JP3454600B2 - Method for producing hydrogen storage alloy for alkaline storage battery - Google Patents

Method for producing hydrogen storage alloy for alkaline storage battery

Info

Publication number
JP3454600B2
JP3454600B2 JP08034695A JP8034695A JP3454600B2 JP 3454600 B2 JP3454600 B2 JP 3454600B2 JP 08034695 A JP08034695 A JP 08034695A JP 8034695 A JP8034695 A JP 8034695A JP 3454600 B2 JP3454600 B2 JP 3454600B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
aqueous solution
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08034695A
Other languages
Japanese (ja)
Other versions
JPH08279356A (en
Inventor
忠司 伊勢
順康 石丸
博 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08034695A priority Critical patent/JP3454600B2/en
Priority to KR1019960010115A priority patent/KR100384760B1/en
Priority to PCT/JP1996/000954 priority patent/WO1996031911A1/en
Priority to CN96193079A priority patent/CN1090824C/en
Priority to EP96908368A priority patent/EP0820109B1/en
Priority to US08/913,845 priority patent/US6010582A/en
Priority to DE69610199T priority patent/DE69610199T2/en
Publication of JPH08279356A publication Critical patent/JPH08279356A/en
Priority to HK98110255A priority patent/HK1009560A1/en
Application granted granted Critical
Publication of JP3454600B2 publication Critical patent/JP3454600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用水素
吸蔵合金の製造方法に関し、詳しくは水素吸蔵合金の酸
処理及び洗浄処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy for alkaline storage batteries, and more particularly to an acid treatment and cleaning treatment method for a hydrogen storage alloy.

【0002】[0002]

【従来の技術】従来、電子機器の駆動電源やバックアッ
プ用電源として、Ni−Cd電池等のアルカリ二次電池
が使用されて来たが、電子機器の高性能化に伴いNi−
Cd電池よりも高容量且つ長寿命であるNi−水素電池
の利用が拡大している。ところで、水素吸蔵合金を使用
したNi−水素電池などのアルカリ蓄電池では、水素吸
蔵合金の活性度の優劣により電池性能が左右される。こ
のため、一般に、アルカリ蓄電池用の水素吸蔵合金は、
反応面積を増大させるとともに、充填密度を高めるため
に、所定の粒度にまで粉砕したものが使用されている。
しかし、水素吸蔵合金は極めて活性な物質であり、空気
中の酸素と容易に反応して表面に酸化皮膜を形成する。
この酸化皮膜は、合金の電気導電性を低下させるととも
に、初期活性化を阻害する。そこで、電池製造に際して
は合金の酸化を防止しすべく細心の注意が払われている
他、粉砕工程等で酸化を受けた合金の活性度を回復させ
るための処理が種々行われている。
2. Description of the Related Art Conventionally, alkaline secondary batteries such as Ni-Cd batteries have been used as driving power sources and backup power sources for electronic equipment.
The use of Ni-hydrogen batteries, which have higher capacity and longer life than Cd batteries, is expanding. By the way, in an alkaline storage battery such as a Ni-hydrogen battery using a hydrogen storage alloy, the battery performance depends on the superiority or inferiority of the activity of the hydrogen storage alloy. Therefore, in general, the hydrogen storage alloy for alkaline storage batteries is
In order to increase the reaction area and the packing density, crushed powder having a predetermined particle size is used.
However, the hydrogen storage alloy is an extremely active substance and easily reacts with oxygen in the air to form an oxide film on the surface.
This oxide film reduces the electrical conductivity of the alloy and inhibits initial activation. Therefore, in the production of batteries, great care is taken to prevent oxidation of the alloy, and various treatments are carried out to recover the activity of the alloy that has been oxidized in the pulverization process and the like.

【0003】活性度回復処理の方法としては、例えば特
開平3−98259号公報では、合金を60℃以上の加
熱水で処理する方法が提案されている。また、特開平4
−179055号公報、特開平6−88150号公報お
よび特開平6−223827号公報では、合金を酸性水
溶液で処理する方法が提案されている。合金に対し上記
提案の方法を実施した場合、合金表面に形成された酸化
物層や水酸化物層が除去され、また合金表面がNiリッ
チになるため、未処理の場合に比べて電極構成後の充放
電による初期活性化が容易になり、初期活性化効果が高
まる結果、電池性能が向上する。
As a method for recovering the activity, for example, Japanese Patent Laid-Open No. 3-98259 proposes a method of treating an alloy with heated water at 60 ° C. or higher. In addition, JP-A-4
-179055, JP-A-6-88150, and JP-A-6-223827 propose methods of treating an alloy with an acidic aqueous solution. When the above-mentioned method is applied to an alloy, the oxide layer and hydroxide layer formed on the alloy surface are removed, and the alloy surface becomes Ni-rich. The initial activation due to charging and discharging becomes easy, and the initial activation effect is enhanced, resulting in improved battery performance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記特
開平3−98259号公報の技術では、処理に多くの時
間を要し、また酸化皮膜等の除去効果が十分に得られ難
いという問題がある。他方、特開平4−179055号
公報等の技術は、酸化皮膜除去の効果が高く、処理時間
を短縮できるという利点があるものの、処理に際し酸性
水溶液中のアニオンが、合金成分(例えば、希土類元
素)と反応して塩化物等の化合物を形成する。この化合
物は水洗では容易に除去し得ないため、アニオンが合金
中に残留することになり、この残留アニオンが合金活性
を低下させる原因となる他、電池内で正極に移動したア
ニオンが正極活物質と反応して正極活性を低下させる原
因ともなる。したがって、前記特開平4−179055
号公報等の技術であっても、酸化皮膜除去による電池特
性の向上効果を合金に残留するアニオンが減殺するた
め、十分に電池性能を高めることができないという問題
がある。
However, the technique disclosed in Japanese Unexamined Patent Publication No. 3-98259 has a problem in that it takes a lot of time for processing and it is difficult to sufficiently obtain the effect of removing an oxide film and the like. On the other hand, the techniques of Japanese Patent Laid-Open No. 4-179055 and the like have the advantages that the effect of removing an oxide film is high and the treatment time can be shortened. Reacts with to form compounds such as chlorides. Since this compound cannot be easily removed by washing with water, the anions remain in the alloy, and this residual anion causes a decrease in alloy activity. It also causes a decrease in positive electrode activity. Therefore, the above-mentioned JP-A-4-179055
Even with the technique disclosed in Japanese Patent Publication, there is a problem in that the effect of improving the battery characteristics by removing the oxide film is reduced by the anions remaining in the alloy, so that the battery performance cannot be sufficiently improved.

【0005】本願発明は、上記に鑑みなされたものであ
って、電池性能を十分に高め得る効率的で実効性の高い
合金活性化処理方法を提供することを目的とする。
The present invention has been made in view of the above, and an object thereof is to provide an efficient and highly effective alloy activation treatment method capable of sufficiently enhancing battery performance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、以下の構成を有する。請求項1の発明に係
るアルカリ蓄電池用水素吸蔵合金の製造方法は、水素吸
蔵合金を酸性水溶液で処理する酸処理工程と、前記酸処
理により水素吸蔵合金に取り込まれたアニオンの残留量
が、水素吸蔵合金に対し5×10-6mol/g以下にな
るまで洗浄する洗浄工程とを備え、前記洗浄工程での洗
浄が、酸化防止剤含有水溶液で行うものであり、当該水
溶液中における酸化防止剤は、リン酸水素二ナトリウ
ム、リン酸水素二カリウム、炭酸水素ナトリウム、炭酸
水素カリウム、水酸化ホウ素ナトリウム、水酸化ホウ素
カリウム、水酸化アルミニウムリチウム、次亜リン酸ナ
トリウム、次亜リン酸カリウム、ホルマリン、ギ酸から
選択されるものであることを特徴とする。
In order to achieve the above object, the present invention has the following constitution. The method for producing a hydrogen storage alloy for an alkaline storage battery according to the invention of claim 1 is characterized in that an acid treatment step of treating the hydrogen storage alloy with an acidic aqueous solution and a residual amount of anions taken in the hydrogen storage alloy by the acid treatment are hydrogen. A washing step of washing the storage alloy to 5 × 10 −6 mol / g or less, and the washing in the washing step is performed with an antioxidant-containing aqueous solution.
The antioxidant in the solution is dihydrogen phosphate.
Mu, dipotassium hydrogen phosphate, sodium hydrogen carbonate, carbonic acid
Potassium hydrogen, sodium borohydride, boron hydroxide
Potassium, lithium aluminum hydroxide, sodium hypophosphite
From thorium, potassium hypophosphite, formalin, formic acid
It is characterized by being selected .

【0007】請求項2の発明は、請求項1記載のアルカ
リ蓄電池用水素吸蔵合金の製造方法において、前記酸性
水溶液が、PH0.5以上、3.5以下であることを特
徴とする。請求項3の発明は、請求項1乃至2記載のア
ルカリ蓄電池用水素吸蔵合金の製造方法において、前記
洗浄工程の後に更に、前記洗浄工程で洗浄された水素吸
蔵合金を酸化防止剤含有水溶液中に浸漬保存する保存洗
浄工程を有することを特徴とする。
According to a second aspect of the present invention, in the method for producing a hydrogen storage alloy for alkaline storage batteries according to the first aspect, the acidic aqueous solution has a pH of 0.5 or more and 3.5 or less. The invention of claim 3 is the method for producing a hydrogen storage alloy for alkaline storage batteries according to claim 1 or 2, wherein:
After the cleaning process, the hydrogen absorption
Preservation washing by dipping and storing Kura alloy in aqueous solution containing antioxidant
It is characterized by having a cleaning process .

【0008】請求項4の発明は、請求項1乃至3記載の
アルカリ蓄電池用水素吸蔵合金の製造方法において、
記水素吸蔵合金が、4.0×10 -3 以下の不均一歪みを
有するものであることを特徴とする。
[0008] claimed invention in claim 4 is the manufacturing method of claims 1 to 3 for alkaline storage battery hydrogen storage alloy according, before
The hydrogen storage alloy has a non-uniform strain of 4.0 × 10 −3 or less.
It is characterized by having.

【0009】[0009]

【作用】本発明によれば、酸性水溶液で処理する酸処理
工程により水素吸蔵合金表面に形成された酸化皮膜が除
去されるので、電池の初期活性化が容易になる。また、
洗浄工程で前記酸処理の際、酸化防止剤含有水溶液を用
いて、合金中(特に合金表面)に取り込まれたアニオン
を5×10-6mol/合金-g 濃度以下にまで洗浄する
ので、純水を用いて洗浄した場合に比較して、より迅速
かつ確実に合金中の残留アニオンを減少させることがで
きる。よって、本発明の製造方法を用いて製造されたア
ルカリ蓄電池用水素吸蔵合金では、残留アニオンが電池
性能に悪影響を及ぼすことがない。したがって、本発明
方法を適用した水素吸蔵合金を用いた場合、初期充放電
により容易に合金活性を高めることができ、また残留ア
ニオンが正負極の活性を低下させることがないので、高
率放電特性、低温放電特性及びサイクル特性に優れたア
ルカリ蓄電池を得ることができる。
According to the present invention, since the oxide film formed on the surface of the hydrogen storage alloy is removed by the acid treatment step of treating with an acidic aqueous solution, the initial activation of the battery is facilitated. Also,
Use an aqueous solution containing antioxidant during the acid treatment in the washing process .
The anions taken in the alloy (especially on the alloy surface) are washed down to a concentration of 5 × 10 -6 mol / alloy-g or less, so it is faster than washing with pure water.
And it is possible to surely reduce the residual anions in the alloy.
Wear. Therefore, it can be manufactured using the manufacturing method of the present invention.
In the hydrogen storage alloy for Lucari battery, residual anions do not adversely affect the battery performance. Therefore, when the hydrogen storage alloy to which the method of the present invention is applied is used, the alloy activity can be easily increased by the initial charge / discharge, and the residual anions do not lower the activity of the positive and negative electrodes. It is possible to obtain an alkaline storage battery having excellent low temperature discharge characteristics and cycle characteristics.

【0010】上記において、酸処理工程で使用する酸性
水溶液として、PH0.5〜3.5の溶液を用いると、
酸化皮膜の除去効果が一層高まる。また、洗浄工程で洗
浄した合金を、前記酸化防止剤含有水溶液で浸漬保存す
ると、合金が外気と遮断されることによる酸化防止効果
に加え、洗浄工程で洗浄できなかった微量の残留アニオ
ンをさらに除去することが可能となる。
In the above, if a solution having a pH of 0.5 to 3.5 is used as the acidic aqueous solution used in the acid treatment step,
The effect of removing the oxide film is further enhanced. Also, wash in the washing process
The cleaned alloy is immersed and stored in the antioxidant-containing aqueous solution.
Prevents the alloy from blocking the outside air
In addition to the trace amount of residual anion that could not be washed in the washing process,
It is possible to further remove the gas.

【0011】更に、上記した酸処理及び洗浄処理の効果
は、合金の種類に係わりなく得られるが、特に4.0×
10-3以下の不均一歪みを有する水素吸蔵合金に対して
適用した場合に顕著な効果が得られる。その理由は次の
ようである。不均一歪みの小さい合金は、不均一歪みの
大きい合金に比べ、水素の吸収放出に伴う合金の膨張収
縮エネルギーに対する抵抗力が強いため、充放電サイク
ルの進行によっても微細化されにくい。したがって、本
発明処理方法で表面処理した不均一歪みの小さい合金
は、当初の好適な表面状態(活性状態)が長期にわたっ
てそのまま維持される。これに対し不均一歪みの大きい
合金では、充放電サイクルの進行に伴って合金割れが生
じ、新たな合金表面(活性化されていない表面)が出現
する。このため、不均一歪みの大きい合金では、相対的
に本発明方法による処理効果が減縮すると考えられる。
Furthermore, the effects of the above acid treatment and cleaning treatment can be obtained regardless of the type of alloy, but especially 4.0 ×
A remarkable effect is obtained when applied to a hydrogen storage alloy having a non-uniform strain of 10 −3 or less. The reason is as follows. An alloy having a small non-uniform strain has a higher resistance to the expansion and contraction energy of the alloy accompanying absorption and desorption of hydrogen, as compared with an alloy having a large non-uniform strain, and thus is less likely to be miniaturized even with the progress of charge and discharge cycles. Therefore, the alloy having a small non-uniform strain, which has been surface-treated by the treatment method of the present invention, maintains the initial suitable surface state (active state) as it is for a long period of time. On the other hand, in an alloy having a large non-uniform strain, alloy cracking occurs as the charge / discharge cycle progresses, and a new alloy surface (non-activated surface) appears. Therefore, it is considered that the treatment effect of the method of the present invention is relatively reduced in the alloy having a large nonuniform strain.

【0012】なお、不均一歪みとは、ラウエカメラ等で
デバイ環を測定した際に、このデバイ環がブロードにな
る現象の原因の1つであって、下記数1によって定義さ
れる値をいう。
The non-uniform strain is one of the causes of the phenomenon that the Debye ring becomes broad when the Debye ring is measured with a Laue camera or the like, and is a value defined by the following mathematical expression 1. .

【0013】[0013]

【数1】 [Equation 1]

【0014】[0014]

【実施例】実験に基づいて本発明アルカリ蓄電池用水素
吸蔵合金の製造方法を説明する。 (実験1) 〔水素吸蔵合金の作製〕市販のミッシュメタルMm(L
a、Ce、Nd、Pr等希土類元素の混合物)、Ni、
Co、Al及びMnを、元素比で1:3.4:0.8:
0.2:0.6となるように秤量して混合し、不活性ガ
ス雰囲気の高周波溶解炉を用いてMmNi3.4 Co0.8
Al0.2 Mn0.6 の組成式で表される水素吸蔵合金鋳塊
(Y) を鋳造した。この水素吸蔵合金鋳塊(Y) の不均一歪
みは、5.4×10-3であった。この水素吸蔵合金鋳塊
(Y) を不活性ガス雰囲気中で粉砕し、平均粒径が150
μm以下の合金粉末を得た。
EXAMPLES A method for producing a hydrogen storage alloy for alkaline storage batteries of the present invention will be described based on experiments. (Experiment 1) [Preparation of hydrogen storage alloy] Commercially available misch metal Mm (L
a, a mixture of rare earth elements such as Ce, Nd, Pr), Ni,
Co, Al and Mn are contained in an element ratio of 1: 3.4: 0.8:
0.2: 0.6 weighed and mixed so that, MmNi 3.4 Co 0.8 using a high frequency melting furnace of an inert gas atmosphere
Hydrogen storage alloy ingot represented by a composition formula of Al 0.2 Mn 0.6
(Y) was cast. The non-uniform strain of this hydrogen storage alloy ingot (Y) was 5.4 × 10 −3 . This hydrogen storage alloy ingot
(Y) was crushed in an inert gas atmosphere to give an average particle size of 150.
An alloy powder having a size of μm or less was obtained.

【0015】他方、上記水素吸蔵合金鋳塊(Y) を不活性
ガス雰囲気中で1000℃、8時間の熱処理を行いアニ
ール処理合金(Z) とし、この合金(Z) を上記と同様な条
件で粉砕して、平均粒径が150μm以下の合金粉末を
得た。前記アニール処理合金(Z) の不均一歪みは、2.
5×10-3であった。 〔酸処理および洗浄処理〕上記で作製した不均一歪みの
異なる2種類の合金粉末を、合金重量とほぼ等重量の塩
酸水溶液(PH=1)に浸漬し、攪拌型混合機を用いて
20分間攪拌する方法により酸処理を施した。その後、
この酸処理済合金粉末に対し表1に示す種々な条件で洗
浄処理した。
On the other hand, the hydrogen-absorbing alloy ingot (Y) is heat-treated at 1000 ° C. for 8 hours in an inert gas atmosphere to obtain an annealed alloy (Z), and this alloy (Z) is subjected to the same conditions as above. It was crushed to obtain an alloy powder having an average particle size of 150 μm or less. The non-uniform strain of the annealed alloy (Z) is 2.
It was 5 × 10 −3 . [Acid treatment and cleaning treatment] The two kinds of alloy powders having different non-uniform strains produced above are immersed in a hydrochloric acid aqueous solution (PH = 1) having a weight approximately equal to the weight of the alloy, and the mixture is stirred for 20 minutes. Acid treatment was performed by a stirring method. afterwards,
The acid-treated alloy powder was washed under various conditions shown in Table 1.

【0016】洗浄処理は、純水又は純水に1重量%のリ
ン酸水素二ナトリウムを溶解した溶液(酸化防止剤含有
水溶液)でそれぞれ処理する方法により行った。具体的
には、攪拌型混合機に上記洗浄液を入れ、この洗浄液に
対しほぼ等重量の酸処理済合金粉末を浸漬し、所定時間
攪拌した。次いで、所定時間攪拌後に洗浄液を交換して
再び所定時間攪拌するという操作を、合金中の塩素(ア
ニオン)濃度が所望の値となるまで繰り返した。
The cleaning treatment was carried out by a method of treating with pure water or a solution in which 1% by weight of disodium hydrogen phosphate was dissolved in pure water (antioxidant-containing aqueous solution). Specifically, the above cleaning solution was put into a stirring type mixer, and approximately equal weight of acid-treated alloy powder was immersed in this cleaning solution and stirred for a predetermined time. Next, the operation of exchanging the cleaning liquid after stirring for a predetermined time and stirring again for a predetermined time was repeated until the chlorine (anion) concentration in the alloy reached a desired value.

【0017】なお、表1は、合金の種類(不均一歪みの
違い)、洗浄条件の違いをA0 〜A 6 、B1 〜B6 、C
0 〜C6 、D1 〜D6 で示してある。また、表1中の塩
素濃度は原子吸光分析法により測定した値であり、洗浄
時間は1回の攪拌時間×繰り返し回数で示してある。 〔電極及び電池の作製〕各種洗浄処理済合金粉末と、こ
の合金粉末に対し5重量%のポリテトラフルオロエチレ
ン粉末と、適量の水とを加えて混練し合金ペーストを作
製した。このペーストをパンチングメタルからなる集電
体の両面に塗布し、乾燥させた後、プレスして水素吸蔵
合金電極を作製した。
Table 1 shows the type of alloy (of non-uniform strain).
Difference), the difference in cleaning conditions0~ A 6, B1~ B6, C
0~ C6, D1~ D6It is indicated by. Also, the salts in Table 1
Elementary concentration is the value measured by atomic absorption spectrometry,
The time is shown as one stirring time × repeating times. [Fabrication of electrodes and batteries]
5% by weight based on the alloy powder of polytetrafluoroethylene
Powder and an appropriate amount of water are added and kneaded to form an alloy paste.
Made This paste is a collector made of punching metal
Apply to both sides of the body, dry, then press to absorb hydrogen
An alloy electrode was produced.

【0018】次いで、前記水素吸蔵合金電極(負極)と
焼結式ニッケル極(正極)を、両者の間に不織布からな
るセパレータを介在させて巻回し、電極群を作製した。
この電極群を外装缶に挿入し、さらに30重量%水酸化
カリウム水溶液を注入した後、外装缶を密閉した。この
ようにして水素吸蔵合金の処理条件のみが異なる、理論
容量1000mAhの密閉型ニッケル水素蓄電池を作製
した。更に、これらの電池に対し下記充放電条件(室温
下3サイクル)で初期活性化を行った。
Next, the hydrogen storage alloy electrode (negative electrode) and the sintered nickel electrode (positive electrode) were wound with a separator made of non-woven fabric interposed therebetween to produce an electrode group.
This electrode group was inserted into an outer can, and after further injecting a 30 wt% potassium hydroxide aqueous solution, the outer can was sealed. In this way, a sealed nickel-hydrogen storage battery with a theoretical capacity of 1000 mAh, which differs only in the processing conditions of the hydrogen storage alloy, was produced. Furthermore, these batteries were initially activated under the following charge / discharge conditions (3 cycles at room temperature).

【0019】充電;1000mA×16時間、 休止;
1時間 放電;200mA・放電終止電圧1.0V、 休止;1
時間 なお、これらの電池を、負極に用いた洗浄処理済合金粉
末の種類に対応させて電池A0 〜A6 、B1 〜B6 、C
0 〜C6 、D1 〜D6 と称する。 〔洗浄処理条件の評価〕上記で作製した電池を用いて主
に洗浄処理条件の評価を行った。
Charging: 1000 mA × 16 hours, resting;
Discharge for 1 hour; 200mA, end voltage of discharge 1.0V, pause; 1
It is to be noted that the batteries A 0 to A 6 , B 1 to B 6 , C corresponding to the types of the alloy powder which has been subjected to the cleaning treatment used for the negative electrode are used.
0 -C 6, referred to as D 1 to D 6. [Evaluation of Washing Treatment Conditions] Using the batteries prepared above, the washing treatment conditions were mainly evaluated.

【0020】ここで、電池性能は、下記に示す条件で測
定した高率充放電特性等の諸特性により評価した。但
し、サイクル特性については、下記条件で充放電サイク
ルを行い、電池容量が500mAに達した時点を電池寿
命とした。 高率充放電特性: 充電;100mA×16時間(室温下)、休止;1時間 放電;4000mA・放電終止電圧1.0V(室温
下)、休止;1時間 低温放電特性: 充電;100mA×16時間(室温下)、休止;1時間
(−10℃) 放電;1000mA・放電終止電圧1.0V(−10
℃) 充放電サイクル特性: 充電;1500mA×48分(室温下) 放電;1500mA・放電終止電圧1.0V(室温
下)、 休止;1時間 以下、表1に示す結果に基づいて説明する。
Here, the battery performance was evaluated by various characteristics such as high rate charge / discharge characteristics measured under the following conditions. However, regarding the cycle characteristics, the charge / discharge cycle was performed under the following conditions, and the battery life was defined as the time when the battery capacity reached 500 mA. High rate charge / discharge characteristics: Charge; 100 mA x 16 hours (at room temperature), Pause; 1 hour Discharge; 4000 mA / Discharge end voltage 1.0 V (room temperature), Pause; 1 hour Low temperature discharge characteristics: Charge; 100 mA x 16 hours (At room temperature), pause; 1 hour (-10 ° C) discharge; 1000 mA, discharge end voltage 1.0 V (-10
Charging / discharging cycle characteristics: Charging; 1500 mA × 48 minutes (at room temperature) Discharging: 1500 mA / Discharge end voltage 1.0 V (at room temperature), Pause: 1 hour or less, explanation will be made based on the results shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】残存アニオン濃度と電池特性 表1において、合金中の塩素濃度と電池特性の関係を見
ると、A〜Dの何れにおいても、塩素濃度が合金に対し
5×10-6mol/g以下となったときに、電池特性値
が大きく向上した。このことから、合金を酸処理した場
合、残留アニオン濃度が5×10-6mol/g以下とな
るまで洗浄を行うのが、電池特性を高める上でより効果
的であることが判った。
Remaining Anion Concentration and Battery Characteristics In Table 1, the relationship between the chlorine concentration in the alloy and the battery characteristics is examined. In any of A to D, the chlorine concentration is 5 × 10 −6 mol / g or less with respect to the alloy. When, the battery characteristic value was greatly improved. From this, it was found that, when the alloy was treated with an acid, it was more effective to wash the alloy until the residual anion concentration became 5 × 10 −6 mol / g or less in order to improve the battery characteristics.

【0023】洗浄条件と洗浄効果 A1 〜A6 とB1 〜B6 、及びC1 〜C6 とD1 〜D6
の比較から、合金に残留する塩素を所定の濃度まで低減
させるに要する洗浄時間(攪拌時間×回数)は、洗浄液
としてリン酸水素二ナトリウム含有水溶液を用いた場合
(酸化防止剤含有水溶液**)の方が、純水を用いた場
合(*)よりも短かった。また、リン酸水素二ナトリウ
ム含有水溶液で洗浄処理した合金を用いた電池では、純
水で洗浄処理した合金で構成した電池に比較し、残留塩
素濃度が同じであっても電池特性が優れていた。なお、
表1には示してないが、リン酸水素二ナトリウム以外の
酸化防止剤(例えば水素化ホウ素ナトリウム)を用いた
場合においても同様な効果が得られることが確認されて
いる。
Cleaning Conditions and Cleaning Effects A 1 to A 6 and B 1 to B 6 , and C 1 to C 6 and D 1 to D 6
From the comparison, the cleaning time (stirring time x number of times) required to reduce the chlorine remaining in the alloy to a predetermined concentration is the value when an aqueous solution containing disodium hydrogen phosphate is used as the cleaning solution (antioxidant-containing aqueous solution **). Was shorter than the case of using pure water (*). Further, the battery using the alloy washed with the aqueous solution containing disodium hydrogen phosphate had excellent battery characteristics as compared with the battery composed of the alloy washed with pure water even if the residual chlorine concentration was the same. . In addition,
Although not shown in Table 1, it has been confirmed that similar effects can be obtained when an antioxidant other than disodium hydrogen phosphate (for example, sodium borohydride) is used.

【0024】これらの結果から、酸処理後に酸化防止剤
含有水溶液で合金を洗浄した場合、より短時間に合金か
らアニオンを除去できるとともに、電池性能の向上にも
有効であることが実証できた。洗浄液としてリン酸水素
二ナトリウム含有水溶液を用いた場合にアニオン除去効
果及び電池特性向上効果が高いのは、次の理由によると
考えられる。即ち、酸処理の際に、合金中の希土類元素
やニッケルと結合したアニオンは、純水では容易に溶出
しない。これに対しリン酸水素二ナトリウム含有水溶液
を用いた場合では、合金成分と結合した塩素等のアニオ
ンがリン酸イオン等に交換されて液中に溶出する。した
がって、合金成分と結合したアニオンが容易に除去でき
る。
From these results, it was proved that when the alloy was washed with the antioxidant-containing aqueous solution after the acid treatment, the anions could be removed from the alloy in a shorter time and the battery performance could be improved. The reason why the effect of removing anions and the effect of improving battery characteristics are high when an aqueous solution containing disodium hydrogen phosphate is used as the cleaning liquid is considered to be as follows. That is, during the acid treatment, the rare earth elements in the alloy and the anions bound to nickel are not easily eluted with pure water. On the other hand, when an aqueous solution containing disodium hydrogen phosphate is used, anions such as chlorine bound to the alloy components are exchanged for phosphate ions and the like are eluted into the liquid. Therefore, the anions bound to the alloy components can be easily removed.

【0025】その一方、塩素等のアニオンと置換して合
金に残留するリン酸イオン等のアニオンは、塩素等に比
べ合金活性やアルカリ蓄電池の他の構成要素に対する悪
影響が少ないため、電池特性が向上するものと考えられ
る。更に、アニオン濃度が同じであっても、酸化防止剤
含有水溶液で洗浄した場合により優れた電池特性が得ら
れた。これは、表面に吸着した酸化防止剤が合金表面の
含液性を高めるため、低温放電特性及び高率放電特性が
向上したと考えられる。また、表面に吸着した酸化防止
剤が、酸素による酸化を抑制するためにサイクル寿命が
向上したと考えられる。
On the other hand, since the anions such as phosphate ions remaining in the alloy after substituting with the anions such as chlorine have less adverse effects on the alloy activity and other components of the alkaline storage battery than chlorine, the battery characteristics are improved. It is supposed to do. Furthermore, even if the anion concentration was the same, superior battery characteristics were obtained when washed with an antioxidant-containing aqueous solution. It is considered that this is because the antioxidant adsorbed on the surface enhances the liquid content of the alloy surface, and thus the low temperature discharge characteristics and the high rate discharge characteristics are improved. Further, it is considered that the antioxidant adsorbed on the surface suppresses the oxidation due to oxygen and thus the cycle life is improved.

【0026】表1の結果を踏まえ、酸処理液の初期PH
の影響、合金の不均一歪みと洗浄効果との関係、及び保
存洗浄の効果に関して更に詳細に調べた。 (実験2)実験2では、下記方法により合金を酸処理す
る際の酸性水溶液のPHが電池特性の及ぼす影響を調べ
た。
Based on the results of Table 1, the initial pH of the acid treatment liquid
, The effect of non-uniform strain on the alloy and the cleaning effect, and the effect of preservative cleaning were investigated in more detail. (Experiment 2) In Experiment 2, the effect of the pH of the acidic aqueous solution on the battery characteristics when the alloy was acid-treated by the following method was examined.

【0027】先ず、種々なPH(初期PH)の塩酸水溶
液を調製し、この塩酸水溶液に不均一歪み5.4×10
-3の合金(ほぼ等重量)を浸漬し、塩酸水溶液のPHが
7に達するまで前記攪拌機で攪拌した。その後、この酸
処理済合金の塩素残存量が5×10-6mol/gに達す
るまで純水で洗浄した。次いで、酸処理における初期P
H値の異なるこれら合金を用いて各種電池(E1
9 、F1 〜F9 )を構成し、この電池の電池特性を調
べた。なお、電池の構成方法、電池特性の測定方法等の
他の条件は実験1と同様に行った。
First, an aqueous solution of hydrochloric acid having various pHs (initial PH) is prepared, and a non-uniform strain of 5.4 × 10 5 is added to the aqueous solution of hydrochloric acid.
-3 alloy (almost equal weight) was immersed and stirred with the agitator until the pH of the aqueous hydrochloric acid solution reached 7. Then, the acid-treated alloy was washed with pure water until the residual chlorine amount reached 5 × 10 −6 mol / g. Next, initial P in acid treatment
Various batteries (E 1 ~
E 9, F 1 ~F 9) constitute, it was investigated battery characteristics of this battery. Other conditions such as the method of constructing the battery and the method of measuring the battery characteristics were the same as in Experiment 1.

【0028】表2に結果を示す。表2において、何れの
不均一歪みの合金(E及びF)についても、酸処理液の
初期PHが0.5未満又は3.5を越えた場合に各電池
特性値が大きく低下した。このことから、酸処理液の初
期PHは、0.5〜3.5の範囲に設定することが好ま
しい。
The results are shown in Table 2. In Table 2, for each of the alloys (E and F) having non-uniform strain, the characteristic values of each battery significantly decreased when the initial pH of the acid treatment liquid was less than 0.5 or more than 3.5. From this, it is preferable to set the initial PH of the acid treatment liquid in the range of 0.5 to 3.5.

【0029】[0029]

【表2】 [Table 2]

【0030】(実験3)実験3では、合金不均一歪みと
本発明処理方法の効果との関係を調べるため、種々の不
均一歪みの合金を調製し、実験1と同様な方法で評価し
た。表3にその結果を示す。なお、表3のA、Cは実験
1で調製した合金であり、G〜Jの合金は、実験1とは
アニール処理温度を変えて調製したものである。また、
酸処理はPH=1の塩酸水溶液を用いて行い、洗浄処理
は純水を用い塩素濃度が合金に対し5×10 -6mol/
gに達するまで行った。
(Experiment 3) In Experiment 3, alloy non-uniform strain and
In order to investigate the relationship with the effects of the treatment method of the present invention, various
An alloy with uniform strain was prepared and evaluated in the same manner as in Experiment 1.
It was The results are shown in Table 3. In addition, A and C in Table 3 are experiments
The alloys G to J prepared in Example 1 are
It was prepared by changing the annealing temperature. Also,
Acid treatment is performed using an aqueous solution of hydrochloric acid with PH = 1, and cleaning treatment is performed.
Is pure water and the chlorine concentration is 5 × 10 with respect to the alloy. -6mol /
until g.

【0031】[0031]

【表3】 [Table 3]

【0032】表3から、不均一歪みが小さくなるにした
がい、各電池特性が向上する傾向が認められたが、特に
不均一歪み5.0×10-3と4.0×10-3の間で大き
く変化した。このことから、不均一歪みが4.0×10
-3の合金に対して本発明処理方法を適用するとより効果
的であることが判った。 (実験4)実験4では、未処理合金及び洗浄処理済合金
を、純水及びリン酸水素二ナトリウム含有水溶液でそれ
ぞれ1週間浸漬保存(室温)した後、実験1と同様にし
てこの合金を用いて電池を構成して、保存液の違いが電
池特性に及ぼす影響を調べた。
From Table 3, it was found that the battery characteristics tended to improve as the non-uniform strain became smaller. Particularly, the non-uniform strain was between 5.0 × 10 −3 and 4.0 × 10 −3 . Has changed a lot. From this, the non-uniform strain is 4.0 × 10.
It was found to be more effective to apply the treatment method of the present invention to the alloy No. -3 . (Experiment 4) In Experiment 4, the untreated alloy and the cleaned alloy were immersed and stored in pure water and an aqueous solution containing disodium hydrogen phosphate for 1 week (at room temperature), and then the alloy was used in the same manner as in Experiment 1. The battery was constructed by using the above method, and the influence of the difference in the storage solution on the battery characteristics was investigated.

【0033】なお、この実験に用いた合金は実験1で調
製したものであり、表3では対応する実験1の合金N
o.( 表1)をKの添字で表してある。また、「→」の
左側に純水保存の場合、右側に1重量%リン酸水素二ナ
トリウム水溶液で保存した場合の各特性値が示してあ
る。
The alloy used in this experiment was prepared in Experiment 1, and Table 3 shows the corresponding alloy N in Experiment 1.
o. (Table 1) is represented by the K subscript. Further, each characteristic value is shown on the left side of “→” when pure water is stored, and on the right side when stored in a 1 wt% disodium hydrogen phosphate aqueous solution.

【0034】[0034]

【表4】 [Table 4]

【0035】表4から、KC1〜KD6のいずれについて
も、リン酸水素二ナトリウム水溶液で保存した合金で構
成した電池は、純水で保存した合金で構成した電池に比
べ電池の諸特性が優れていた。このことから、酸化防止
剤含有水溶液は、合金保存液としても有用であることが
判った。なお、水素吸蔵合金は極めて酸化され易いた
め、一般に電池製造に際して、使用直前まで合金を純水
等に浸漬して仮保存する方法が採られているが、この際
酸化防止剤含有水溶液を仮保存液として使用すると、保
存と洗浄が同時に実現できることになる。
From Table 4, for any of KC 1 to KD 6 , the battery made of the alloy stored in the aqueous solution of disodium hydrogen phosphate has various battery characteristics as compared with the battery made of the alloy stored in pure water. Was excellent. From this, it was found that the antioxidant-containing aqueous solution is also useful as an alloy preservation solution. Since hydrogen-absorbing alloys are extremely susceptible to oxidation, generally when manufacturing batteries, a method of immersing the alloy in pure water or the like to temporarily store it just before use is used. When used as a liquid, storage and washing can be realized at the same time.

【0036】〔その他の事項〕 上記実施例ではリン酸水素二ナトリウム含有水溶液の
例で説明したが、これにより本発明方法に使用できる酸
化防止剤が制限されるものではない。本発明方法に使用
できる酸化防止剤は、少なくともその作用を奏し得る程
度まで水に溶け、水素吸蔵合金の酸化を抑制し又は合金
表面の酸化物を溶解除去できるものであればよい。この
ようなものとして、上記実施例で用いたリン酸水素二ナ
トリウム以外にも、例えばリン酸水素二カリウム、炭酸
水素ナトリウム、炭酸水素カリウム、水素化ホウ素ナト
リウム、水素化ホウ素カリウム、水素化アルミニウムリ
チウム、次亜リン酸ナトリウム、次亜リン酸カリウム、
ホルマリン、ギ酸などが挙げられ、またこれ以外の酸化
防止剤或いは還元剤であっても使用可能である。
[Other Matters] In the above-mentioned Examples, an example of an aqueous solution containing disodium hydrogen phosphate was described, but this does not limit the antioxidant that can be used in the method of the present invention. The antioxidant that can be used in the method of the present invention may be any one that can be dissolved in water to the extent that it can exert its function, can suppress the oxidation of the hydrogen storage alloy, or can dissolve and remove the oxide on the alloy surface. As such, in addition to the disodium hydrogen phosphate used in the above examples, for example, dipotassium hydrogen phosphate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium borohydride, potassium borohydride, lithium aluminum hydride. , Sodium hypophosphite, potassium hypophosphite,
Examples thereof include formalin and formic acid, and other antioxidants or reducing agents can also be used.

【0037】上記実施例では、酸処理及び洗浄処理に
おいて、合金粉末に対しほぼ等重量の処理液を用いて行
ったが、処理液量を増減することができるのは勿論であ
る。但し、処理のし易さや処理能率を考慮した場合、合
金粉末:処理液=1:0.5〜6(重量比)が好まし
い。 本発明方法は、希土類系水素吸蔵合金に限らず、チタ
ン系或いはLaves系の水素吸蔵合金に対しても適用
可能である。
In the above embodiment, the acid treatment and the cleaning treatment were carried out by using a treatment liquid of approximately equal weight to the alloy powder, but it goes without saying that the amount of treatment liquid can be increased or decreased. However, considering the ease of processing and the processing efficiency, alloy powder: processing liquid = 1: 0.5 to 6 (weight ratio) is preferable. The method of the present invention is applicable not only to rare earth-based hydrogen storage alloys but also to titanium-based or Laves-based hydrogen storage alloys.

【0038】[0038]

【発明の効果】本発明アルカリ蓄電池用水素吸蔵合金の
製造方法によれば、電池構成前に行われる酸性水溶液に
よる合金活性化処理をより効果的に行えるので、電池構
成後に行う初回充放電サイクルにより容易に活性化が図
り得る水素吸蔵合金を提供できる。
EFFECTS OF THE INVENTION According to the method for producing a hydrogen storage alloy for alkaline storage batteries of the present invention, the alloy activation treatment with an acidic aqueous solution that is performed before the battery is constructed can be performed more effectively. A hydrogen storage alloy that can be easily activated can be provided.

【0039】更に、本発明方法で製造された水素吸蔵合
金では、酸処理に伴う悪影響が除去され、かつ合金表面
の含液性が向上しているので、高率放電特性、低温放電
特性及びサイクル特性に優れた電池が構成できる。
Further, in the hydrogen storage alloy produced by the method of the present invention, the adverse effects of acid treatment are removed and the liquid content of the alloy surface is improved, so that the high rate discharge characteristics, the low temperature discharge characteristics and the cycle characteristics are improved. A battery with excellent characteristics can be constructed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−73878(JP,A) 特開 平4−110403(JP,A) 特開 平7−65828(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/26 H01M 4/38 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-73878 (JP, A) JP-A-4-110403 (JP, A) JP-A-7-65828 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/24-4/26 H01M 4/38

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を酸性水溶液で処理する酸
処理工程と、 前記酸処理により水素吸蔵合金に取り込まれたアニオン
の残留量が、水素吸蔵合金に対し5×10-6mol/g
以下になるまで洗浄する洗浄工程とを備え、 前記洗浄工程での洗浄が、酸化防止剤含有水溶液で行う
ものであり、 当該水溶液中における酸化防止剤は、リン酸水素二ナト
リウム、リン酸水素二カリウム、炭酸水素ナトリウム、
炭酸水素カリウム、水酸化ホウ素ナトリウム、水酸化ホ
ウ素カリウム、水酸化アルミニウムリチウム、次亜リン
酸ナトリウム、次亜リン酸カリウム、ホルマリン、ギ酸
から選択されるものである ことを特徴とするアルカリ蓄
電池用水素吸蔵合金の製造方法。
1. An acid treatment step of treating a hydrogen storage alloy with an acidic aqueous solution, and a residual amount of anions taken in the hydrogen storage alloy by the acid treatment is 5 × 10 −6 mol / g with respect to the hydrogen storage alloy.
And a washing step of washing the following, wherein the washing in the washing step is performed with an antioxidant-containing aqueous solution.
Are those, antioxidants during the aqueous solution is phosphate dibasic isocyanatomethyl
Lithium, dipotassium hydrogen phosphate, sodium hydrogen carbonate,
Potassium bicarbonate, sodium borohydride, sodium hydroxide
Potassium arsenide, lithium aluminum hydroxide, hypophosphorus
Sodium acid salt, potassium hypophosphite, formalin, formic acid
A method for producing a hydrogen storage alloy for alkaline storage batteries, which is selected from the group consisting of:
【請求項2】 前記酸性水溶液のPHが、0.5以上、
3.5以下であることを特徴とする請求項1記載のアル
カリ蓄電池用水素吸蔵合金の製造方法。
2. The pH of the acidic aqueous solution is 0.5 or more,
It is 3.5 or less, The manufacturing method of the hydrogen storage alloy for alkaline storage batteries of Claim 1 characterized by the above-mentioned.
【請求項3】 前記洗浄工程の後に更に、前記洗浄工程
で洗浄された水素吸蔵合金を酸化防止剤含有水溶液中に
浸漬保存する保存洗浄工程を有することを特徴とする請
求項1乃至2記載のアルカリ蓄電池用水素吸蔵合金の製
造方法。
3. The method according to claim 1, further comprising, after the cleaning step, a storage cleaning step of immersing and storing the hydrogen storage alloy cleaned in the cleaning step in an antioxidant-containing aqueous solution. A method for producing a hydrogen storage alloy for an alkaline storage battery.
【請求項4】 前記水素吸蔵合金が、4.0×10-3
下の不均一歪みを有するものであることを特徴とする請
求項1乃至3記載のアルカリ蓄電池用水素吸蔵合金の製
造方法。
4. The method for producing a hydrogen storage alloy for alkaline storage batteries according to claim 1, wherein the hydrogen storage alloy has a non-uniform strain of 4.0 × 10 −3 or less.
JP08034695A 1995-04-05 1995-04-05 Method for producing hydrogen storage alloy for alkaline storage battery Expired - Fee Related JP3454600B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP08034695A JP3454600B2 (en) 1995-04-05 1995-04-05 Method for producing hydrogen storage alloy for alkaline storage battery
KR1019960010115A KR100384760B1 (en) 1995-04-05 1996-04-04 Manufacturing method of hydrogen storage alloy for alkaline storage battery and manufacturing method of hydrogen storage alloy electrode
CN96193079A CN1090824C (en) 1995-04-05 1996-04-05 Process for producing hydrogen-occlussion alloy electrode of alkaline storage battery
EP96908368A EP0820109B1 (en) 1995-04-05 1996-04-05 Process for producing hydrogen-occlusion alloy electrode of alkaline storage battery
PCT/JP1996/000954 WO1996031911A1 (en) 1995-04-05 1996-04-05 Process for producing hydrogen-occlusion alloy electrode of alkaline storage battery
US08/913,845 US6010582A (en) 1995-04-05 1996-04-05 Process for producing hydrogen-occlusion alloy electrode of alkaline storage battery
DE69610199T DE69610199T2 (en) 1995-04-05 1996-04-05 METHOD FOR PRODUCING AN ELECTRODE FOR ALKALINE BATTERY FROM HYDROGEN STORAGE ALLOYS
HK98110255A HK1009560A1 (en) 1995-04-05 1998-08-27 Process for producing hydrogen-occlusion alloy electrode of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08034695A JP3454600B2 (en) 1995-04-05 1995-04-05 Method for producing hydrogen storage alloy for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH08279356A JPH08279356A (en) 1996-10-22
JP3454600B2 true JP3454600B2 (en) 2003-10-06

Family

ID=13715702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08034695A Expired - Fee Related JP3454600B2 (en) 1995-04-05 1995-04-05 Method for producing hydrogen storage alloy for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3454600B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433033B2 (en) * 1996-11-28 2003-08-04 三洋電機株式会社 Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
US5985057A (en) * 1996-11-29 1999-11-16 Sanyo Electric Co., Ltd. Method of fabricating hydrogen absorbing alloy electrode
JP3548004B2 (en) 1998-06-17 2004-07-28 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same

Also Published As

Publication number Publication date
JPH08279356A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
JPH0773878A (en) Manufacture of metal hydride electrode
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JPH0963581A (en) Surface treatment method for hydrogen storage alloy powder and alkaline secondary battery obtained by applying this method
KR100384760B1 (en) Manufacturing method of hydrogen storage alloy for alkaline storage battery and manufacturing method of hydrogen storage alloy electrode
JP3432870B2 (en) Method for producing metal hydride electrode
JP2899849B2 (en) Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP3322449B2 (en) Method for producing metal hydride electrode
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3568337B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP3454614B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3619741B2 (en) Method for producing hydrogen storage alloy electrode
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2001266865A (en) Manufacturing method of hydrogen storage alloy electrode
JP3462682B2 (en) Method for producing hydrogen storage alloy powder
JP3573789B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JPH08185856A (en) Surface reforming method for rare earth-nickel series hydrogen storage alloy for battery
JP3553752B2 (en) Method for producing hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees