JP3149783B2 - Processing method of hydrogen storage alloy powder - Google Patents

Processing method of hydrogen storage alloy powder

Info

Publication number
JP3149783B2
JP3149783B2 JP11676696A JP11676696A JP3149783B2 JP 3149783 B2 JP3149783 B2 JP 3149783B2 JP 11676696 A JP11676696 A JP 11676696A JP 11676696 A JP11676696 A JP 11676696A JP 3149783 B2 JP3149783 B2 JP 3149783B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy powder
oxide film
storage alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11676696A
Other languages
Japanese (ja)
Other versions
JPH09302401A (en
Inventor
秀哉 上仲
辰夫 永田
教之 禰▲宜▼
幸輝 竹下
光一 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11676696A priority Critical patent/JP3149783B2/en
Publication of JPH09302401A publication Critical patent/JPH09302401A/en
Application granted granted Critical
Publication of JP3149783B2 publication Critical patent/JP3149783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、AB5 型、AB2
型などの二次電池用 (特にNi−水素二次電池用)水素吸
蔵合金粉末の処理方法に関する。本発明の処理方法によ
り、初期活性化が容易で、高温での自己放電が少なく、
電極寿命の長い電池用の水素吸蔵合金粉末が得られる。
The present invention relates is, AB 5 type, AB 2
The present invention relates to a method for treating a hydrogen storage alloy powder for a secondary battery such as a mold (particularly for a Ni-hydrogen secondary battery). By the treatment method of the present invention, initial activation is easy, self-discharge at high temperature is small,
A hydrogen storage alloy powder for a battery having a long electrode life is obtained.

【0002】[0002]

【従来の技術】AV機器やノート型パソコンのメモリー
・バックアップ用に用いる二次電池として、従来は主に
Ni−Cd電池が使用されてきた。しかし、Cdの公害問題、
Cdが亜鉛精練の副産物という資源量制約の問題、より高
電気容量の二次電池開発といった観点から、Cdに替えて
水素吸蔵合金を陰極活物質に用いたNi−水素電池と呼ば
れる二次電池が開発され、利用されるようになってき
た。Ni−水素電池は容量が高いため、電気自動車用の二
次電池としての利用も検討されており、既に量産が始ま
っている。
2. Description of the Related Art Conventionally, as a secondary battery used for memory backup of AV equipment and notebook personal computers, it has been mainly used.
Ni-Cd batteries have been used. However, the pollution problem of Cd,
In view of the problem of resource limitation, which is a by-product of Cd zinc refining, and the development of secondary batteries with higher electric capacity, a secondary battery called Ni-Hydrogen battery using a hydrogen storage alloy instead of Cd as a cathode active material has been developed. Developed and used. Because of the high capacity of Ni-hydrogen batteries, their use as secondary batteries for electric vehicles is also being studied, and mass production has already begun.

【0003】Ni−水素電池用の水素吸蔵合金として検討
されてきた主な合金系は、LaNi5 やMmNi5(Mmは希土類金
属混合物であるミッシュメタル) で代表されるAB5
結晶構造をとる金属間化合物と、ZnV0.4Ni1.6 で代表さ
れるAB2 型のラーベス相構造をとる金属間化合物であ
る。実用化に関してはAB5 型の水素吸蔵合金の方が進
んでいるが、AB2 型構造の水素吸蔵合金も高容量を示
すので有望である。
A major alloy systems that have been studied as a hydrogen-absorbing alloy for a Ni- MH batteries, LaNi 5 or MmNi 5 (Mm is misch metal is a rare earth metal mixture) takes the AB 5 type crystal structure represented by intermetallic compound, which is an intermetallic compound takes a Laves phase structure of AB 2 type typified by ZnV 0.4 Ni 1.6. For practical use, the AB 5 type hydrogen storage alloy is more advanced, but the AB 2 type hydrogen storage alloy is also promising because of its high capacity.

【0004】しかし、Ni−水素電池の量産においていく
つかの問題点が浮かび上がってきた。その1つは、Ni−
水素電池を構成した後の初期活性化処理 (電池の放電容
量を所定の定常値まで増大させる処理) に非常に時間が
かかり、生産性が著しく阻害されることである。
[0004] However, several problems have emerged in the mass production of Ni-hydrogen batteries. One of them is Ni-
The initial activation process (the process of increasing the discharge capacity of the battery to a predetermined steady-state value) after configuring the hydrogen battery takes a very long time, and productivity is significantly impaired.

【0005】現在行われている初期活性化処理は、低電
流で長時間の充電後に放電する処理(15〜20時間の充電
と数時間の放電) を所定の放電容量が得られるようにな
るまで数回繰り返すことにより行われている。このた
め、電池を組み立ててから出荷するまでに、初期活性化
処理として工場内で充電・放電を数日間繰り返す必要が
あった。
The initial activation process currently performed is a process of discharging after charging for a long time at a low current (charging for 15 to 20 hours and discharging for several hours) until a predetermined discharge capacity is obtained. This is done by repeating several times. For this reason, it is necessary to repeat charging / discharging in a factory for several days as an initial activation process before assembling and shipping the battery.

【0006】この問題点を解決するために、特開平3−
219036号公報には、水素吸蔵合金中にホウ素を添加する
ことで粉化し易いホウ素リッチ相を生成させ、粉化によ
る比表面積の増加により初期の活性化効率を向上させる
ことが提案されている。しかし、この方法では、生成し
たホウ素リッチ相が可逆的に水素吸収・放出する量は少
なく、合金全体としては水素吸蔵量、従って放電容量が
低下する。しかも、粉化が進みすぎて電極としての集電
性が低下し、早期に放電容量が劣化する。
To solve this problem, Japanese Patent Laid-Open No.
Japanese Patent No. 219036 proposes that a boron-rich phase which is easy to be powdered is generated by adding boron to the hydrogen storage alloy, and the initial activation efficiency is improved by increasing the specific surface area due to the powdering. However, in this method, the amount of the generated boron-rich phase reversibly absorbing and releasing hydrogen is small, and the hydrogen storage amount, and thus the discharge capacity, of the alloy as a whole decreases. In addition, the powdering proceeds too much, and the current collecting properties of the electrode decrease, and the discharge capacity deteriorates early.

【0007】特開平4−179055号公報には、水素吸蔵合
金粉末を所定濃度範囲の酸性水溶液中に所定時間浸漬し
た後、水洗すると、酸化物層や水酸化物層を除去するこ
とができ、その水素吸蔵合金粉末で電極を作製すると、
電極の活性化サイクルの短縮が図れ、電極利用率とサイ
クル寿命が向上することが報告されている。
[0007] Japanese Patent Application Laid-Open No. 4-179055 discloses that an oxide layer or a hydroxide layer can be removed by immersing a hydrogen storage alloy powder in an acidic aqueous solution in a predetermined concentration range for a predetermined time and then washing with water. When an electrode is made from the hydrogen storage alloy powder,
It is reported that the activation cycle of the electrode can be shortened, and the electrode utilization rate and the cycle life are improved.

【0008】また、本発明者らは、特開平6−223827号
公報に、急冷凝固法で微細結晶粒とした水素吸蔵合金粉
末を酸性水溶液中で処理して表面酸化膜を除去すると、
より高活性の水素吸蔵合金粉末が製造されることを報告
した。
The present inventors have disclosed in Japanese Patent Application Laid-Open No. Hei 6-223827 that when a hydrogen storage alloy powder which has been made into fine crystal grains by a rapid solidification method is treated in an acidic aqueous solution to remove a surface oxide film,
It was reported that a more active hydrogen storage alloy powder was produced.

【0009】[0009]

【発明が解決しようとする課題】しかし、水素吸蔵合金
粉末の表面酸化膜を強い酸性水溶液を用いて化学的に除
去すると、合金表面により多くのNi(OH)2 が生成する。
表面にNi(OH)2 が付着した水素吸蔵合金粉末を負極の活
物質に用いたNi−水素電池は、高温における自己放電が
大きい。これは、Ni(OH)2 のOH- イオンが負極の放電反
応に関与する物質であり、負極の合金表面にNi(OH)2
存在すると、これから高温でOH- イオンが遊離し、負極
放電反応 (MHx + x OH- → M + x H2O + x e- ) が起こ
って、水素を消費しつつ自己放電反応が進行するからで
ある。従って、水素吸蔵合金粉末の表面にNi(OH)2 が生
成しないような処理方法が望ましい。
However, if the surface oxide film of the hydrogen storage alloy powder is chemically removed using a strong acidic aqueous solution, more Ni (OH) 2 is generated on the alloy surface.
A Ni-hydrogen battery using a hydrogen storage alloy powder having Ni (OH) 2 adhered to the surface as an active material of a negative electrode has a large self-discharge at a high temperature. This is a substance in which the OH - ion of Ni (OH) 2 participates in the discharge reaction of the negative electrode.If Ni (OH) 2 is present on the alloy surface of the negative electrode, the OH - ion is released at a high temperature from this, and the negative electrode discharge reaction (MH x + x OH - → M + x H 2 O + xe -) happening, because self-discharge reaction proceeds while consuming hydrogen. Therefore, a treatment method that does not generate Ni (OH) 2 on the surface of the hydrogen storage alloy powder is desirable.

【0010】急冷凝固法では、例えば、ロール急冷法で
得た合金薄片を粉砕する、或いは合金の溶湯から直接ア
トマイズ法により粉末を得る、といった方法により水素
吸蔵合金粉末を得る。溶湯から凝固する際の形態が、薄
片や粉末といった表面積の大きい形態であるため、凝固
中に合金表面に酸化膜が多く生成する。また、得られた
水素吸蔵合金粉末は、急冷歪みを除去または緩和する
(放電容量の増大につながる) ため、製造後に熱処理す
ることが多いが、この熱処理中にも粉末表面に酸化膜が
生成する。
In the rapid solidification method, a hydrogen storage alloy powder is obtained by, for example, pulverizing alloy flakes obtained by a roll quenching method, or obtaining powder directly from a molten alloy by an atomizing method. Since the form at the time of solidification from the molten metal is a form having a large surface area, such as a flake or a powder, many oxide films are formed on the alloy surface during the solidification. In addition, the obtained hydrogen storage alloy powder removes or reduces quenching strain
(It leads to an increase in discharge capacity.) Therefore, heat treatment is often performed after the production, but an oxide film is formed on the powder surface during this heat treatment.

【0011】急冷凝固法で水素吸蔵合金粉末を製造する
場合、アトマイズ法のように粉砕がほとんど必要ない
か、あるいはロール急冷法でも粉砕はインゴット法に比
べれば非常に少なくてすむ。そのため、粉砕で新たに現
れる合金表面の割合が少なく、凝固中または熱処理中に
生じた酸化膜が合金粉末の表面に残存する割合が、イン
ゴット法で得られた粉末に比べて非常に多くなる。
When the hydrogen storage alloy powder is produced by the rapid solidification method, pulverization is hardly required as in the atomizing method, or the pulverization in the roll quenching method is much less than in the ingot method. Therefore, the proportion of the alloy surface newly appearing in the pulverization is small, and the proportion of the oxide film formed during solidification or heat treatment remaining on the surface of the alloy powder is much larger than that of the powder obtained by the ingot method.

【0012】従って、急冷凝固法で得られた合金粉末
は、表面に存在する酸化膜の多くが、凝固中または熱処
理中に生じた強固な酸化膜となる。この強固な表面酸化
膜は、特開平6−223827号公報に提案されているよう
に、高濃度の酸性水溶液で処理すると除去できるが、こ
の処理中に粉末表面に多くのNi(OH)2 が生成し、前述し
たように高温での自己放電が顕著になり、電極寿命 (保
存容量) が低下する。
Therefore, in the alloy powder obtained by the rapid solidification method, most of the oxide film present on the surface becomes a strong oxide film formed during solidification or heat treatment. This strong surface oxide film can be removed by treatment with a high-concentration acidic aqueous solution as proposed in JP-A-6-223827, but during this treatment, a large amount of Ni (OH) 2 is present on the powder surface. As described above, self-discharge at a high temperature becomes remarkable, and the electrode life (storage capacity) decreases.

【0013】これに対し、インゴット法では、粉末表面
のほとんどが、粉砕で新たに生じた表面である。粉砕中
にも表面酸化膜は生成するが、生成の程度が小さいた
め、インゴット法で製造した水素吸蔵合金粉末の表面の
酸化膜のほとんどは、粉砕で生成した弱い酸化膜であっ
て、除去が容易である。
On the other hand, in the ingot method, most of the powder surface is a surface newly formed by pulverization. A surface oxide film is also generated during pulverization, but the degree of formation is small, so most of the oxide film on the surface of the hydrogen storage alloy powder produced by the ingot method is a weak oxide film generated by pulverization, and it is difficult to remove it. Easy.

【0014】特開平5−195007号公報には、表面に緻密
な酸化皮膜が生成した場合、アルカリ水溶液中での超音
波処理が合金活性の向上に効果的であることが記載され
ている。しかし、この処理方法は、粉砕時に粉末表面に
生成した酸化膜に対しては有効であっても、急冷凝固法
で得られた粉末のように、溶湯からの凝固時または熱処
理に生じた強固な酸化膜が粉末表面に多く存在する場合
には、十分な効果が得られないことが判明した。
Japanese Patent Application Laid-Open No. 5-195007 discloses that when a dense oxide film is formed on the surface, ultrasonic treatment in an aqueous alkali solution is effective for improving alloy activity. However, this treatment method is effective for an oxide film formed on the powder surface at the time of pulverization, but as in the case of a powder obtained by a rapid solidification method, a strong solidification generated during solidification from a molten metal or during heat treatment. It has been found that a sufficient effect cannot be obtained when a large amount of an oxide film is present on the powder surface.

【0015】本発明の目的は、急冷凝固法で製造された
水素吸蔵合金粉末に見られるような強固な酸化膜を除去
することができ、しかも合金表面のNi(OH)2 の生成 (即
ち、酸素濃度増加) が抑制された、Ni−水素電池の初期
活性と電極寿命の一層の向上を実現することが可能な水
素吸蔵合金粉末の処理方法を提供することである。
An object of the present invention is to remove a strong oxide film as seen in a hydrogen storage alloy powder produced by a rapid solidification method, and to form Ni (OH) 2 on the alloy surface (ie, An object of the present invention is to provide a method for treating a hydrogen storage alloy powder capable of realizing further improvement in the initial activity and electrode life of a Ni-hydrogen battery in which the increase in oxygen concentration is suppressed.

【0016】[0016]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく検討した結果、酸処理と超音波処理とを併
用することにより、比較的低濃度の酸水溶液で水素吸蔵
合金粉末の表面の強固な酸化膜を除去することができ、
しかも超音波の併用によってNi(OH)2 の生成が著しく抑
制され、高温自己放電の低減により電極寿命が改善され
ることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have studied to achieve the above object, and as a result, by using an acid treatment and an ultrasonic treatment together, a hydrogen storage alloy powder was prepared with a relatively low concentration aqueous acid solution. Can remove the strong oxide film on the surface of
In addition, they have found that the production of Ni (OH) 2 is remarkably suppressed by the combined use of ultrasonic waves, and the life of the electrode is improved by reducing the high-temperature self-discharge, and the present invention has been achieved.

【0017】ここに、本発明は、粉末表面の20%以上の
面積が合金の凝固中または熱処理中に生成した酸化膜で
ある水素吸蔵合金粉末を、非酸化性の酸性水溶液中に浸
漬し、かつ20〜100 kHz の周波数の超音波を作用させる
ことを特徴とする水素吸蔵合金粉末の処理方法である。
According to the present invention, a hydrogen storage alloy powder, which is an oxide film having an area of 20% or more of the surface of the powder formed during solidification or heat treatment of the alloy, is immersed in a non-oxidizing acidic aqueous solution, A method for treating hydrogen storage alloy powder, characterized by applying ultrasonic waves having a frequency of 20 to 100 kHz.

【0018】本発明により処理する水素吸蔵合金粉末
は、粉末表面の20%以上の面積が合金の凝固中または熱
処理中に高温で生成した強固な酸化膜で覆われているも
のである。このような粉末の例は、前述したように、急
冷凝固法で製造され、場合によりさらに熱処理が施され
た水素吸蔵合金粉末である。
The hydrogen storage alloy powder to be treated according to the present invention is one in which at least 20% of the surface of the powder is covered with a strong oxide film formed at a high temperature during solidification or heat treatment of the alloy. An example of such a powder is a hydrogen storage alloy powder produced by a rapid solidification method and optionally further subjected to a heat treatment as described above.

【0019】水素吸蔵合金の初期活性 (即ち、Ni−水素
電池の初期活性化の容易さ) は、合金表面の酸化状況と
水素吸蔵合金のバルク組織の両因子により変化する。具
体的には、初期活性に影響する主要な現象は、合金表
面の酸化膜による電極反応活性度の低下現象、および
充電・放電サイクル初期の水素吸収・放出時の体積変化
によって粒界を起点とした破砕が生じ、比表面積が増加
して初期活性度が向上する現象、の二つである。
The initial activity of the hydrogen storage alloy (that is, the ease of initial activation of a Ni-hydrogen battery) changes depending on both the oxidation state of the alloy surface and the bulk structure of the hydrogen storage alloy. Specifically, the main phenomena that affect the initial activity are the origin of the grain boundary due to the decrease in electrode reaction activity due to the oxide film on the alloy surface and the volume change during hydrogen absorption and release at the beginning of the charge / discharge cycle. Crushing occurs, the specific surface area increases, and the initial activity increases.

【0020】特開平4−179055号公報に記載のように、
単に溶製した合金を粉砕して得た水素吸蔵合金粉末を酸
性水溶液に浸漬する場合は、上記により合金表面の酸
化膜が除去できた分だけ初期活性度が向上するが、上記
による合金バルク組織に起因する初期活性度の向上は
期待できない。
As described in JP-A-4-179055,
When the hydrogen storage alloy powder obtained by simply pulverizing the melted alloy is immersed in an acidic aqueous solution, the initial activity is improved as much as the oxide film on the alloy surface can be removed by the above, but the alloy bulk structure according to the above No improvement in the initial activity due to the above can be expected.

【0021】これに対し、水素吸蔵合金粉末を急冷凝固
法で製造すると、結晶粒が微細 (望ましくは30μm以
下) となり、結晶粒界部分が多い組織であることから、
の面酸化膜除去に加えて、のサイクル初期の粒界起
点の破砕、表面積増加による初期活性化への相乗効果が
得られるため、初期活性度の向上効果が大きくなる。
On the other hand, when the hydrogen storage alloy powder is manufactured by the rapid solidification method, the crystal grains become fine (preferably 30 μm or less) and the structure has many crystal grain boundary portions.
In addition to the removal of the surface oxide film, a synergistic effect on the initial activation due to the crushing of the grain boundary starting point at the beginning of the cycle and the increase of the surface area is obtained, and the effect of improving the initial activity is increased.

【0022】また、通常の凝固冷却速度で得られた合金
(結晶粒径≧80〜100 μm) は、粉砕工程で多くの結晶
粒が破砕されるため、個々の結晶単位が破壊される結
果、電極にした際の寿命が短くなる傾向がある。急冷凝
固法、特にアトマイズ法により結晶粒径が微細な合金を
粉砕せずに製造した後、酸性水溶液中で表面酸化膜を除
去すると、破壊されずに残存している結晶単位の割合が
多くなることと、急冷のために成分偏析が少なく均質な
組織が得られることが相まって、電極寿命が長くなる。
An alloy obtained at a normal solidification cooling rate
In the case of (crystal grain size ≧ 80 to 100 μm), many crystal grains are crushed in the pulverizing step, and individual crystal units are destroyed, so that the life of the electrode tends to be shortened. After manufacturing an alloy with a fine crystal grain size without crushing by rapid solidification method, especially atomizing method, if the surface oxide film is removed in an acidic aqueous solution, the ratio of crystal units remaining without being destroyed increases. This, combined with the fact that a homogeneous structure is obtained with less component segregation due to quenching, prolongs the electrode life.

【0023】しかし、急冷凝固中および熱処理中に生成
した強固な酸化膜を除去するには、強い (高濃度の) 酸
性水溶液で処理することが必要と考えられてきた。強い
酸性水溶液で処理すると、前述したように、合金表面に
多くのNi(OH)2 が生成し、これがNi−水素電池の高温で
の自己放電特性を悪化させる原因となり、電極寿命の延
長を阻んでいた。
However, in order to remove a strong oxide film formed during rapid solidification and heat treatment, it has been considered necessary to treat with a strong (high concentration) acidic aqueous solution. When treated with a strong acidic aqueous solution, as described above, a large amount of Ni (OH) 2 is generated on the alloy surface, which deteriorates the self-discharge characteristics of the Ni-hydrogen battery at high temperatures, and prolongs the electrode life. I was out.

【0024】本発明によれば、超音波処理を併用するこ
とで、比較的低濃度の酸水溶液で水素吸蔵合金粉末の表
面の強固な酸化膜を除去することができ、低い酸濃度と
超音波の効果によって合金表面のNi(OH)2 の生成が抑え
られ、高温での自己放電特性が良好に保持され、電極寿
命が延びる。
According to the present invention, by using ultrasonic treatment together, it is possible to remove a strong oxide film on the surface of the hydrogen storage alloy powder with a relatively low concentration of an acid aqueous solution. The effect of (1) suppresses the production of Ni (OH) 2 on the alloy surface, thereby maintaining good self-discharge characteristics at high temperatures and extending the life of the electrode.

【0025】[0025]

【発明の実施の形態】本発明で処理する水素吸蔵合金
は、Niを含有しているものであれば特に制限されない。
代表例は、AB5 型またはAB2 型の水素吸蔵合金であ
るが、AB型またはA2 B型の水素吸蔵合金でもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy to be treated in the present invention is not particularly limited as long as it contains Ni.
Representative examples include, but are AB 5 type or AB 2 type hydrogen storage alloy may be a AB type or A 2 B type hydrogen storage alloy.

【0026】合金の具体的組成も特に制限されないが、
AB5 型合金の例は、LaNix またはMmNix (xは 4.7〜5.
2)を基本構造とし、Niの一部をCo、Mn、Al、Fe、Cr、C
u、V、Be、Zr、Ti、Mo等の1種または2種以上の元素
で置換したものである。LaNixは高価格である上、寿命
低下が早いので、実用的にはMmNix が好ましい。
Although the specific composition of the alloy is not particularly limited,
Examples of AB type 5 alloys are LaNi x or MmNi x (x is 4.7 to 5.
2) as the basic structure, and part of Ni is Co, Mn, Al, Fe, Cr, C
It is substituted with one or more elements such as u, V, Be, Zr, Ti, Mo and the like. Since LaNi x is expensive and has a short life, MmNi x is practically preferable.

【0027】AB2 型合金の例は、ZrNiy (yは 1.9〜2.
25) を基本構造とし、Niの一部をV、Mn、Cr、Co、Fe、
Al、Mo、Cu、Be等の1種または2種以上の元素で置換し
たものである。具体例として Zr1.00.4Ni1.6, Zr1.0M
n0.6Cr0.2Ni1.2, Zr1.0Ni1.2Mn0.6V0.2Co0.1, Zr1.0Ni
1.2Mn0.6V0.2Fe0.1, Zr1.0V0.4Ni1.6等がある。
An example of the AB 2 type alloy is ZrNi y (y is 1.9 to 2.
25) as the basic structure, and part of Ni is V, Mn, Cr, Co, Fe,
It is substituted with one or more elements such as Al, Mo, Cu, Be and the like. As specific examples, Zr 1.0 V 0.4 Ni 1.6 , Zr 1.0 M
n 0.6 Cr 0.2 Ni 1.2 , Zr 1.0 Ni 1.2 Mn 0.6 V 0.2 Co 0.1 , Zr 1.0 Ni
1.2 Mn 0.6 V 0.2 Fe 0.1 , Zr 1.0 V 0.4 Ni 1.6, etc.

【0028】本発明で処理する水素吸蔵合金粉末は、粉
末表面の20%以上の面積が合金の凝固中または熱処理中
に生成した酸化膜で覆われているものである。前述した
ように、急冷凝固法で製造した水素吸蔵合金粉末にこの
条件を満たすものが多いが、本発明で処理する水素吸蔵
合金粉末は急冷凝固法で製造されたものに限定されるわ
けではない。
The hydrogen-absorbing alloy powder to be treated in the present invention is one in which at least 20% of the surface of the powder is covered with an oxide film formed during solidification or heat treatment of the alloy. As described above, many hydrogen storage alloy powders manufactured by the rapid solidification method satisfy this condition, but the hydrogen storage alloy powder to be treated in the present invention is not limited to those manufactured by the rapid solidification method. .

【0029】急冷凝固法では、溶融状態から50℃/秒以
上、好ましくは500 ℃/秒以上の速い冷却速度で凝固さ
れるため、得られた水素吸蔵合金粉末は成分偏析が少な
く、耐食性が良好で、繰り返し充電・放電に伴う容量低
下が非常に少なく、電極寿命が長いという特長がある。
In the rapid solidification method, the hydrogen storage alloy powder is solidified at a high cooling rate of 50 ° C./sec or more, preferably 500 ° C./sec or more from the molten state, so that the obtained hydrogen storage alloy powder has little component segregation and good corrosion resistance. Thus, there is a feature that the capacity is not greatly reduced due to repeated charging / discharging, and the electrode life is long.

【0030】急冷凝固法としては、例えば、回転電極
法、回転ドラム上への注湯による急冷、水冷鋼板上に薄
く鋳込む方法、ガスアトマイズ法などを採用することが
できる。このうち、球形の合金粉末を直接得ることがで
きるガスアトマイズ法が好ましい。ガスアトマイズ法に
よれば、電極製作時の合金の粉砕工程が必ずしも必要と
はならず、しかも合金が球形粉末状であるので、電極構
成時に合金粒子が最密充填されて高容量の電極を得るこ
とができるからである。
As the rapid solidification method, for example, a rotating electrode method, a rapid cooling method by pouring a molten metal onto a rotating drum, a method of thin casting on a water-cooled steel plate, a gas atomizing method, and the like can be used. Of these, a gas atomizing method that can directly obtain a spherical alloy powder is preferable. According to the gas atomizing method, a pulverizing step of the alloy at the time of manufacturing the electrode is not always necessary, and since the alloy is in the form of a spherical powder, the alloy particles are closest packed at the time of forming the electrode to obtain a high capacity electrode. Because it can be.

【0031】好ましくは、急冷凝固後で、酸性水溶液に
よる処理前に、水素吸蔵合金粉末を550〜950 ℃で2〜
5時間の熱処理を受けさせる。それにより合金が再結晶
し、急冷歪が除去されて、放電容量が向上する。この熱
処理は一般に真空中または不活性雰囲気中で行う。好ま
しい熱処理条件は、 750〜900 ℃で3〜4時間、さらに
好ましくは 750〜800 ℃で4時間である。熱処理雰囲気
は、表面酸化防止の観点から真空より不活性雰囲気
(例、アルゴン、ヘリウム) の方が好ましい。
Preferably, after the rapid solidification, before the treatment with the acidic aqueous solution, the hydrogen storage alloy powder is heated at 550 to 950 ° C. for 2 to 2 hours.
Subject to heat treatment for 5 hours. Thereby, the alloy is recrystallized, the quenching strain is removed, and the discharge capacity is improved. This heat treatment is generally performed in a vacuum or an inert atmosphere. Preferred heat treatment conditions are 750 to 900 ° C for 3 to 4 hours, more preferably 750 to 800 ° C for 4 hours. The heat treatment atmosphere is more inert than vacuum from the viewpoint of preventing surface oxidation.
(Eg, argon, helium) are preferred.

【0032】製造された水素吸蔵合金が粉末状でない場
合には、本発明の処理を行う前に合金を粉砕しておく。
粉砕が後になると、粉砕時に合金表面に酸化膜が生成し
て、初期活性化特性が劣化するからである。
If the produced hydrogen storage alloy is not in powder form, the alloy is pulverized before performing the treatment of the present invention.
This is because, after the pulverization, an oxide film is formed on the alloy surface during the pulverization, and the initial activation characteristics are deteriorated.

【0033】こうして製造された水素吸蔵合金粉末は表
面が酸化膜で覆われている。例えば、水素吸蔵合金粉末
をガスアトマイズ法で製造した場合、ガスアトマイズの
過程でガスに含まれる微量の酸素あるいはアトマイズチ
ャンバー内の残留酸素分などの影響による酸化、さらに
は合金製造後の熱処理過程において熱処理炉内不活性ガ
ス中に含まれる微量の酸素による酸化が原因で、表面に
酸化膜が生成する。
The surface of the thus produced hydrogen storage alloy powder is covered with an oxide film. For example, when the hydrogen storage alloy powder is manufactured by the gas atomization method, oxidation is caused by the influence of a trace amount of oxygen contained in the gas during the gas atomization process or the residual oxygen content in the atomization chamber. An oxide film is formed on the surface due to oxidation by a trace amount of oxygen contained in the inert gas.

【0034】水素吸蔵合金粉末を他の方法で製造した場
合にも、合金製造過程や熱処理過程(熱処理を行った場
合) 、さらには合金粉砕過程において酸化を完全に避け
ることはできず、やはり表面酸化膜が生成する。
Even when the hydrogen storage alloy powder is manufactured by another method, oxidation cannot be completely avoided during the alloy manufacturing process, heat treatment process (when heat treatment is performed), and alloy pulverization process. An oxide film is formed.

【0035】酸化膜のうち高温で生成したもの、すなわ
ち、溶湯からの凝固中または合金の熱処理中に生じた酸
化膜は、特に強固で、表面処理による除去が困難であ
り、酸処理だけで除去しようとすると、高濃度の酸水溶
液が必要となる。本発明では、酸処理と超音波処理とを
併用することで、比較的低濃度の酸水溶液で、このよう
な強固な酸化膜を除去できる。表面処理にアルカリ水溶
液を使用した場合には、超音波を併用しても、高温で生
成した強固な酸化膜は効率的に除去できない。
Of the oxide films, those formed at high temperatures, that is, oxide films formed during solidification from the molten metal or during heat treatment of the alloy, are particularly strong and difficult to remove by surface treatment, and are removed only by acid treatment. Attempting to do so requires a highly concentrated aqueous acid solution. In the present invention, by using the acid treatment and the ultrasonic treatment together, such a strong oxide film can be removed with a relatively low-concentration aqueous acid solution. When an alkaline aqueous solution is used for the surface treatment, a strong oxide film generated at a high temperature cannot be efficiently removed even with the use of ultrasonic waves.

【0036】本発明で処理するのは、凝固中または熱処
理中に高温で生成した、強固で除去しにくい酸化膜が、
表面の20%以上の面積を占める水素吸蔵合金粉末であ
る。凝固中または熱処理中に生成した酸化膜の割合 (面
積率) は、熱処理後 (熱処理しない場合は凝固後) の合
金の表面積(A) と、粉砕後の合金の表面積(B) とから、
(A)/(B) ×100 により算出することができる。
In the present invention, a strong and hard to remove oxide film formed at a high temperature during solidification or heat treatment is used.
Hydrogen storage alloy powder occupying more than 20% of the surface area. The ratio (area ratio) of the oxide film generated during solidification or heat treatment is calculated from the surface area of the alloy after heat treatment (after solidification if no heat treatment) and the surface area of the alloy after pulverization (B).
It can be calculated by (A) / (B) × 100.

【0037】例えば、アトマイズ法で製造した、粉砕し
ていない水素吸蔵合金粉末の場合には、凝固中または熱
処理中に生成した酸化膜の割合は100 %となる。急冷凝
固法で製造しても、粉砕の程度が大きかった場合には、
凝固中または熱処理中に高温で生成した酸化膜の割合が
20%未満となることもある。このように高温で生成した
強固な酸化膜の割合が粉末表面の20%未満である場合に
は、従来の方法でも十分に粉末表面の酸化膜を除去でき
る。
For example, in the case of unground pulverized hydrogen-absorbing alloy powder produced by the atomizing method, the proportion of the oxide film formed during solidification or heat treatment is 100%. Even if it is manufactured by the rapid solidification method, if the degree of pulverization is large,
The percentage of oxide film formed at high temperature during solidification or heat treatment
It can be less than 20%. When the ratio of the strong oxide film formed at such a high temperature is less than 20% of the powder surface, the oxide film on the powder surface can be sufficiently removed by the conventional method.

【0038】本発明の処理に用いる酸は、塩酸および/
またはフッ化水素酸などの非酸化性の酸がよい。これ以
外の酸 (例、硝酸、硫酸等) では、酸の持つ酸化機能に
より酸性水溶液による浸漬処理中に合金表面に新たに酸
化膜が生じやすく、合金の初期活性化特性の改善効果が
充分には得られないからである。
The acid used in the treatment of the present invention is hydrochloric acid and / or
Alternatively, a non-oxidizing acid such as hydrofluoric acid is preferable. For other acids (e.g., nitric acid, sulfuric acid, etc.), the oxidation function of the acid makes it easy for a new oxide film to be formed on the alloy surface during the immersion treatment with the acidic aqueous solution, and the effect of improving the initial activation properties of the alloy is sufficient. Is not obtained.

【0039】処理に用いる酸性水溶液は、試薬特級もし
くは1級またはそれと同程度の濃度の原液 (塩酸は35〜
36%、フッ化水素酸は44〜46%濃度) を水で希釈するこ
とにより調製できる。酸性水溶液の酸濃度は、この原液
の含有量 (重量%) として、塩酸で0.5 〜5%、フッ化
水素酸で 0.5〜3%、塩酸とフッ化水素酸との混酸で0.
5〜5%の濃度が好ましい。より好ましい酸濃度は、塩
酸で 1.0〜2%、フッ化水素酸で 0.5〜1.0 %、塩酸と
フッ化水素酸の混酸で 0.5〜2.0 %である。
The acidic aqueous solution used for the treatment is a stock solution of the reagent grade or the first grade or a similar concentration thereof (hydrochloric acid is 35 to
(36%, hydrofluoric acid 44-46% concentration) can be prepared by diluting with water. The acid concentration of the acidic aqueous solution is 0.5 to 5% for hydrochloric acid, 0.5 to 3% for hydrofluoric acid, and 0.1% for mixed acid of hydrochloric acid and hydrofluoric acid as the content (% by weight) of this stock solution.
A concentration of 5-5% is preferred. More preferred acid concentrations are 1.0 to 2% for hydrochloric acid, 0.5 to 1.0% for hydrofluoric acid, and 0.5 to 2.0% for a mixed acid of hydrochloric acid and hydrofluoric acid.

【0040】酸濃度が高すぎると、合金表面にNi(OH)2
が多量に生成し、高温での自己放電特性が悪化し易い。
しかし、酸濃度が高い場合には、処理時間を短くするこ
とでNi(OH)2 の生成を抑制し、本発明の効果を達成する
ことができるので、酸水溶液の濃度は特に制限されな
い。
If the acid concentration is too high, Ni (OH) 2
Are generated in large quantities, and the self-discharge characteristics at high temperatures are likely to deteriorate.
However, when the acid concentration is high, the effect of the present invention can be achieved by shortening the treatment time to suppress the production of Ni (OH) 2 , so that the concentration of the acid aqueous solution is not particularly limited.

【0041】酸性水溶液による好ましい処理時間を、濃
度別に下記に示す。ここに示した時間より長いと合金の
表面に多くのNi(OH)2 が生成し易くなる。 HCl: 0.5〜2.0 %濃度=10分以下、2.0 〜5.0 %濃度
=5分以下、 HF : 0.5〜1.0 %濃度= 5分以下、1.0 〜3.0 %濃度
=3分以下、 HCl+HF混酸: 0.5〜2.0 %濃度=10分以下、 2.0〜5.0
%濃度=5分以下。
The preferred treatment time with the acidic aqueous solution is shown below for each concentration. If the time is longer than this, a large amount of Ni (OH) 2 is likely to be generated on the surface of the alloy. HCl: 0.5 to 2.0% concentration = 10 minutes or less, 2.0 to 5.0% concentration = 5 minutes or less, HF: 0.5 to 1.0% concentration = 5 minutes or less, 1.0 to 3.0% concentration = 3 minutes or less, HCl + HF mixed acid: 0.5 to 2.0 % Concentration = 10 minutes or less, 2.0-5.0
% Concentration = 5 minutes or less.

【0042】酸処理の温度は0〜80℃の範囲内が好まし
い。0℃より低温では、酸濃度が低すぎる場合と同様、
酸洗反応の進行が遅く、表面酸化膜の十分な除去が困難
なことが多い。一方、処理温度が80℃を超えると、酸濃
度が高すぎる場合と同様、酸洗反応の進行が速すぎ、合
金表面の酸化膜の除去にとどまらず合金内部にまで酸洗
が進む傾向がある。さらに、80℃より高温では、水素吸
収平衡圧力の関係から、酸洗反応で発生した水素は合金
に吸収されないですべて大気中に放出されてしまい、活
性化の促進が不十分となることがある。
The temperature of the acid treatment is preferably in the range of 0 to 80 ° C. At a temperature lower than 0 ° C., as in the case where the acid concentration is too low,
The pickling reaction proceeds slowly, and it is often difficult to sufficiently remove the surface oxide film. On the other hand, when the treatment temperature exceeds 80 ° C., as in the case where the acid concentration is too high, the pickling reaction proceeds too quickly, and the pickling tends to progress not only to the removal of the oxide film on the alloy surface but also to the inside of the alloy. . Furthermore, at temperatures higher than 80 ° C, due to the hydrogen absorption equilibrium pressure, all the hydrogen generated in the pickling reaction is released to the atmosphere without being absorbed by the alloy, and the activation may not be sufficiently promoted. .

【0043】本発明においては、酸処理中に酸水溶液中
の水素吸蔵合金粉末に超音波を作用させる。ただし、超
音波処理は酸処理の後に行うこともできる。使用する超
音波は、通常の超音波洗浄に用いられている20〜100 kH
z の周波数を用いることで十分な効果が得られる。20 k
Hz未満では可聴音波であり表面の酸化膜除去の効果は少
ない。周波数が100 kHz を超える超音波は、表面の付着
物を除去する等の目的には効果が認められるが、合金表
面の酸化膜を除去するためには効果が少ない。好ましい
周波数は28〜80 kHzである。
In the present invention, an ultrasonic wave is applied to the hydrogen storage alloy powder in the acid aqueous solution during the acid treatment. However, the ultrasonic treatment can be performed after the acid treatment. The ultrasonic wave used is 20 to 100 kHz which is used for normal ultrasonic cleaning.
A sufficient effect can be obtained by using the frequency of z. 20k
If the frequency is lower than Hz, the sound is audible and the effect of removing the oxide film on the surface is small. Ultrasonic waves having a frequency exceeding 100 kHz are effective for the purpose of removing deposits on the surface and the like, but have little effect for removing the oxide film on the alloy surface. Preferred frequencies are between 28 and 80 kHz.

【0044】超音波と酸性水溶液による酸洗効果との相
互作用で、酸水溶液が比較的低濃度であっても、効率的
に水素吸蔵合金粉末の表面の強固な酸化膜を除去するこ
とが可能となる。本発明の方法で処理した水素吸蔵合金
粉末の表面にNi(OH)2 の生成が少ない理由は明確ではな
いが、酸水溶液の濃度の影響以外に、超音波を用いるこ
とで生成したNi(OH)2 が超音波エネルギーにより除去さ
れることも寄与しているのではないかと推定される。
The interaction between the ultrasonic wave and the pickling effect of the acidic aqueous solution makes it possible to efficiently remove the strong oxide film on the surface of the hydrogen storage alloy powder even when the acid aqueous solution has a relatively low concentration. Becomes It is not clear why the generation of Ni (OH) 2 is small on the surface of the hydrogen storage alloy powder treated by the method of the present invention, but in addition to the effect of the concentration of the acid aqueous solution, Ni (OH) 2 is generated by using ultrasonic waves. It is presumed that removal of 2 by ultrasonic energy also contributes.

【0045】超音波強度については、0.05 W/cm2以上の
超音波強度であることが望ましい。これ以下では表面の
酸化膜除去能力が小さく、表面改質効果が小さくなる。
望ましくは0.35 W/cm2以上の超音波強度であると、水中
でキャビテーションが生じて、より効率的に合金表面の
酸化物除去が可能となり、表面改質効果が大きい。
The ultrasonic intensity is preferably 0.05 W / cm 2 or more. Below this, the ability to remove the oxide film on the surface is small and the effect of modifying the surface is reduced.
If the ultrasonic intensity is desirably 0.35 W / cm 2 or more, cavitation occurs in water, so that oxide removal from the alloy surface can be performed more efficiently, and the surface modification effect is large.

【0046】超音波は、酸水溶液中に水素吸蔵合金粉末
を浸漬している間ずっと作用させる必要はなく、浸漬中
の一部の時間だけでもよい。その場合には、浸漬中の後
半に超音波を作用させる方が好ましい。また、酸処理後
の水洗中に超音波をかけることでもいくらかの効果はあ
るが、酸処理中に超音波をかける方が好ましい。
The ultrasonic wave does not need to be applied during the immersion of the hydrogen storage alloy powder in the aqueous acid solution, but may be performed only for a part of the time during the immersion. In that case, it is preferable to apply ultrasonic waves in the latter half of the immersion. Although applying some ultrasonic waves during washing with water after the acid treatment has some effects, it is preferable to apply ultrasonic waves during the acid treatment.

【0047】酸性水溶液により処理した水素吸蔵合金
は、次いで水洗し、通常はその後に乾燥する。水洗は、
合金に付着した酸がほぼ完全に除去されるように実施す
ればよい。例えば、水洗前後液のpHの変化が小数点1
ケタ以下になるまで水洗することができる。
The hydrogen storage alloy treated with the acidic aqueous solution is then washed with water and usually dried thereafter. Washing with water
What is necessary is just to implement so that the acid attached to the alloy may be almost completely removed. For example, the change in pH of the solution before and after washing is represented by decimal point 1
It can be washed with water until it is less than digits.

【0048】上述したように、表面酸化膜は水素透過を
妨げるバリアーであるので、本発明に従って酸処理し、
この酸化膜を除去すると、水素吸蔵合金の活性発現に必
要な水素の吸収・放出が初期より容易に行われる。ま
た、酸処理中に水素が合金表面で発生し、酸化膜が除去
されてガスが透過し易くなった合金の内部に、この発生
した水素が吸収される。これらの作用があいまって、活
性化処理の初期から水素が合金内部に十分に吸収されて
活性化が速まり、初期活性化特性が著しく改善される。
As described above, since the surface oxide film is a barrier that prevents hydrogen permeation, it is treated with an acid according to the present invention,
When this oxide film is removed, the absorption and release of hydrogen necessary for the expression of the activity of the hydrogen storage alloy are easily performed from the beginning. Further, hydrogen is generated on the surface of the alloy during the acid treatment, and the generated hydrogen is absorbed into the alloy in which the oxide film has been removed and the gas has become easier to permeate. In combination with these actions, hydrogen is sufficiently absorbed into the alloy from the early stage of the activation process to accelerate the activation, and the initial activation characteristics are remarkably improved.

【0049】さらに、超音波処理を併用して酸処理する
ことで、酸処理中に合金表面に生成するNi(OH)2 の量が
著しく少なくなり、この水酸化物に起因する高温での自
己放電が抑制される結果、電極寿命が改善される。
Further, by performing the acid treatment in combination with the ultrasonic treatment, the amount of Ni (OH) 2 generated on the alloy surface during the acid treatment is significantly reduced, and the self-heating at a high temperature caused by the hydroxide is reduced. As a result of suppressing the discharge, the electrode life is improved.

【0050】本発明の方法により表面処理した水素吸蔵
合金粉末から当業者に周知の方法で電極を製造し、Ni−
水素電池の負極として使用する。電極は、例えば、水素
吸蔵合金粉末を適当な結着剤 (ポリビニルアルコールな
どの樹脂) および水 (または他の液体) と混合してペー
スト状とし、ニッケル多孔体に充填して乾燥した後、所
望の電極形状に加圧成形することにより製造できる。
An electrode is manufactured from the hydrogen-absorbing alloy powder surface-treated by the method of the present invention by a method well known to those skilled in the art, and Ni-
Used as a negative electrode of a hydrogen battery. The electrode is formed, for example, by mixing a hydrogen storage alloy powder with a suitable binder (resin such as polyvinyl alcohol) and water (or other liquid) to form a paste, filling a nickel porous body, drying the mixture, and then drying the paste. It can be manufactured by pressure molding to the electrode shape of

【0051】[0051]

【実施例】本発明の水素吸蔵合金粉末の処理方法の効果
を次の実施例により実証する。実施例中、%は特に指定
しない限り重量%である。また、処理に用いた酸性水溶
液の酸濃度は、前述した原液 [即ち、試薬特級の35%塩
酸(HCl) または46%フッ化水素酸(HF)] の含有量 (重量
%) である。
EXAMPLES The effects of the method for treating a hydrogen storage alloy powder of the present invention are demonstrated by the following examples. In Examples,% is% by weight unless otherwise specified. The acid concentration of the acidic aqueous solution used for the treatment is the content (% by weight) of the stock solution described above [namely, 35% hydrochloric acid (HCl) or 46% hydrofluoric acid (HF), which is a special grade of reagent].

【0052】(製造例1)表1に示す組成のAB5 型ま
たはAB2 型合金の水素吸蔵合金粉末を以下に述べる方
法で製造した。
(Production Example 1) A hydrogen storage alloy powder of an AB 5 type or AB 2 type alloy having the composition shown in Table 1 was produced by the method described below.

【0053】[0053]

【表1】 [Table 1]

【0054】合金の製造に用いた原料は、純度99.9%の
フレーク状Ni、純度99.8%の電解Co、純度99.9%のショ
ット状Al、純度99.8%の板状電解Mn、Ni−56.9%V母合
金、純度99.5%以上のスポンジ状Zr、希土類金属純度が
99.8%以上のミッシュメタル(Mm) (La=28%、Ce=48
%、Nd=18%、Pr=6%) 、およびLa富化ミッシュメタ
ル(Lm) (La=58%、Ce=15%、Pr=7%、Nd=20%) で
あった。
The raw materials used in the production of the alloy were flake-like Ni having a purity of 99.9%, electrolytic Co having a purity of 99.8%, shot-like Al having a purity of 99.9%, plate-like electrolytic Mn having a purity of 99.8%, and Ni-56.9% V Alloy, sponge Zr with purity over 99.5%, rare earth metal purity
99.8% or more misch metal (Mm) (La = 28%, Ce = 48
%, Nd = 18%, Pr = 6%), and La-rich misch metal (Lm) (La = 58%, Ce = 15%, Pr = 7%, Nd = 20%).

【0055】これらの原料から、急冷凝固法である75 k
g/chのArガスアトマイズ法 (溶湯からの冷却速度1×10
3 〜1×104 ℃/秒) 、または厚み約500 μm(溶湯から
の冷却速度9×103 ℃/秒) もしくは約250 μm(同じく
3×103 ℃/秒) の薄片状に鋳込んだロール急冷法を採
用して、所定組成の水素吸蔵合金を作製した。さらに、
従来法である100 kg/ch のインゴット法 (溶湯からの冷
却速度1.0 ℃/sec) によっても、水素吸蔵合金粉末を作
製した。
From these raw materials, a quenching solidification method of 75 k
g / ch Ar gas atomization method (cooling rate from molten metal 1 × 10
3 to 1 × 10 4 ℃ / sec), or about 500 μm thick (cooling rate from molten metal 9 × 10 3 ℃ / sec) or about 250 μm (3 × 10 3 ℃ / sec) A hydrogen storage alloy having a predetermined composition was produced by employing a roll quenching method. further,
Hydrogen storage alloy powder was also prepared by the conventional method of ingot method of 100 kg / ch (cooling rate from molten metal 1.0 ° C / sec).

【0056】得られた各水素吸蔵合金はすべて、純度9
9.99 %のArガスを用いたAr雰囲気中において所定条件
で熱処理した。インゴット法およびロール急冷法で作製
した水素吸蔵合金は、熱処理後にステンレス製のボール
ミルによりAr雰囲気下で機械的に粉砕して粉末にした。
アトマイズ法で得た粉末も含め、各水素吸蔵合金粉末を
−74μmに分級した。
Each of the obtained hydrogen storage alloys had a purity of 9%.
Heat treatment was performed under predetermined conditions in an Ar atmosphere using 9.99% Ar gas. The hydrogen storage alloy produced by the ingot method and the roll quenching method was mechanically pulverized into a powder by a stainless steel ball mill under an Ar atmosphere after heat treatment.
Each hydrogen storage alloy powder, including the powder obtained by the atomizing method, was classified into -74 µm.

【0057】得られた水素吸蔵合金粉末の表面酸化膜に
おける、凝固または熱処理中に高温で生成した酸化膜
(以下、高温酸化膜という) の割合を、粉砕前および粉
砕・分級後のBET法により測定した比表面積から求め
た。但し、アトマイズ法で製造した粉末は、粉砕工程を
経由していないため、高温酸化膜の割合は100 %とな
る。こうして求めた高温酸化膜の割合を、次の表2にま
とめて示す。
An oxide film formed at a high temperature during solidification or heat treatment on the surface oxide film of the obtained hydrogen storage alloy powder
(Hereinafter referred to as a high-temperature oxide film) was determined from the specific surface area measured by the BET method before and after pulverization and classification. However, since the powder produced by the atomizing method does not pass through the pulverizing step, the ratio of the high-temperature oxide film is 100%. The percentage of the high-temperature oxide film thus determined is summarized in Table 2 below.

【0058】[0058]

【表2】 [Table 2]

【0059】表2からわかるように、急冷凝固法である
ロール急冷法で水素吸蔵合金を製造しても、薄片が500
μmと厚いと、粉砕で現れる表面が多くなって、高温酸
化膜の割合が20%未満となった。
As can be seen from Table 2, even when the hydrogen storage alloy is manufactured by the roll quenching method, which is the quenching and solidification method, 500 μm of flakes are obtained.
When the thickness was as large as μm, the surface that appeared during pulverization increased, and the proportion of the high-temperature oxide film was less than 20%.

【0060】(実施例1)製造例1に記載したようにし
て、表2の (イ)〜(ニ) の各方法で製造したAB5型の水
素吸蔵合金種の粉末を、次の (A)〜(C) に示す従来技
術および本発明の各種方法で表面処理した。水素吸蔵合
金の製造後の熱処理は、いずれも 850℃×4時間の同一
条件とした。表面処理条件を次に説明する。
[0060] as described in (Example 1) Production Example 1 of Table 2 (a) ~ AB 5 -type hydrogen absorbing alloy species powder prepared in the method of (d), the following (A ) To (C) were surface-treated by the conventional techniques and various methods of the present invention. The heat treatment after the production of the hydrogen storage alloy was performed under the same conditions of 850 ° C. × 4 hours. Next, the surface treatment conditions will be described.

【0061】(A) アルカリ処理+超音波 (特開平5−19
5007号) 合金粉末1kgに対して1リットルの割合の比重1.30のKO
H 水溶液中に合金粉末を浸漬し、液温を80℃に保ちなが
ら100 rpm で攪拌しつつ、液中に浸漬型超音波振動子を
設置して超音波 (周波数:26 kHz、出力:20 W/処理容
量1m3) を作用させながら、60分間のアルカリ処理を行
った。その後、アルカリ水溶液を除去し、合金粉末を洗
液のpHが9以下になるまで水洗し、真空雰囲気におい
て乾燥した。
(A) Alkali treatment + ultrasonic wave (JP-A-5-19)
No.5007) KO with specific gravity of 1.30, 1 liter per 1 kg of alloy powder
The alloy powder is immersed in an aqueous solution of H and stirred at 100 rpm while maintaining the liquid temperature at 80 ° C., while immersion ultrasonic vibrators are installed in the liquid and ultrasonic waves (frequency: 26 kHz, output: 20 W) / Alkaline treatment was performed for 60 minutes while applying a treatment capacity of 1 m 3 ). Thereafter, the alkaline aqueous solution was removed, and the alloy powder was washed with water until the pH of the washing solution became 9 or less, and dried in a vacuum atmosphere.

【0062】(B) 高濃度酸性水溶液処理 (特開平6−22
3827号) 合金粉末1kgに対して2リットルの割合の7% HCl 水溶
液中に、液温30℃で合金粉末を8分間浸漬した。浸漬中
に処理液を100 rpm で攪拌したが、超音波は作用させな
かった。その後、酸性水溶液を除去し、重量で合金の20
倍量の水で洗浄し、真空雰囲気において乾燥した。
(B) High-concentration acidic aqueous solution treatment (JP-A-6-22)
No. 3827) The alloy powder was immersed in a 7% aqueous solution of HCl at a rate of 2 liters per 1 kg of the alloy powder at a liquid temperature of 30 ° C. for 8 minutes. During the immersion, the treatment liquid was stirred at 100 rpm, but no ultrasonic wave was applied. After that, the acidic aqueous solution was removed and 20% of the alloy by weight was removed.
Washed with twice the volume of water and dried in a vacuum atmosphere.

【0063】(C) 低濃度酸処理+超音波 (本発明法) 合金粉末1kgに対して2リットルの割合の1% HCl 水溶
液中に、液温30℃で合金粉末を5分間浸漬した。浸漬中
に処理液を60 rpmで攪拌し、方法(A) と同様にして、周
波数48 kHz、強度0.50 W/cm2の超音波をかけた。その
後、酸性水溶液を除去し、重量で合金の20倍量の水で洗
浄し、真空雰囲気にて乾燥した。
(C) Low concentration acid treatment + ultrasonic wave (method of the present invention) The alloy powder was immersed in a 1% HCl aqueous solution at a rate of 2 liters per 1 kg of the alloy powder at a liquid temperature of 30 ° C. for 5 minutes. During the immersion, the treatment liquid was stirred at 60 rpm, and ultrasonic waves having a frequency of 48 kHz and an intensity of 0.50 W / cm 2 were applied in the same manner as in the method (A). Thereafter, the acidic aqueous solution was removed, washed with water 20 times the weight of the alloy, and dried in a vacuum atmosphere.

【0064】上記の(A) ないし(C) の方法で表面処理し
た水素吸蔵合金粉末、および未処理の水素吸蔵合金粉末
の電極特性を次のようにして試験した。その試験結果
を、表3にまとめて示す。
The electrode characteristics of the hydrogen-absorbing alloy powder surface-treated by the methods (A) to (C) and the untreated hydrogen-absorbing alloy powder were tested as follows. Table 3 summarizes the test results.

【0065】(試験方法)水素吸蔵合金粉末を、結着剤
(ポリビニルアルコール5%水溶液) を添加して混練し
た。得られた合金粉末のペーストをニッケル製発泡状金
属多孔体 (例、住友電工製セルメット) に充填し、乾燥
した後、1.5 ton/cm2 の圧力で加圧して合金粉末をNi多
孔体内に担持させ、電池の負極を構成した。この時の水
素吸蔵合金粉末の担持量は約12gであった。
(Test Method) A hydrogen storage alloy powder was used as a binder
(5% aqueous solution of polyvinyl alcohol) was added and kneaded. The obtained alloy powder paste is filled into a nickel foamed porous metal body (for example, Celmet manufactured by Sumitomo Electric), dried, and then pressed at a pressure of 1.5 ton / cm 2 to hold the alloy powder in the Ni porous body. Thus, a negative electrode of the battery was formed. At this time, the supported amount of the hydrogen storage alloy powder was about 12 g.

【0066】正極には市販の公称2000 mA のNi電極を用
い、正極と負極の間に6N-KOHのアルカリ電解液を含浸さ
せたナイロン不織布をセパレータとして挟み、公称20
00 mAのNi−水素二次電池を構成した。この電池
を単二型のケース内に密閉化し、試験に供する電池を得
た。この電池は負極の容量が大きい正極容量規制型の電
池である。
A commercially available nominally 2000 mA Ni electrode was used for the positive electrode, and a nylon nonwoven fabric impregnated with 6N-KOH alkaline electrolyte was sandwiched between the positive and negative electrodes as a separator.
A 00 mA Ni-hydrogen secondary battery was constructed. This battery was hermetically sealed in a CASE case to obtain a battery to be tested. This battery is a positive electrode capacity regulating type battery having a large negative electrode capacity.

【0067】(1) 初期活性度 作製した正極容量規制型Ni−水素電池を、25℃、400 mA
で6時間充電した後、400 mAで端子電圧0.9 V まで放電
する繰り返し充電・放電を10回行った。1回目の放電容
量と10回目の放電容量を測定して、その比 (1回目放電
容量/10回目の放電容量×100 %) によって初期活性度
を求めた。初期活性度が95%以上であれば優れた初期活
性度を有すると評価できる。
(1) Initial activity The prepared positive-electrode capacity-regulated Ni-hydrogen battery was heated at 25 ° C. and 400 mA.
, And then repeatedly charged and discharged 10 times at 400 mA to a terminal voltage of 0.9 V. The first discharge capacity and the tenth discharge capacity were measured, and the initial activity was determined by the ratio (first discharge capacity / 10th discharge capacity × 100%). If the initial activity is 95% or more, it can be evaluated as having excellent initial activity.

【0068】(2) 高温自己放電特性 上記のNi−水素電池を25℃で上記と同じ充電・放電電流
量にて充電・放電を繰り返し、20サイクル目の完全充電
状態で一時試験を中断した。この電池を次いで50℃で10
日間保存し、その後25℃に戻して400 mAで放電し、残存
容量を測定した。この時の残存容量と19サイクル目 (25
℃) の放電容量との比 (保存容量または保存後の容量と
いう) を求めることにより、高温自己放電特性を評価し
た。この値が大きい程、高温での自己放電が少ない、自
己放電特性に優れた電池である。この値が85%以上であ
れば、自己放電量の少ない電池と評価できる。
(2) High-Temperature Self-Discharge Characteristics The Ni-hydrogen battery was repeatedly charged and discharged at 25 ° C. with the same charge and discharge current amounts as described above, and the temporary test was interrupted in the fully charged state at the 20th cycle. The battery is then stored at 50 ° C for 10
After storing for 25 days, the temperature was returned to 25 ° C., the battery was discharged at 400 mA, and the remaining capacity was measured. The remaining capacity at this time and the 19th cycle (25
(° C.) with respect to the discharge capacity (called storage capacity or capacity after storage) to evaluate high-temperature self-discharge characteristics. The larger this value is, the less the self-discharge at high temperature is, and the more excellent the self-discharge characteristic is. If this value is 85% or more, the battery can be evaluated as having a small amount of self-discharge.

【0069】[0069]

【表3】 [Table 3]

【0070】表3から、次の結果が判明した。 (i) 表面処理を行わないと、初期活性、保存容量とも目
標性能に達しない。 (ii)特開平5−195007号公報に記載された、アルカリ性
水溶液による処理と超音波処理の併用は、表面の高温酸
化膜の面積率が20%未満の水素吸蔵合金粉末には十分に
有効で、初期活性と保存容量が目標値に到達する。しか
し、高温酸化膜の面積率が20%以上の合金粉末では、酸
化膜を十分に除去できないため、初期活性の改善が不十
分である。
Table 3 shows the following results. (i) Unless surface treatment is performed, neither initial activity nor storage capacity reaches the target performance. (ii) The combination of treatment with an alkaline aqueous solution and ultrasonic treatment described in JP-A-5-195007 is sufficiently effective for hydrogen storage alloy powder having a surface high-temperature oxide film area ratio of less than 20%. , The initial activity and storage capacity reach the target value. However, with an alloy powder having an area ratio of the high-temperature oxide film of 20% or more, the oxide film cannot be sufficiently removed, so that the initial activity is insufficiently improved.

【0071】(iii) 特開平6−223827号公報に記載され
た、高濃度の酸性水溶液による表面処理では、表面の高
温酸化膜の面積率が20%以上の水素吸蔵合金粉末でも、
酸化膜を十分に除去でき、初期活性は目標値に達する
が、高温での自己放電が多くなり、保存容量が目標値よ
り低くなる。 (iv)本発明に従って、低濃度の酸性水溶液による処理と
超音波処理とを併用すると、初期活性、保存容量ともに
十分な改善効果が得られる。
(Iii) In the surface treatment with a high-concentration acidic aqueous solution described in JP-A-6-223827, even if the hydrogen storage alloy powder has a high-temperature oxide film on its surface having an area ratio of 20% or more,
Although the oxide film can be sufficiently removed and the initial activity reaches the target value, self-discharge at high temperature increases and the storage capacity becomes lower than the target value. (iv) According to the present invention, when the treatment with a low-concentration acidic aqueous solution and the ultrasonic treatment are used in combination, a sufficient effect of improving both the initial activity and the storage capacity can be obtained.

【0072】(実施例2)製造例1に記載したようにし
て、表2の(イ)(インゴット法) 、(ハ)(250 μm厚のロー
ル急冷法) 、および(ニ)(ガスアトマイズ法) の各方法で
製造したAB5 型の水素吸蔵合金種またはAB2 型の
水素吸蔵合金種の合金粉末を表面処理に使用した。
(Example 2) As described in Production Example 1, (a) (ingot method), (c) (roll quenching method of 250 μm thickness) and (d) (gas atomizing method) in Table 2 hydrogen storage alloy species of the alloy powder of the hydrogen storage alloy species or AB 2 type of AB 5 type prepared in the method of using the surface treatment.

【0073】この水素吸蔵合金の合金作製後の熱処理条
件は表4に示す通りであった。表2にも示したように、
インゴット法 (ITと略記) で製造された合金粉末は表面
の高温酸化膜の面積率が20%未満であり、ロール急冷法
(RLと略記) およびガスアトマイズ法 (ATと略記) で製
造された合金粉末は表面の高温酸化膜の面積率が20%以
上であった。
The heat treatment conditions after the preparation of this hydrogen storage alloy were as shown in Table 4. As shown in Table 2,
The alloy powder produced by the ingot method (abbreviated as IT) has an area ratio of the high-temperature oxide film on the surface of less than 20%, and the roll quenching method
(Abbreviated as RL) and the alloy powder produced by the gas atomizing method (abbreviated as AT) had an area ratio of the high-temperature oxide film on the surface of 20% or more.

【0074】各合金粉末を実施例1の表面処理方法(C)
と同様にして、酸処理と超音波処理とを併用して表面処
理した。試験No.1, 2 のインゴット材の粉末は、全く処
理を行わずに試験に供した。処理条件 (酸水溶液の原液
濃度、処理時間および温度、超音波の周波数と強度) を
表4にまとめて示す。処理中の液の攪拌速度は60 rpmで
あった。表面処理後、重量比で合金粉末の20倍量の水を
用いて水洗し、真空雰囲気にて乾燥した。表面処理した
水素吸蔵合金粉末の電極特性を実施例1と同様にして試
験した結果を、表4に併せて示す。
Each alloy powder was subjected to the surface treatment method (C) of Example 1.
In the same manner as in the above, the surface treatment was performed by using both the acid treatment and the ultrasonic treatment. The ingot material powders of Test Nos. 1 and 2 were subjected to the test without any treatment. Table 4 summarizes the processing conditions (concentration of stock solution of acid aqueous solution, processing time and temperature, frequency and intensity of ultrasonic wave). The stirring speed of the liquid during the treatment was 60 rpm. After the surface treatment, the powder was washed with water in an amount 20 times the weight of the alloy powder, and dried in a vacuum atmosphere. Table 4 also shows the results of testing the electrode characteristics of the surface-treated hydrogen storage alloy powder in the same manner as in Example 1.

【0075】[0075]

【表4−1】 [Table 4-1]

【0076】[0076]

【表4−2】 [Table 4-2]

【0077】熱処理条件や水素吸蔵合金種が変化して
も、本発明の処理方法により高温酸化膜を除去して初期
活性を十分に高めることができ、しかもその際にNi(OH)
2 の生成が少ないため、高温保存後の自己放電が抑制さ
れ、保存容量も十分に高い電池が得られることがわか
る。しかし、超音波の周波数が20 kHz未満または100 kH
z超では、表面改質効果が不十分で、初期活性が不芳と
なる。
Even if the heat treatment conditions and the type of the hydrogen storage alloy are changed, the treatment method of the present invention can remove the high-temperature oxide film and sufficiently increase the initial activity.
It can be seen that since the generation of 2 is small, self-discharge after high-temperature storage is suppressed, and a battery with sufficiently high storage capacity can be obtained. However, the ultrasonic frequency is less than 20 kHz or 100 kHz
If it exceeds z, the surface modification effect is insufficient, and the initial activity becomes poor.

【0078】[0078]

【発明の効果】本発明によれば、結晶粒が微細で初期活
性の改善が可能なアトマイズ法、ロール急冷法といった
急冷凝固法で製造された水素吸蔵合金粉末に見られるよ
うな、高温で生成した酸化膜が表面の20%以上を覆って
いる水素吸蔵合金粉末を表面処理して、Ni(OH)2 の生成
を抑制しながら、酸化膜を除去することができる。その
結果、本発明の方法により表面処理した水素吸蔵合金粉
末を負極活物質としてNi−水素電池を作製すると、初期
活性が高く、高温での保存容量、従って電極寿命も良好
なNi−水素電池が得られる。
According to the present invention, the crystal grains are formed at a high temperature as seen in the hydrogen storage alloy powder produced by the rapid solidification method such as the atomizing method and the roll quenching method, which can improve the initial activity. The oxide film can be removed while the production of Ni (OH) 2 is suppressed by performing a surface treatment on the hydrogen-absorbing alloy powder in which the formed oxide film covers 20% or more of the surface. As a result, when a Ni-hydrogen battery is produced using the hydrogen-absorbing alloy powder surface-treated by the method of the present invention as a negative electrode active material, a Ni-hydrogen battery having a high initial activity, a high-temperature storage capacity, and thus a good electrode life is obtained. can get.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹下 幸輝 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (72)発明者 神代 光一 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (56)参考文献 特開 平5−195007(JP,A) 特開 平6−223827(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 - 1/02 H01M 4/38 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kouki Takeshita 4-5-33 Kitahama, Chuo-ku, Osaka City Inside Sumitomo Metal Industries, Ltd. (72) Inventor Koichi Jinshiro 4-5-33 Kitahama, Chuo-ku, Osaka Sumitomo (56) References JP-A-5-195007 (JP, A) JP-A-6-223827 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 1 / 00-1/02 H01M 4/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉末表面の20%以上の面積が合金の凝固
中または熱処理中に生成した酸化膜で覆われている水素
吸蔵合金粉末を、非酸化性の酸性水溶液中に浸漬し、か
つ20〜100 kHz の周波数の超音波を作用させることを特
徴とする水素吸蔵合金粉末の処理方法。
1. A hydrogen storage alloy powder in which at least 20% of the surface of the powder is covered with an oxide film formed during solidification or heat treatment of the alloy, is immersed in a non-oxidizing acidic aqueous solution; A method for treating a hydrogen-absorbing alloy powder, characterized by applying ultrasonic waves having a frequency of up to 100 kHz.
JP11676696A 1996-05-10 1996-05-10 Processing method of hydrogen storage alloy powder Expired - Fee Related JP3149783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11676696A JP3149783B2 (en) 1996-05-10 1996-05-10 Processing method of hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11676696A JP3149783B2 (en) 1996-05-10 1996-05-10 Processing method of hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JPH09302401A JPH09302401A (en) 1997-11-25
JP3149783B2 true JP3149783B2 (en) 2001-03-26

Family

ID=14695209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11676696A Expired - Fee Related JP3149783B2 (en) 1996-05-10 1996-05-10 Processing method of hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP3149783B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769352B1 (en) * 2006-05-18 2007-10-24 주식회사 랜코 Method of recycling metallic grains
KR102402938B1 (en) * 2016-04-07 2022-05-26 재단법인 포항산업과학연구원 Method for manufacturing iron-based powders
KR101883403B1 (en) * 2016-04-14 2018-07-31 재단법인 포항산업과학연구원 Method for manufacturing high purity spherical titanium powder

Also Published As

Publication number Publication date
JPH09302401A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
US6790558B2 (en) Electrode alloy powder and method of producing the same
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JP3417980B2 (en) Hydrogen storage alloy powder for electrode and method for producing the same
JP3432870B2 (en) Method for producing metal hydride electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP3136961B2 (en) Method of treating hydrogen storage alloy for batteries
JPH08333603A (en) Hydrogen storage alloy particle and its production
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JPH09129226A (en) Treating method for hydrogen storage alloy for battery
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP2532498B2 (en) Hydrogen storage alloy electrode
JP3322449B2 (en) Method for producing metal hydride electrode
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

LAPS Cancellation because of no payment of annual fees