JPH1150263A - Production of stabilized hydrogen storage alloy - Google Patents

Production of stabilized hydrogen storage alloy

Info

Publication number
JPH1150263A
JPH1150263A JP9206083A JP20608397A JPH1150263A JP H1150263 A JPH1150263 A JP H1150263A JP 9206083 A JP9206083 A JP 9206083A JP 20608397 A JP20608397 A JP 20608397A JP H1150263 A JPH1150263 A JP H1150263A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
rare earth
earth metal
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9206083A
Other languages
Japanese (ja)
Inventor
Seijiro Suda
精二郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T LEASE KK
SUISO ENERG KENKYUSHO KK
Original Assignee
N T T LEASE KK
SUISO ENERG KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T LEASE KK, SUISO ENERG KENKYUSHO KK filed Critical N T T LEASE KK
Priority to JP9206083A priority Critical patent/JPH1150263A/en
Publication of JPH1150263A publication Critical patent/JPH1150263A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To remove oxide film, to maintain hydrogen occluding ability over a long period of time and to improve hydrogenation characteristics by melting a very small amt. of a rare earth metal in an alloy consisting essentially of Ti and Ni and treating the alloy with an aq. soln. contg. F ions. SOLUTION: A rare earth metal is melted and incorporated by <=10 at.% into a hydrogen storage alloy having a compsn. consisting essentially of Ti and Ni or a compsn. obtd. by substituting Zr for part of the Ti and the alloy is treated with an aq. soln. contg. F ions to form fluoride or hydroxide of the rare earth metal on the surface and grain boundary faces of the alloy. It is preferable that the aq. soln. contg. F ions is adjusted to pH 4.5-8.0 to accelerate hydrogenation reaction on the surface of the alloy and the specific surface area is increased by about 50-500 times by forming a fine complex surface structure by lattice expansion and shrinkage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、その表面又は粒界
面にフッ化物を形成させることにより、水素化反応特性
と電気化学的特性の初期特性が著しく改善され、かつ長
期間にわたって特性が劣化することなく使用しうる水素
吸蔵合金を製造する方法に関するものである。
[0001] The present invention relates to a method for forming a fluoride on a surface or a grain boundary, whereby hydrogenation reaction characteristics and electrochemical characteristics are remarkably improved, and characteristics are deteriorated over a long period of time. The present invention relates to a method for producing a hydrogen storage alloy that can be used without any problem.

【0002】[0002]

【従来の技術】近年、金属系新素材の1つとして水素吸
蔵合金が注目され、積極的に応用研究がなされている。
この水素吸蔵合金は、圧力を加えたり、温度を低くした
りすると水素を吸収して金属水素化合物になり、発熱
し、逆に圧力を下げたり、温度を高くしたりすると、吸
収していた水素を再び放出して熱を奪うという性質を有
している。したがって、このような性質を利用して、該
水素貯蔵合金を、水素そのものや熱エネルギーの貯蔵、
あるいは化学エネルギーと熱エネルギーの変換などに利
用することが可能であり、例えば水素貯蔵装置や排熱利
用のヒートポンプ、ケミカルエンジンや、ニッケル−水
素電池の電極材料などに利用することが試みられてい
る。
2. Description of the Related Art In recent years, attention has been paid to hydrogen storage alloys as one of new metallic materials, and applied research has been actively conducted.
This hydrogen-absorbing alloy absorbs hydrogen when pressure is applied or lowers the temperature to become a metal hydride, and generates heat.On the contrary, when the pressure is lowered or the temperature is increased, the absorbed hydrogen is absorbed. Has the property of releasing heat again to take away heat. Therefore, utilizing such properties, the hydrogen storage alloy is used to store hydrogen itself and thermal energy,
Alternatively, it can be used for conversion between chemical energy and heat energy, and for example, it has been attempted to use it for a hydrogen storage device, a heat pump utilizing waste heat, a chemical engine, an electrode material of a nickel-hydrogen battery, and the like. .

【0003】ところで、この水素吸蔵合金の中ではAB
2型として分類されるチタニウム又はジルコニウムとニ
ッケルを主成分とするC−14構造若しくはC−15構
造をもつラベース相系の水素吸蔵合金例えばTi0.1
0.90.2Mn0.6Co0.1Ni1.1や、AB型として分
類されるチタニウム又はジルコニウムとニッケルを主成
分とする水素吸蔵合金例えばTi0.7Zr0.3Ni0.5
0.5などが理論的水素吸蔵量が多く電気化学的容量も
大きいことから、水素貯蔵材料や電極材料として期待さ
れているが、これらは表面がち密な状態で酸化されるこ
とにより水素化反応特性や充電−放電特性、特に初期活
性化特性が悪く、水素化−脱水素化反応や充電−放電の
繰り返しにより急速にその機能を低下するという欠点が
ある。前記の酸化により形成される層は、アルカリ処理
により一時的に除去することは可能であるが、長期間に
わたって使用すると、耐酸化性や耐被毒性をそう失する
ため実用に供することは非常に困難であった。
[0003] In this hydrogen storage alloy, AB
Labase phase-based hydrogen storage alloy having a C-14 structure or a C-15 structure containing titanium or zirconium and nickel as main components classified as type 2, for example, Ti 0.1 Z
r 0.9 V 0.2 Mn 0.6 Co 0.1 Ni 1.1 , or a hydrogen storage alloy classified as AB type containing titanium or zirconium and nickel as main components, for example, Ti 0.7 Zr 0.3 Ni 0.5 M
Since such n 0.5 is larger theoretical hydrogen storage capacity many electrochemical capacity, it has been regarded as the hydrogen storage material and the electrode material, the hydrogenation reaction properties by these that the surface is oxidized in a dense state And the charge-discharge characteristics, particularly the initial activation characteristics, are poor, and the function is rapidly deteriorated by the repetition of the hydrogenation-dehydrogenation reaction and the charge-discharge. The layer formed by the above-mentioned oxidation can be temporarily removed by an alkali treatment, but when used for a long period of time, it loses its oxidation resistance and poisoning resistance. It was difficult.

【0004】本発明者は、先にニッケルと希土類金属と
を主成分とする水素吸蔵合金について、フッ化処理する
ことにより、長期間にわたって安定に使用できるものが
得られることを見出したが(特開平7−207493号
公報)、AB2型、AB型及びBCC型合金について、
同様のフッ化処理を施すと、表面酸化物は容易に除去し
うるが表面におけるフッ化物形成が行われず、安定化は
不成功に終った。
The present inventor has previously found that a hydrogen storage alloy containing nickel and a rare earth metal as main components can be stably used over a long period of time by subjecting it to fluorination treatment. JP-A-7-207493), AB 2 type, AB type and BCC type alloys,
When a similar fluorination treatment was performed, surface oxides could be easily removed, but no fluoride was formed on the surface, and the stabilization was unsuccessful.

【0005】[0005]

【発明が解決しようとする課題】本発明は、これまでフ
ッ化処理による安定化が困難であったチタニウムとニッ
ケルを主成分とする組成又はそのチタニウムの一部をジ
ルコニウムで置換した組成を有する水素吸蔵合金をフッ
化処理して安定化する方法を提供するためになされたも
のである。
SUMMARY OF THE INVENTION The present invention relates to hydrogen having a composition containing titanium and nickel as main components or a composition in which titanium is partially substituted with zirconium, which has been difficult to stabilize by fluorination treatment. The purpose of the present invention is to provide a method for stabilizing a storage alloy by fluorination treatment.

【0006】[0006]

【課題を解決するための手段】本発明者は、チタニウム
とニッケルあるいはこの両方とジルコニウムを成分とし
て含むAB2型、AB型及びBCC型合金のフッ化処理
による安定化を可能にするために鋭意研究を重ねた結
果、これらの合金中に希土類金属を微量だけ溶解させ
て、希土類系ニッケル合金、例えばLaNi3の新たな
相を母合金間に分散状態で形成させたのち、これをフッ
化処理することにより、その目的を達成しうることを見
出し、この知見に基づいて本発明をなすに至った。
SUMMARY OF THE INVENTION The inventor of the present invention has made a keen effort to stabilize AB 2 type, AB type and BCC type alloys containing titanium and nickel or both of them and zirconium as components by fluorination treatment. As a result of repeated studies, a small amount of rare earth metal was dissolved in these alloys, and a new phase of a rare earth nickel alloy, for example, LaNi 3 was formed in a dispersed state between the master alloys, and then fluorinated. As a result, it has been found that the object can be achieved, and the present invention has been made based on this finding.

【0007】すなわち、本発明は、チタニウムとニッケ
ルを主成分とする組成又はそのチタニウムの一部がジル
コニウムで置換された組成を有する水素吸蔵合金に10
原子%以下の量の希土類金属を溶融含有させたのち、フ
ッ素イオン含有水溶液で処理することにより、該合金の
表面及び粒界面に希土類金属のフッ化物又は水酸化物を
形成させることを特徴とする安定化水素吸蔵合金の製造
方法を提供するものである。また、この際、フッ素イオ
ン含有水溶液の水素イオン濃度をpH4.5〜8.0の
範囲で調整して、合金表面上での水素化反応を促進させ
ることにより生じる格子膨張と収縮による微細で複雑な
表面構造を形成させ、比表面積を50〜500倍程度増
大する方法を提供するものである。
That is, the present invention relates to a hydrogen storage alloy having a composition containing titanium and nickel as main components or a composition in which titanium is partially substituted with zirconium.
After the rare earth metal is melted and contained in an amount of not more than atomic%, a fluoride or hydroxide of the rare earth metal is formed on the surface and the grain interface of the alloy by treating with an aqueous solution containing fluorine ions. It is intended to provide a method for producing a stabilized hydrogen storage alloy. Also, at this time, the hydrogen ion concentration of the aqueous solution containing fluorine ions is adjusted within the range of pH 4.5 to 8.0 to promote the hydrogenation reaction on the alloy surface, thereby causing fine and complicated lattice expansion and contraction caused by lattice expansion and contraction. The present invention provides a method for forming a specific surface structure and increasing the specific surface area by about 50 to 500 times.

【0008】[0008]

【発明の実施の形態】本発明において原料として用いる
水素吸蔵合金は、チタニウムとニッケルを主成分とする
組成又はそのチタニウムの一部をジルコニウムで置換し
た組成を有するAB2型、AB型及びBCC型合金であ
る。この合金は、チタニウム、ニッケル及びジルコニウ
ム以外にマンガン、バナジウム、コバルト、アルミニウ
ム、カルシウムなどを含有することができる。これらの
合金の中でAB2型のものの例としては、Ti0.1Zr
0.90.2Mn0.6Co0.1Ni1.1を、AB型のものの例
としては、Ti0.7Zr0.3Ni0.5Mn0.5を、BCC型
のものの例としては、TiV3Ni0.5をそれぞれ挙げる
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy used as a raw material in the present invention is of AB 2 type, AB type and BCC type having a composition containing titanium and nickel as main components or a composition in which titanium is partially substituted with zirconium. Alloy. This alloy can contain manganese, vanadium, cobalt, aluminum, calcium, etc. in addition to titanium, nickel and zirconium. Among these alloys, examples of the AB 2 type include Ti 0.1 Zr
0.9 V 0.2 Mn 0.6 Co 0.1 Ni 1.1 , examples of the AB type include Ti 0.7 Zr 0.3 Ni 0.5 Mn 0.5 , and examples of the BCC type include TiV 3 Ni 0.5 .

【0009】次に、これらの水素吸蔵合金に溶融含有さ
せる希土類金属としては、スカンジウム、イットリウ
ム、ランタン、セリウム、プラセオジム、ネオジム、プ
ロメチウム、サマリウム、ユーロピウム、ガドリニウ
ム、テルビウム、ジスプロシウム、ホルミウム、エルビ
ウム、ツリウム、イッテルビウム及びルテチウムがある
が、本発明方法においては、これらを単独で用いてもよ
いし、2種以上の混合物例えばミッシュメタルを用いて
もよい。特に好ましい希土類金属はランタンである。
Next, scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, etc. Although there are ytterbium and lutetium, in the method of the present invention, these may be used alone, or a mixture of two or more kinds, for example, misch metal may be used. A particularly preferred rare earth metal is lanthanum.

【0010】本発明方法においては、原料の水素吸蔵合
金に上記の希土類金属を10原子%以下、好ましくは
0.5〜5原子%の範囲で添加し、溶融して含有させる
ことが必要である。この含有量があまり少ないと、後続
のフッ化処理の際、十分なフッ化物が生成しないし、ま
た10原子%よりも大きくなると水素吸蔵能力が低下す
る。
In the method of the present invention, it is necessary to add the above rare earth metal to the hydrogen storage alloy as a raw material in an amount of 10 atomic% or less, preferably in the range of 0.5 to 5 atomic%, and to melt the metal. . If this content is too small, sufficient fluoride will not be produced during the subsequent fluorination treatment, and if it exceeds 10 atomic%, the hydrogen storage capacity will be reduced.

【0011】本発明方法において所定の水素吸蔵合金に
希土類金属を含有させるには、あらかじめ製造した水素
吸蔵合金を溶融し、これに所定量の希土類金属を添加
し、均一に分散させてもよいし、また原料の水素吸蔵合
金の組成に対応する各成分とともに所定量の希土類金属
を混合し、これを溶融して合金としてもよい。この際の
溶融温度としては、水素吸蔵合金の組成に左右される
が、通常900〜1800℃の範囲内である。この溶融
は、一般に合金を製造する場合に用いられている任意の
方法例えば電気炉法やアーク溶解法などによって行うこ
とができる。この際、アルゴンのような不活性ガス雰囲
気中で行うのが望ましい。このようにして、希土類金属
を含有させたことにより、原料の水素吸蔵合金の水素吸
蔵能力は全くそこなわれることはない。
In the method of the present invention, in order to include a rare earth metal in a predetermined hydrogen storage alloy, a previously prepared hydrogen storage alloy may be melted, and a predetermined amount of the rare earth metal may be added thereto to be uniformly dispersed. Alternatively, a predetermined amount of a rare earth metal may be mixed with each component corresponding to the composition of the hydrogen storage alloy as a raw material, and this may be melted to form an alloy. The melting temperature at this time depends on the composition of the hydrogen storage alloy, but is usually in the range of 900 to 1800 ° C. This melting can be performed by any method generally used for producing an alloy, for example, an electric furnace method or an arc melting method. At this time, it is desirable to carry out in an atmosphere of an inert gas such as argon. By including the rare earth metal in this way, the hydrogen storage capacity of the raw material hydrogen storage alloy is not impaired at all.

【0012】次に、このようにして得た希土類金属含有
水素吸蔵合金は機械的に500μm以下、好ましくは5
0〜300μmの粒径の粒子に粉砕され、フッ素イオン
含有水溶液により処理される。この際必要ならば、この
合金粒子に水素化/脱水素化処理を繰り返し施すことに
より、さらに微粉砕して、粒径を小さくしてもよいし、
また、このようにして得た合金粒子を常法に従いプレス
成形してペレットとしたのち、後続工程に供給すること
もできる。
Next, the hydrogen storage alloy containing a rare earth metal thus obtained is mechanically less than 500 μm, preferably 5 μm or less.
It is pulverized into particles having a particle size of 0 to 300 μm and treated with an aqueous solution containing fluorine ions. At this time, if necessary, the alloy particles may be subjected to repeated hydrogenation / dehydrogenation treatment so as to be further finely pulverized to reduce the particle size.
Further, the alloy particles thus obtained can be formed into pellets by press molding according to a conventional method, and then supplied to a subsequent step.

【0013】本発明方法において、希土類金属含有水素
吸蔵合金のフッ化に用いるフッ素イオン含有水溶液とし
ては、特開平7−207493号公報及び特願平8−1
32264号明細書に記載されているもの、例えば六フ
ッ化金属化合物の水溶液やフッ化アルカリ0.2〜1
0.0重量%を含む水溶液を、フッ化水素によりpH
2.0〜6.5に調整した処理液を挙げることができ
る。この際のフッ化アルカリとしては、フッ化ナトリウ
ム、フッ化カリウム、フッ化アンモニウムなどが用いら
れるが、特にフッ化カリウムが好ましい。これらのフッ
化アルカリは、0.2〜10.0重量%の範囲の濃度で
水に溶解される。特に好ましい濃度は、フッ化ナトリウ
ムの場合0.3〜3.0重量%、フッ化カリウムの場合
0.5〜5.0重量%、フッ化アンモニウムの場合0.
5〜8.0重量%の範囲である。
In the method of the present invention, the aqueous solution containing fluorine ions used for fluorinating the rare earth metal-containing hydrogen storage alloy is disclosed in JP-A-7-207493 and Japanese Patent Application No. 8-1.
No. 32264, for example, an aqueous solution of a metal hexafluoride compound or an alkali fluoride of 0.2 to 1
An aqueous solution containing 0.0% by weight is adjusted to pH with hydrogen fluoride.
A processing solution adjusted to 2.0 to 6.5 can be mentioned. As the alkali fluoride at this time, sodium fluoride, potassium fluoride, ammonium fluoride or the like is used, and potassium fluoride is particularly preferable. These alkali fluorides are dissolved in water at a concentration ranging from 0.2 to 10.0% by weight. Particularly preferred concentrations are 0.3 to 3.0% by weight for sodium fluoride, 0.5 to 5.0% by weight for potassium fluoride, and 0.1% for ammonium fluoride.
It is in the range of 5 to 8.0% by weight.

【0014】また、K3AlF6のような六フッ化金属化
合物を水に溶解して得られるF-イオン、HF2 -イオン
とともに、H+イオンを含むフッ化水素水溶液、K+イオ
ン、NH4 +イオンのような陽イオンが共存するフッ化物
水溶液などを用いることができる。この際の溶媒として
は、通常水単独が用いられるが、場合によりアルコー
ル、アセトンのような水溶性溶媒を併用することもでき
る。そして、このフッ素イオン含有水溶液には、ニッケ
ル化合物例えばフッ化ニッケルをあらかじめ含有させて
おき、水素吸蔵合金中からニッケルが溶出するのを抑制
したり、あるいは溶出により減少するニッケル成分を補
足することができる。
[0014] obtained by a hexafluoride metal compound such as K 3 AlF 6 was dissolved in water F - ions, HF 2 - with ion, hydrogen fluoride aqueous solution containing H + ions, K + ions, NH A fluoride aqueous solution in which a cation such as 4 + ion coexists can be used. As the solvent at this time, water is usually used alone, but in some cases, a water-soluble solvent such as alcohol and acetone may be used in combination. Then, a nickel compound such as nickel fluoride is previously contained in the fluorine ion-containing aqueous solution to suppress the elution of nickel from the hydrogen storage alloy or to supplement the nickel component reduced by the elution. it can.

【0015】このフッ素イオン含有水溶液による処理を
好適に行うには、例えばまずM3AlF6、M2TiF6
2ZrF6、M2SiF6(ただし、Mはカリウムやナト
リウムなどのアルカリ金属である)などのフッ化金属化
合物を重量/容量比(W/V)で0.01〜0.5程度
となるように水に溶解し、十分に撹拌、混合して過飽和
水溶液を調製する。次いで、この過飽和水溶液中に、前
記合金粒子を浸せきし、通常常圧下に0〜60℃程度、
好ましくは15〜40℃の温度において、0.5〜5時
間処理する。
In order to suitably perform the treatment with the fluorine ion-containing aqueous solution, for example, first, M 3 AlF 6 , M 2 TiF 6 ,
Metal fluoride compounds such as M 2 ZrF 6 and M 2 SiF 6 (where M is an alkali metal such as potassium or sodium) are used in a weight / volume ratio (W / V) of about 0.01 to 0.5. The resulting solution is dissolved in water to obtain a supersaturated aqueous solution. Next, the alloy particles are immersed in the supersaturated aqueous solution, and usually at about 0 to 60 ° C. under normal pressure,
The treatment is preferably performed at a temperature of 15 to 40 ° C for 0.5 to 5 hours.

【0016】このようにして処理することにより、チタ
ニウムとニッケルを主成分とする組成又はそのチタニウ
ムの一部がジルコニウムで置換された組成を有する水素
吸蔵合金中に、希土類系ニッケル合金例えばLaNi3
の新たな相が生成し、これが母合金相間に分散された状
態でフッ化物を形成する。そして、このフッ化されたL
a−Ni合金相の水素に対する強い選択性と透過性によ
って、水素化反応特性と電気化学的特性の初期特性の著
しい向上が得られる。この際、水素イオン濃度をpH
4.5〜8.0の範囲内に維持し、処理時間と水素イオ
ン濃度との関係を適当に制御すると希土類金属のフッ化
物例えばフッ化ランタンの代りに、希土類金属の水酸化
物例えば水酸化ランタンが合金表面及び粒界面に生成す
る。また、フッ素イオン含有水溶液中にニッケルイオン
をあらかじめ溶解させておけば、この処理によりフッ化
物の生成と同時に金属ニッケルの還元を生じ、水素透過
性が向上し、かつ表面保護機能とともに伝導性の高い表
面層が形成される。
By performing the treatment as described above, a rare earth nickel alloy such as LaNi 3 is added to a hydrogen storage alloy having a composition containing titanium and nickel as main components or a composition in which titanium is partially substituted with zirconium.
A new phase is formed, which forms fluoride in a state dispersed between the master alloy phases. And this fluorinated L
The strong selectivity and permeability to hydrogen of the a-Ni alloy phase leads to a significant improvement in the initial properties of the hydrogenation reaction and electrochemical properties. At this time, the hydrogen ion concentration was adjusted to pH
When the relationship between the treatment time and the hydrogen ion concentration is appropriately controlled while maintaining the value in the range of 4.5 to 8.0, a rare earth metal hydroxide such as hydroxide is used instead of the rare earth metal fluoride such as lanthanum fluoride. Lanthanum forms at the alloy surface and grain interface. In addition, if nickel ions are previously dissolved in a fluorine ion-containing aqueous solution, this treatment causes reduction of metallic nickel at the same time as generation of fluoride, improving hydrogen permeability, and having high conductivity together with a surface protection function. A surface layer is formed.

【0017】他方、水素吸蔵合金における、水素化/脱
水素化あるいは充電/放電の繰り返しの際の格子の膨張
/収縮による細かなひび割れが発生すると、フッ化物や
ニッケルの保護層を有しない新たな表面を生じ、それが
耐被毒性及び繰り返し寿命の低下を招来するおそれがあ
る。このため、あらかじめ細かなひび割れによる新しい
表面を作り、その表面に保護層を形成させておき、前記
のようなトラブルを避けるのが望まれる。
On the other hand, when fine cracks occur in the hydrogen storage alloy due to expansion / contraction of the lattice during repetition of hydrogenation / dehydrogenation or charging / discharging, a new fluoride or nickel protective layer is not provided. Surfaces can occur, which can lead to poisoning resistance and reduced cycle life. For this reason, it is desired that a new surface due to fine cracks is formed in advance and a protective layer is formed on the surface to avoid the above-described trouble.

【0018】本発明方法においては、フッ素イオン含有
水溶液による処理の過程で、フッ化水素水溶液を補充す
るか、あるいは酢酸水溶液や酢酸ナトリウム水溶液のよ
うな緩衝液を添加することにより、水素イオン濃度をp
H4.5〜8.0の範囲内で調整し、比表面積が大き
く、粒径の小さい粒子を製造することができる。これ
は、水溶液中の水素イオンが合金表面上での水素化反応
によって水素化物を形成し、その際に格子が膨張して微
細なひび割れを生じたもので、フッ素イオン含有水溶液
による処理は、フッ化された合金粒子を形成するだけで
はなく、同時にひび割れを発生させて比表面積を増大さ
せるものである。
In the method of the present invention, the hydrogen ion concentration is reduced by replenishing the aqueous solution of hydrogen fluoride or adding a buffer such as an aqueous solution of acetic acid or sodium acetate during the treatment with the aqueous solution containing fluorine ions. p
By adjusting the H within the range of 4.5 to 8.0, particles having a large specific surface area and a small particle diameter can be produced. This is because hydrogen ions in the aqueous solution form hydrides by a hydrogenation reaction on the alloy surface, and the lattice expands at that time, causing fine cracks. In addition to forming alloyed particles, cracks are simultaneously generated to increase the specific surface area.

【0019】[0019]

【発明の効果】本発明方法により次の効果が奏せられ
る。 (イ)酸化物被膜が除去され、水素吸蔵能力が長期間に
わたって持続する。 (ロ)希土類金属ニッケル系合金相とその表面及び粒界
面でのフッ化物の形成により水素化特性が向上する。 (ハ)金属ニッケルと水酸化物が表面及び粒界面に形成
し、電気伝導性及び熱伝導性が向上する。 (ニ)金属ニッケルの還元により複合層が形成され、耐
食性や耐被毒性などの表面保護機能と電気伝導性及び熱
伝導性が向上する。 (ホ)フッ化物生成過程で進行する水素化反応により微
細な亀裂を生じ、これによって比表面積が増大し、増加
した表面及び粒界面に形成される希土類金属フッ化物又
は水酸化物と金属ニッケルとの複合相により、耐食性及
び耐被毒性などの表面保護機能と電気伝導性及び熱伝導
性が向上する。
According to the method of the present invention, the following effects can be obtained. (A) The oxide film is removed, and the hydrogen storage capacity is maintained for a long time. (B) The hydrogenation characteristics are improved by the formation of the rare earth metal nickel-based alloy phase and the fluoride at the surface and at the grain interface. (C) Metal nickel and hydroxide are formed on the surface and at the grain interface, and the electrical conductivity and the thermal conductivity are improved. (D) A composite layer is formed by reduction of nickel metal, so that surface protection functions such as corrosion resistance and poisoning resistance, and electrical conductivity and thermal conductivity are improved. (E) The hydrogenation reaction that proceeds in the process of fluoride formation causes fine cracks, thereby increasing the specific surface area, and increasing the surface and grain interface between the rare earth metal fluoride or hydroxide and metal nickel. The composite phase improves surface protection functions such as corrosion resistance and poisoning resistance, and electrical and thermal conductivity.

【0020】[0020]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
Next, the present invention will be described in more detail with reference to examples.

【0021】実施例1 水素吸蔵合金Zr0.9Ti0.1Ni1.10.2Co0.1Mn
0.625gに、ランタン5原子%を添加し、アルゴン雰
囲気下でアーク溶解法により溶解したのち、冷却する操
作を5回繰り返して均一な組成とした。この際の最大電
圧は250Vであった。次いで、これを機械的に粉砕
し、粒径26μm以下の粒子径をもつランタン含有水素
吸蔵合金粉末を調製した。別に特開平7−207493
号公報に記載された方法に従い、K3AlF640gを水
100gに溶解し、さらにNiF20.5gを加えて溶
解したのち、HFによりpH5.3に調整し、フッ素イ
オン含有水溶液を調製した。このようにして得たフッ素
イオン含有水溶液100ml中に、前記のランタン含有
水素吸蔵合金粉末5gを投入し、30℃において30分
間かきまぜたのち、ろ別し、洗水中にフッ素イオンが認
められなくなるまで水洗し、減圧乾燥することにより、
安定化水素吸蔵合金を製造した。
Example 1 Hydrogen storage alloy Zr 0.9 Ti 0.1 Ni 1.1 V 0.2 Co 0.1 Mn
5 atomic% of lanthanum was added to 0.625 g, and after melting by an arc melting method in an argon atmosphere, the operation of cooling was repeated five times to obtain a uniform composition. The maximum voltage at this time was 250V. Next, this was mechanically pulverized to prepare a lanthanum-containing hydrogen storage alloy powder having a particle diameter of 26 μm or less. Separately, JP-A-7-207493
In accordance with the method described in JP-A No. H10-240, 40 g of K 3 AlF 6 was dissolved in 100 g of water, and 0.5 g of NiF 2 was further added and dissolved, and then adjusted to pH 5.3 with HF to prepare an aqueous solution containing fluorine ions. . 5 g of the above-mentioned lanthanum-containing hydrogen-absorbing alloy powder was put into 100 ml of the thus-obtained fluorine-ion-containing aqueous solution, stirred at 30 ° C. for 30 minutes, filtered, and filtered until no fluorine ions were found in the washing water. By washing with water and drying under reduced pressure,
A stabilized hydrogen storage alloy was manufactured.

【0022】実施例2 0.3重量%フッ化水素水溶液100mlにフッ化カリ
ウム3gを溶解し、さらにこれにフッ化ニッケル1.2
gとクエン酸三ナトリウム水和物7.4gを溶解した溶
液と、0.3重量%フッ化水素水溶液100mlに次亜
リン酸ナトリウム4.0gを溶解した溶液とを混合し、
安定化処理用のフッ素イオン含有水溶液を調製した。次
に、このフッ素イオン含有水溶液200ml中に実施例
1と同じランタン含有水素吸蔵合金粉末10gを投入
し、30℃において30分間かきまぜたのち、実施例1
と同様に水洗、乾燥することにより安定化水素吸蔵合金
を製造した。
Example 2 3 g of potassium fluoride was dissolved in 100 ml of a 0.3% by weight aqueous solution of hydrogen fluoride.
g and a solution in which 7.4 g of trisodium citrate hydrate was dissolved, and a solution in which 4.0 g of sodium hypophosphite was dissolved in 100 ml of a 0.3% by weight aqueous hydrogen fluoride solution,
An aqueous solution containing fluorine ions for stabilization treatment was prepared. Next, 10 g of the same lanthanum-containing hydrogen storage alloy powder as in Example 1 was put into 200 ml of the fluorine ion-containing aqueous solution, and the mixture was stirred at 30 ° C. for 30 minutes.
A stabilized hydrogen storage alloy was produced by washing with water and drying in the same manner as described above.

【0023】実施例3 メジアン径73.9μm、比表面積0.068m2/g
をもつランタン含有水素吸蔵合金粉末5gを、実施例1
で用いたのと同じフッ素イオン含有水溶液200mlに
より、酢酸ナトリウムを含む酢酸水溶液を用いて、pH
を6.0〜8.0の範囲内で制御しながら30℃におい
て30分間フッ化処理した。この処理を、30分サイク
ルで繰り返したときの、pHの経時的変化を図1に示
す。このようにして、処理した後のランタン含有水素吸
蔵合金粉末の比表面積をBET法により測定したところ
5.72m2/gであり、処理前のものに比べ約84倍
も増大していることが分った。
Example 3 A median diameter of 73.9 μm and a specific surface area of 0.068 m 2 / g
5 g of a lanthanum-containing hydrogen storage alloy powder having
Using the same fluoride ion-containing aqueous solution 200 ml as used in the above, using an acetic acid aqueous solution containing sodium acetate, pH
Was fluorinated at 30 ° C. for 30 minutes while controlling within the range of 6.0 to 8.0. FIG. 1 shows the change over time in pH when this treatment was repeated in a 30-minute cycle. The specific surface area of the lanthanum-containing hydrogen storage alloy powder after the treatment was measured by the BET method and found to be 5.72 m 2 / g, which is about 84 times larger than that before the treatment. I understand.

【0024】参考例1 水素吸蔵合金Zr0.9Ti0.1Ni1.10.2Co0.1Mn
0.6の粉末(A)、これに実施例1と同様にしてランタ
ン5原子%を含有させた合金の粉末(B)、前記(A)
を実施例1と同様にしてフッ化処理したもの(C)及び
前記(B)を実施例1と同様にしてフッ化処理したもの
(D)を用いて、次のようにして試験した。すなわち、
それぞれの粉末試料に対し、ポリテトラフルオロエチレ
ン5重量%を加え、4ton/cm2の圧力を用いて圧
縮成形し、直径13mm、厚さ1.5mmのペレットと
した。次に、このペレットを試験電極とし、60μHz
〜100kHzの周波数領域においてインピーダンスを
測定し、その結果を図2及び図3に示した。これらの図
から明らかなように、ランタンの有無にかかわらず、フ
ッ化処理を施した試料(C)及び(D)は、未処理試料
(A)及び(D)に比較してインピーダンスは大きく低
下している。また、ランタンの添加によりインピーダン
スは低下しているが、このことは、電気伝導性及びイオ
ン伝導性の低い酸化皮膜がなく、伝導性の大きい金属ニ
ッケルで覆われた表面形態を生じていることを示唆して
いる。最もインピーダンス低下の著しいのは、ランタン
添加合金をフッ化処理した試料(D)であり、図2から
このもののインピーダンスの著しい低下が電気及びイオ
ン伝導性の向上と密接に関係していることが分る。
Reference Example 1 Hydrogen storage alloy Zr 0.9 Ti 0.1 Ni 1.1 V 0.2 Co 0.1 Mn
0.6 powder (A), an alloy powder containing 5 atomic% of lanthanum in the same manner as in Example 1 (B), the above (A)
Was tested as follows using (C) which was fluorinated in the same manner as in Example 1 and (D) which was fluorinated from (B) in the same manner as in Example 1. That is,
To each powder sample, 5% by weight of polytetrafluoroethylene was added and compression-molded using a pressure of 4 ton / cm 2 to obtain pellets having a diameter of 13 mm and a thickness of 1.5 mm. Next, this pellet was used as a test electrode,
The impedance was measured in the frequency range of 100100 kHz, and the results are shown in FIGS. As is clear from these figures, regardless of the presence or absence of lanthanum, the impedance of the fluorinated samples (C) and (D) is significantly lower than that of the untreated samples (A) and (D). doing. In addition, the addition of lanthanum lowers the impedance, which means that there is no oxide film with low electrical and ionic conductivity and a surface morphology covered with highly conductive metallic nickel is produced. Suggests. The most remarkable decrease in impedance is the sample (D) in which the lanthanum-added alloy is fluorinated, and FIG. 2 shows that the remarkable decrease in the impedance is closely related to the improvement in the electrical and ionic conductivity. You.

【0025】参考例2 水素吸蔵合金Zr0.9Ti0.1Ni1.10.2Co0.1Mn
0.6の粉末(A)、これにランタン5原子%を含有させ
た合金の粉末(B)、(A)を実施例2と同様にしてフ
ッ化処理したもの(E)及び(B)を実施例2と同様に
してフッ化処理したもの(F)をそれぞれ試料粉末とし
て用いて、以下の試験を行った。すなわち、それぞれの
粉末試料100重量部に対し、ニッケル粉末300重量
部及びポリテトラフルオロエチレン粉末20重量部を加
え、十分に混合したのち、4ton/cm2の圧力で圧
縮成形し、直径13mm、厚さ1.5mmのペレットを
作製した。次に、このペレットを試験電極とし、6N−
KOH電解液中で、正極Ni(OH)2、参照電極Hg
/HgOを用いて充電/放電試験を行った。この際の試
験条件は、雰囲気温度20℃、充電200mA/gで3
時間、休止時間10分、放電150mA/g、放電深度
−0.6Vであった。この試験結果を、サイクル数と放
電容量との関係を示すグラフとして図4に示す。この図
から分るように、フッ化処理を施さない試料の(A)と
(B)ではランタン未添加の方(A)が添加したもの
(B)よりも放電容量が高いが、いずれも初期放電容量
は低い。また、フッ化処理を施した試料(E)と(F)
では、ランタンを添加したもの(F)の方が明らかに優
れており、ランタンを添加してフッ化処理を施すことに
より、安定した高放電容量が得られることが分る。
Reference Example 2 Hydrogen storage alloy Zr 0.9 Ti 0.1 Ni 1.1 V 0.2 Co 0.1 Mn
0.6 powder (A), and alloy powders (B) and (A) containing 5 atomic% of lanthanum, which were fluorinated in the same manner as in Example 2 (E) and (B). The following tests were performed using the fluorinated (F) in the same manner as in Example 2 as each sample powder. That is, 300 parts by weight of nickel powder and 20 parts by weight of polytetrafluoroethylene powder were added to 100 parts by weight of each powder sample, mixed well, and then compression-molded under a pressure of 4 ton / cm 2 to form a 13 mm diameter, A pellet having a thickness of 1.5 mm was produced. Next, this pellet was used as a test electrode and 6N-
In a KOH electrolyte, a positive electrode Ni (OH) 2 , a reference electrode Hg
/ HgO was used to perform a charge / discharge test. The test conditions at this time were as follows: ambient temperature 20 ° C., charging 200 mA / g.
Time, rest time 10 minutes, discharge 150 mA / g, discharge depth -0.6 V. FIG. 4 shows the test results as a graph showing the relationship between the number of cycles and the discharge capacity. As can be seen from this figure, in the samples (A) and (B) which were not subjected to the fluorination treatment, the discharge capacity was higher than that of the sample (A) to which lanthanum was not added (B). Discharge capacity is low. In addition, the samples (E) and (F) subjected to the fluoridation treatment
It is clear that the case (F) to which lanthanum is added is clearly superior, and that a stable high discharge capacity can be obtained by adding lanthanum and performing fluorination treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例3におけるpHの経時的変化を示すグ
ラフ。
FIG. 1 is a graph showing a time-dependent change in pH in Example 3.

【図2】 参考例1におけるランタンを添加しない試料
のインピーダンス測定の結果を示す、虚部を縦軸、実部
を横軸としたグラフ。
FIG. 2 is a graph showing the results of impedance measurement of a sample to which lanthanum is not added in Reference Example 1, in which the imaginary part is the vertical axis and the real part is the horizontal axis.

【図3】 参考例1におけるランタンを添加した試料の
インピーダンス測定の結果を示す、虚部を縦軸、実部を
横軸としたグラフ。
FIG. 3 is a graph showing the results of impedance measurement of a sample to which lanthanum is added in Reference Example 1, with the imaginary part as the ordinate and the real part as the abscissa.

【図4】 参考例2における各試料のサイクル数と放電
容量の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the number of cycles and the discharge capacity of each sample in Reference Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H01M 4/38 H01M 4/38 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI // H01M 4/38 H01M 4/38 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チタニウムとニッケルを主成分とする組
成又はそのチタニウムの一部がジルコニウムで置換され
た組成を有する水素吸蔵合金に10原子%以下の量の希
土類金属を溶融含有させたのち、フッ素イオン含有水溶
液で処理することにより、該合金の表面及び粒界面に希
土類金属のフッ化物又は水酸化物を形成させることを特
徴とする安定化水素吸蔵合金の製造方法。
1. A hydrogen storage alloy having a composition containing titanium and nickel as main components or a composition in which a part of titanium is replaced by zirconium contains 10 atomic% or less of a rare earth metal in a molten state and then contains fluorine. A method for producing a stabilized hydrogen storage alloy, comprising forming a fluoride or hydroxide of a rare earth metal on the surface and grain interface of the alloy by treating with an ion-containing aqueous solution.
【請求項2】 希土類金属がランタンである請求項1記
載の製造方法。
2. The method according to claim 1, wherein the rare earth metal is lanthanum.
【請求項3】 フッ素イオン含有水溶液の水素イオン濃
度をpH4.5〜8.0の範囲で制御する請求項1又は
2記載の製造方法。
3. The production method according to claim 1, wherein the hydrogen ion concentration of the fluorine ion-containing aqueous solution is controlled within a range of pH 4.5 to 8.0.
JP9206083A 1997-07-31 1997-07-31 Production of stabilized hydrogen storage alloy Pending JPH1150263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9206083A JPH1150263A (en) 1997-07-31 1997-07-31 Production of stabilized hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9206083A JPH1150263A (en) 1997-07-31 1997-07-31 Production of stabilized hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH1150263A true JPH1150263A (en) 1999-02-23

Family

ID=16517548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9206083A Pending JPH1150263A (en) 1997-07-31 1997-07-31 Production of stabilized hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH1150263A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016130624A1 (en) * 2015-02-11 2016-08-18 Basf Corporation Hydrogen storage alloys
WO2016130561A1 (en) * 2015-02-11 2016-08-18 Basf Corporation Hydrogen storage alloys
WO2016130621A1 (en) * 2015-02-11 2016-08-18 Basf Corporation Hydrogen storage alloys
US10109855B2 (en) 2015-02-11 2018-10-23 Basf Corporation Hydrogen storage alloys

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016130624A1 (en) * 2015-02-11 2016-08-18 Basf Corporation Hydrogen storage alloys
WO2016130561A1 (en) * 2015-02-11 2016-08-18 Basf Corporation Hydrogen storage alloys
WO2016130621A1 (en) * 2015-02-11 2016-08-18 Basf Corporation Hydrogen storage alloys
CN107208201A (en) * 2015-02-11 2017-09-26 巴斯夫公司 Hydrogen bearing alloy
CN107208202A (en) * 2015-02-11 2017-09-26 巴斯夫公司 Hydrogen bearing alloy
CN107208203A (en) * 2015-02-11 2017-09-26 巴斯夫公司 Hydrogen bearing alloy
US10109855B2 (en) 2015-02-11 2018-10-23 Basf Corporation Hydrogen storage alloys

Similar Documents

Publication Publication Date Title
JP2799389B2 (en) Enhanced charge retention electrochemical hydrogen storage alloy and enhanced charge retention electrochemical cell
EP0757395A1 (en) A non-sintered nickel electrode, an alkaline storage cell and manufacturing method
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP2978094B2 (en) Surface treatment method of hydrogen storage alloy powder and alkaline secondary battery obtained by applying the method
JPH1150263A (en) Production of stabilized hydrogen storage alloy
US5943545A (en) Method of manufacturing a hydrogen-absorbing alloy for use in an alkali storage cell
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2002507314A (en) Hydrogen storage alloy
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
JP3432870B2 (en) Method for producing metal hydride electrode
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
US5775602A (en) Manufacturing method for a hydrogen-storage-alloy powder for batteries
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
WO2020179752A1 (en) Negative electrode active material powder, negative electrode and nickel hydrogen secondary battery
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JP3136961B2 (en) Method of treating hydrogen storage alloy for batteries
Jenq et al. Discharge performance of Ti0. 35Zr0. 65Ni1. 2V0. 6Mn0. 2 alloy electrode modified by electroless nickel plating
JPH08333603A (en) Hydrogen storage alloy particle and its production
JP4187351B2 (en) Hydride secondary battery and manufacturing method thereof
JP3268015B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061227