注入し、常法により電池蓋を施し、単3
サイズ1000mAHの円筒密閉型ニッケル−水素電池
を作製した。これを以下本発明電池と称する。
The hydrogen storage alloy electrode plate of the present invention is used as a negative electrode, a known paste type nickel electrode plate is used as an anode, laminated with a separator interposed therebetween, and wound into a wound electrode plate group, which is a cylindrical battery. Put in a container, inject 30% potassium hydroxide aqueous solution as an electrolytic solution, and cover the battery by a conventional method.
A cylindrical sealed nickel-hydrogen battery having a size of 1000 mAH was produced. This is hereinafter referred to as a battery of the present invention.

【0008】比較のため、上記の硝酸での処理を行わず
に、即ち、前記の粒径10μm以下の微細粒子を15%
含有している水素吸蔵合金粉末をそのまゝ用いて、上記
と同様にして水素吸蔵合金電極板を製造し、これを負極
とし、上記と同様にして捲回極板群を製造し、且つこれ
を上記と同様に円筒状電池容器に組み込み、単3サイズ
1000mAHの円筒密閉型ニッケル−水素電池を作製
した。これを以下従来電池と称する。
For comparison, the above treatment with nitric acid was not carried out, that is, 15% of the fine particles having a particle size of 10 μm or less were used.
Using the hydrogen storage alloy powder contained therein as it is, a hydrogen storage alloy electrode plate is manufactured in the same manner as above, and this is used as a negative electrode, and a wound electrode plate group is manufactured in the same manner as above, and this Was incorporated into a cylindrical battery container in the same manner as described above to prepare an AA size 1000 mAH cylindrical sealed nickel-hydrogen battery. This is hereinafter referred to as a conventional battery.

【0009】上記の本発明電池及び従来電池には、過充
電試験を行い、予め装着しておいた内圧センサーによ
り、充電時発生した内圧を測定した。即ち、過充電試験
は電池を1C(1A)の電流で、定格容量の450%
(4.5時間)充電して行った。この時の内圧を測定し
た。その結果、本発明電池の内圧は4Kgf/cm
あったに対し、従来電池の内圧は11Kgf/cm
あった。この比較試験結果から明らかなように、本発明
電池は、負極に用いた上記の水素吸蔵合金粉末により、
充電時の内圧上昇は低く抑えられることが分った。
The battery of the present invention and the conventional battery were subjected to an overcharge test, and the internal pressure generated at the time of charging was measured by an internal pressure sensor mounted in advance. That is, in the overcharge test, the battery has a current of 1C (1A) and 450% of the rated capacity.
(4.5 hours) It charged and went. The internal pressure at this time was measured. As a result, the internal pressure of the battery of the present invention was 4 Kgf / cm 2 , whereas the internal pressure of the conventional battery was 11 Kgf / cm 2 . As is clear from the results of this comparative test, the battery of the present invention, by the above hydrogen storage alloy powder used for the negative electrode,
It was found that the rise in internal pressure during charging can be suppressed to a low level.

【0010】上記の実施例では、硝酸による浸漬処理
は、室温で行ったが、処理温度を高くして浸漬処理すれ
ば、処理時間を短縮することができる。また、水素吸蔵
合金が溶解し易い場合、硝酸の水溶液の濃度を低下させ
たものを使用し、或いは溶解しにくい場合には、その濃
度を高くすることにより適宜調節することができる。
In the above-mentioned embodiment, the immersion treatment with nitric acid was carried out at room temperature, but the treatment time can be shortened by increasing the treatment temperature and carrying out the immersion treatment. When the hydrogen storage alloy is easily dissolved, a solution of nitric acid in which the concentration is lowered is used, or when it is difficult to dissolve, the concentration can be appropriately adjusted by increasing the concentration.

【0011】[0011]

【発明の効果】このように、本発明によるときは、硝酸
により、含有する微細粒子、好ましくは粒径10μm未
満の粒子を除去処理して成る水素吸蔵合金粉を用いて水
素吸蔵電極としたので、これを負極とする密閉電池は、
充電時の水素ガス発生による内圧を低く抑えることがで
き、電池寿命の延長をもたらす効果を有する。
As described above, according to the present invention, a hydrogen storage electrode is formed by using a hydrogen storage alloy powder obtained by removing fine particles contained therein, preferably particles having a particle size of less than 10 μm, with nitric acid. , The sealed battery with this as the negative electrode
The internal pressure due to the generation of hydrogen gas at the time of charging can be suppressed to a low level, which has the effect of extending the battery life.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硝酸により、含有する微細粒子を除去処
理して得られた水素吸蔵合金粉末を用いて製造して成る
水素吸蔵合金電極。
1. A hydrogen storage alloy electrode manufactured by using hydrogen storage alloy powder obtained by removing fine particles contained in nitric acid.
【請求項2】 粒径10μm未満の微細粒子の含有率が
1%以下である水素吸蔵合金粉末を用いて製造して成る
水素吸蔵合金電極。
2. A hydrogen storage alloy electrode produced by using a hydrogen storage alloy powder having a content of fine particles having a particle size of less than 10 μm of 1% or less.
JP4069910A 1992-02-10 1992-02-10 Hydrogen storage alloy electrode Pending JPH05225974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4069910A JPH05225974A (en) 1992-02-10 1992-02-10 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4069910A JPH05225974A (en) 1992-02-10 1992-02-10 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH05225974A true JPH05225974A (en) 1993-09-03

Family

ID=13416328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4069910A Pending JPH05225974A (en) 1992-02-10 1992-02-10 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH05225974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696823A1 (en) * 1994-02-25 1996-02-14 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
JP2000294235A (en) * 1999-04-09 2000-10-20 Santoku Corp Hydrogen storage alloy powder for battery and manufacture of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696823A1 (en) * 1994-02-25 1996-02-14 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
EP0696823A4 (en) * 1994-02-25 1996-04-24 Yuasa Battery Co Ltd Hydrogen absorbing electrode and production method thereof
JP2000294235A (en) * 1999-04-09 2000-10-20 Santoku Corp Hydrogen storage alloy powder for battery and manufacture of the same

Similar Documents

Publication Publication Date Title
JP2012069510A (en) Cylindrical nickel-hydrogen storage battery
JPH05225975A (en) Hydrogen storage alloy electrode
JP5219338B2 (en) Method for producing alkaline storage battery
JP3433033B2 (en) Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JPH05225974A (en) Hydrogen storage alloy electrode
JP4663275B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP3432870B2 (en) Method for producing metal hydride electrode
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4420641B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JPH08333603A (en) Hydrogen storage alloy particle and its production
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JPH04319258A (en) Hydrogen storage alloy electrode
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3152845B2 (en) Nickel-metal hydride battery
JPH0754703B2 (en) Metal oxide / hydrogen battery
JP2000017302A (en) Hydrogen storage alloy sintered compact and hydrogen storage alloy sintered compact porous negative electrode
JPH04318106A (en) Production of hydrogen storage alloy powder