JP3417980B2 - Hydrogen storage alloy powder for electrode and method for producing the same - Google Patents

Hydrogen storage alloy powder for electrode and method for producing the same

Info

Publication number
JP3417980B2
JP3417980B2 JP19886093A JP19886093A JP3417980B2 JP 3417980 B2 JP3417980 B2 JP 3417980B2 JP 19886093 A JP19886093 A JP 19886093A JP 19886093 A JP19886093 A JP 19886093A JP 3417980 B2 JP3417980 B2 JP 3417980B2
Authority
JP
Japan
Prior art keywords
alloy powder
hydrogen storage
storage alloy
hydrogen
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19886093A
Other languages
Japanese (ja)
Other versions
JPH0729571A (en
Inventor
徹 山本
克典 児守
剛平 鈴木
誠二 山口
忠雄 木村
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19886093A priority Critical patent/JP3417980B2/en
Priority to US08/271,826 priority patent/US5605585A/en
Publication of JPH0729571A publication Critical patent/JPH0729571A/en
Application granted granted Critical
Publication of JP3417980B2 publication Critical patent/JP3417980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵・
放出する電極用水素吸蔵合金粉末の製造方法およびその
合金粉末を用いたニッケル−水素電池に関するものであ
る。
The present invention relates to the reversible storage and storage of hydrogen.
The present invention relates to a method for producing a hydrogen storage alloy powder for an electrode to be released and a nickel-hydrogen battery using the alloy powder.

【0002】[0002]

【従来の技術】近年、可逆的に水素を吸蔵・放出する水
素吸蔵合金粉末を負極に用いたニッケル−水素電池が、
原理的に短絡の原因となるデンドライトの生成がないた
めサイクル寿命が長く、エネルギー密度も高い二次電池
として注目されている。水素吸蔵合金には、主に希土類
元素/ニッケル(Ni)からなるAB5タイプとジルコ
ニウム(Zr)/マンガン(Mn)からなるAB2タイ
プなどがある。従来は、放電容量、内圧、充電保存特性
およびサイクル寿命などの電池特性にバランスのとれた
前者のAB5タイプが電池に使用されてきた。これに用
いられる合金組成としては、ランタンなどの希土類の混
合物からなるミッシュメタル(Mm)、ニッケル、コバ
ルト(Co)、マンガン、アルミニウム(Al)が主成
分である。
2. Description of the Related Art In recent years, nickel-hydrogen batteries using a hydrogen storage alloy powder that reversibly stores and releases hydrogen as a negative electrode have been developed.
In principle, it has been attracting attention as a secondary battery that has a long cycle life and a high energy density because it does not generate dendrites that cause a short circuit. Hydrogen storage alloys include AB 5 type mainly composed of rare earth element / nickel (Ni) and AB 2 type mainly composed of zirconium (Zr) / manganese (Mn). Conventionally, the former AB 5 type, which is well balanced in battery characteristics such as discharge capacity, internal pressure, charge storage characteristics and cycle life, has been used for batteries. The alloy composition used for this is mainly composed of misch metal (Mm) made of a mixture of rare earths such as lanthanum, nickel, cobalt (Co), manganese, and aluminum (Al).

【0003】また、その合金を用いた負極の代表的な製
造工程は、以下の様なものである。まず、高周波溶解炉
等を用いて上記成分金属より一旦水素吸蔵合金インゴッ
トを作製し、次いで、真空中あるいはアルゴン中で焼鈍
(アニール)処理をした後、粉砕機で平均粒径が20〜
30μm程度になるまで機械的粉砕を行う。次に、この
粉末の表面をアルカリ処理する。こうして作成した水素
吸蔵合金粉末をカルボキシメチルセルロースやポリビニ
ルアルコールからなる増粘剤およびゴム系結着剤ととも
に水と混合し、必要に応じてカーボンなどの導電剤を添
加し、負極ペーストを形成する。次に、このペーストを
多孔質金属基板等からなる負極の集電体(芯材)に塗
布、乾燥し、加圧して電極の構成要素間の結着をより強
固にし、これを負極としている。
The typical manufacturing process of a negative electrode using the alloy is as follows. First, a hydrogen storage alloy ingot is once produced from the above component metals using a high-frequency melting furnace or the like, and then annealed in vacuum or in argon, and then an average particle size of 20-
Mechanical pulverization is performed until the size becomes about 30 μm. Next, the surface of this powder is subjected to alkali treatment. The hydrogen-absorbing alloy powder thus prepared is mixed with water together with a thickener made of carboxymethyl cellulose or polyvinyl alcohol and a rubber binder, and a conductive agent such as carbon is added if necessary to form a negative electrode paste. Next, this paste is applied to a negative electrode current collector (core material) made of a porous metal substrate or the like, dried, and pressed to strengthen the binding between the constituent elements of the electrode, and this is used as the negative electrode.

【0004】[0004]

【発明が解決しようとする課題】前記の負極製造工程に
おいて、合金の粉砕時に活物質としてほとんど機能しな
い7〜8μm以下の微粉末が相当量生成される。この微
粉末は、表面が非常に活性で強固な酸化被膜が生成され
ているため、水素の吸脱が行えない。ところが、Mmお
よびCoが高価なため、このロスはコスト面でかなり大
きな負担となる。一方、AB2タイプにおいては合金が
硬いため、微粉砕に時間を要し、AB5タイプ以上のコ
ストアップにつながる。さらに、サイクル寿命試験にお
ける負極の劣化原因として水素吸蔵合金粉末の微細化が
挙げられるが、前記のような粉砕品は、機械的な破断面
を有する多角形体をしており、充放電時の体積の膨脹、
収縮により角部から微細化を起こし易い欠点を有する。
In the above negative electrode manufacturing process, a considerable amount of fine powder of 7 to 8 μm or less, which hardly functions as an active material when the alloy is pulverized, is produced. This fine powder cannot absorb and desorb hydrogen because the surface thereof is very active and a strong oxide film is formed. However, since Mm and Co are expensive, this loss is a considerable burden in terms of cost. On the other hand, in the AB 2 type, since the alloy is hard, it takes time to finely pulverize, which leads to an increase in cost over the AB 5 type. Further, as a cause of the deterioration of the negative electrode in the cycle life test, there is a refinement of the hydrogen storage alloy powder, but the crushed product as described above has a polygonal body with a mechanical fracture surface, and the volume at the time of charging / discharging Inflation,
It has a defect that the shrinkage easily causes miniaturization from the corners.

【0005】これらの欠点を解決するため、従来ガスア
トマイズ法や遠心噴霧法等による微粉化工法が考案され
ている(例えば、特開平2−253558号公報、特開
平3−216958号公報)。この様なアトマイズ法や
遠心噴霧法により作製した水素吸蔵合金粉末は、その作
製時に超急冷されるため組成が均一となり、水素吸脱特
性の平衡圧を下げることができ、高容量化が可能となる
利点がある。しかし、いずれの方法も高価なアルゴン
(Ar)ガスなどの不活性ガスを使用し、合金の粒径も
50μm程度までしか細かくならないため、さらに微粉
砕工程を要し、コスト的には大幅な低下は見込めない。
また、微粉化された粉末は、活性であるため取扱いに注
意を要し、空気中に放置していると表面が徐々に酸化さ
れ保管が困難であるという課題を有していた。
In order to solve these drawbacks, conventional fine atomization methods such as a gas atomizing method and a centrifugal atomizing method have been devised (for example, JP-A-2-253558, JP-A-3-216958). The hydrogen storage alloy powder produced by such atomization method or centrifugal atomization method has a uniform composition because it is ultra-quenched during its production, and it is possible to lower the equilibrium pressure of hydrogen absorption / desorption characteristics and increase the capacity. There are advantages. However, all of these methods use an inert gas such as expensive argon (Ar) gas, and the grain size of the alloy is reduced to only about 50 μm, which requires a fine pulverization step, which significantly reduces the cost. Cannot be expected.
Further, the finely divided powder needs to be handled with care because it is active, and if left in the air, the surface thereof is gradually oxidized and it is difficult to store.

【0006】本発明は、上記課題に鑑み、水素吸脱特性
に優れ、保管も容易な電極用水素吸蔵合金粉末を低コス
トで製造する方法を提供することを目的とする。本発明
はまた、そのような水素吸蔵合金粉末を活物質とする水
素電極を備えるニッケル−水素電池を提供するものであ
る。
In view of the above problems, it is an object of the present invention to provide a method for producing a hydrogen storage alloy powder for electrodes, which has excellent hydrogen absorption / desorption characteristics and is easy to store at low cost. The present invention also provides a nickel-hydrogen battery including a hydrogen electrode using such a hydrogen storage alloy powder as an active material.

【0007】[0007]

【課題を解決するための手段】本発明は前記の課題を解
決するために、水素吸蔵合金を窒素ガス雰囲気中で水ア
トマイズ法により一気に20μm程度まで微粉化して
表面に比較的薄い酸化被膜を有する電極用水素吸蔵合金
粉末を得ることを特徴とするものである。ここで、水ア
トマイズ法に用いる水が次亜燐酸水溶液、特に濃度0.
2N〜5Nの水溶液であると、水素吸蔵合金粉末の表面
に酸化被膜が生成するのをかなり抑えることができる。
In order to solve the above problems, the present invention pulverizes a hydrogen storage alloy in a nitrogen gas atmosphere by a water atomizing method to about 20 μm at a stretch ,
The present invention is characterized in that a hydrogen storage alloy powder for electrodes having a relatively thin oxide film on the surface thereof is obtained. Here, the water used in the water atomizing method is an aqueous solution of hypophosphorous acid, particularly a concentration of 0.
An aqueous solution of 2N to 5N can considerably suppress the formation of an oxide film on the surface of the hydrogen storage alloy powder.

【0008】本発明は、水アトマイズ法により微粉化し
た水素吸蔵合金粉末をそのまま活物質に用いる他、焼鈍
(アニール)、好ましくは水素ガス中で焼鈍処理した
り、表面に生成した酸化被膜を酸処理あるいは振動によ
り電極作製直前に半分以上を除去したものを水素電極の
活物質として用いるものである。微粉化された水素吸蔵
合金粉末表面の酸化被膜の除去方法としては、一旦塩酸
または硝酸を主成分とする強酸の希釈溶液に浸漬し表面
をエッチングした後、水洗することで除去する方法、あ
るいは窒素ガスやアルゴンガスなどの不活性ガスを注入
したふるい目10μm程度のメッシュ上に合金を入れた
密閉容器を加振して酸化被膜を機械的に破壊し除去する
方法が有効である。
In the present invention, the hydrogen-absorbing alloy powder finely pulverized by the water atomizing method is used as an active material as it is, and it is annealed, preferably annealed in hydrogen gas, or an oxide film formed on the surface is treated with an acid. This is used as the active material of the hydrogen electrode, which is obtained by removing more than half of it immediately before the electrode is produced by treatment or vibration. As a method of removing the oxide film on the surface of the finely divided hydrogen-absorbing alloy powder, a method of once immersing the surface in a dilute solution of a strong acid containing hydrochloric acid or nitric acid and etching the surface, and then rinsing with water, or nitrogen is used. A method of mechanically destroying and removing the oxide film by vibrating a closed container in which the alloy is placed on a mesh having a sieve of about 10 μm in which an inert gas such as gas or argon gas is injected is effective.

【0009】以上のようにして製造される水素吸蔵合金
粉末は、機械的な破断面がなく表面に厚さ80nm以下
酸化被膜を有する球状体もしくはそれに類した形状を
有し、この水素吸蔵合金粉末を活物質として用いること
によって低コスト、長寿命の水素電極を与える。
The hydrogen storage alloy powder produced as described above has no mechanical fracture surface and has a thickness of 80 nm or less on the surface.
A spherical electrode having an oxide film or a shape similar thereto is used, and by using this hydrogen storage alloy powder as an active material, a low cost and long life hydrogen electrode is provided.

【0010】[0010]

【作用】本発明は、前記のように水素吸蔵合金を水アト
マイズ法で微粉化することによって、従来の粉砕法及び
ガスアトマイズ法にない以下の特徴を有する。第1に、
急冷速度がガスアトマイズ法に比べて数十倍大きく、2
0μm程度までの微粉化を一気に行えるので、従来必要
であった微粉砕工程を省略することができ、大幅な低コ
スト化が可能となる。さらに、ガスアトマイズ法に比べ
高価なアルゴンガス等の不活性ガスを用いず、水による
アトマイズのため、合金粉末の製造コストが安くなる。
第2に、粉砕工程がないため、得られる水素吸蔵合金粉
末は、従来粉末のような機械的な破断面がなく、球状体
またはそれに類した形状をしているため、充放電サイク
ル時に微細化が起こりにくく、長寿命の電極を与える。
第3に、微粉化に際して合金表面が軽く酸化されるた
め、得られる合金粉末は安定で、従来のように合金粉末
を不活性ガスや真空中あるいは水中で保管する必要がな
い等の利点を有する。
The present invention has the following features, which are not present in the conventional pulverization method and gas atomization method, by finely pulverizing the hydrogen storage alloy by the water atomization method as described above. First,
The quenching rate is several tens of times higher than that of the gas atomizing method. 2
Since the pulverization up to about 0 μm can be performed at once, the pulverization step which was conventionally required can be omitted, and the cost can be significantly reduced. Further, the cost of manufacturing the alloy powder is reduced because the atomization is performed using water without using an expensive inert gas such as argon gas as compared with the gas atomization method.
Secondly, since there is no crushing step, the resulting hydrogen storage alloy powder does not have a mechanical fracture surface unlike conventional powders, and has a spherical body or similar shape, so it is made fine during charge / discharge cycles. Gives a long-life electrode.
Thirdly, since the alloy surface is lightly oxidized during pulverization, the obtained alloy powder is stable and has the advantage that there is no need to store the alloy powder in an inert gas, vacuum, or water as in the past. .

【0011】アトマイズ法によって得られる粉体の粒径
は、急冷速度に比例する。そして、従来のガスアトマイ
ズ法においては、105 ℃/秒台の急冷速度が限界で、
ほぼ球形をした平均粒径が50μm以上のものしか作製
できない。一方、水アトマイズ法においては、急冷速度
が106 〜107 ℃/秒と大きく、平均粒径は20μm
程度の細かいものを作製できる。一般に、水素電極の活
物質としては、平均粒径20〜30μm程度のものが望
ましいとされているが、水アトマイズ法を用いることに
よって、粉砕工程なしでそのような望ましい粒径にまで
微粉化できる利点がある。同様の方法としてオイルアト
マイズ法もあるが、この場合は水素吸蔵合金粉末に付着
したオイルを除去するのが困難でコストがかかり、さら
に合金中に炭素が混入してしまう欠点を有する。
The particle size of the powder obtained by the atomizing method is proportional to the quenching rate. And in the conventional gas atomization method, the quenching rate on the order of 10 5 ° C / sec is the limit,
Only spherical particles having an average particle size of 50 μm or more can be produced. On the other hand, in the water atomizing method, the quenching rate is large at 10 6 to 10 7 ° C / sec and the average particle size is 20 µm.
It is possible to manufacture fine things. Generally, as the active material of the hydrogen electrode, one having an average particle size of about 20 to 30 μm is desirable, but by using the water atomizing method, it is possible to finely pulverize to such a desired particle size without a crushing step. There are advantages. There is an oil atomizing method as a similar method, but in this case, it is difficult and costly to remove the oil adhering to the hydrogen storage alloy powder, and further, carbon is mixed in the alloy.

【0012】従来、水アトマイズ法によると、得られる
粉末の表面の酸化が激しく、作製した合金粉末は水素吸
脱能力に欠けると考えられてきた。ところが本発明者ら
は、酸化物、例えばニッケル酸化物が不働態膜となり、
さらに冷却速度が非常に速いため表面のみが酸化被膜で
覆われ、あまり内部まで酸化が進行しないことを見出し
た。特に、捕集用タンクを窒素ガスで充満させた、窒素
ガス雰囲気中で水アトマイズを行うと、空気中で行った
場合200nmを越えるのに比べて約80nm程度以下
と表面の酸化被膜が薄い粉末が得られる。さらに、水ア
トマイズ時に還元力の強い次亜燐酸水溶液を用いると、
粉末表面の酸化被膜がより薄くなる利点がある。次亜燐
酸を用いる場合は、アルカリによる中和、水洗により容
易に合金粉末を洗浄できる利点がある。さらに、この酸
化被膜は水素ガス中の焼鈍処理や酸処理などの後処理に
よって半分以下程度まで除去することができので、こ
のような後処理によって合金粉末の水素吸脱能力を向上
することができる。
According to the conventional water atomization method, it has been considered that the surface of the obtained powder is severely oxidized and the produced alloy powder lacks the ability to absorb and desorb hydrogen. However, the present inventors have found that an oxide, such as nickel oxide, becomes a passive film,
Furthermore, it was found that the cooling rate was so fast that only the surface was covered with the oxide film, and the oxidation did not proceed to the inside much. In particular, if the collection tank is filled with nitrogen gas, nitrogen
Water atomization in a gas atmosphere was done in the air
In case of exceeding 200 nm, it is about 80 nm or less
A powder with a thin oxide film on the surface is obtained. In addition, if at the time of water atomization Ru using a strong reducing power next phosphorous acid aqueous solution,
There is an advantage that the oxide film of the powder surface is thinner. The use of hypophosphorous acid has the advantage that the alloy powder can be easily washed by neutralization with an alkali and washing with water. Further, since the oxide film is Ru can be removed to an extent less than half the post-treatment such as annealing and acid treatment of the hydrogen gas, such a post-processing to improve the hydrogen absorption and desorption capacity of the alloy powder it can.

【0013】本発明者らは、鋭意研究した結果、酸処理
によって、合金粉末表面の酸化物、例えばMm−Ni系
合金における希土類酸化物およびニッケル酸化物をエッ
チングすることができるが、やり過ぎると下地の金属層
まで酸化され、かえって酸化被膜で覆われることになる
ため、エッチング量を酸濃度とエッチング時間と液温で
厳密に調整することによって、酸化被膜を半分以下まで
除去できることを見出した。一方、不活性ガス中でジェ
ットミル法等により微粉砕を行う従来法においても、得
られる粉体表面は、取り出し時の空気との接触によっ
て、粒径が小さく活性であるため、酸化を受けており、
放電容量において本発明によるものと大きな差はない。
As a result of earnest studies, the present inventors have found that the acid treatment can etch oxides on the surface of the alloy powder, for example, rare earth oxides and nickel oxides in Mm-Ni alloys, but if they are overdone. It was found that the oxide film can be removed to less than half by strictly adjusting the etching amount with the acid concentration, the etching time and the liquid temperature because the underlying metal layer is oxidized and is covered with the oxide film. On the other hand, even in the conventional method of finely pulverizing by a jet mill method or the like in an inert gas, the surface of the obtained powder has a small particle size and is active due to contact with air at the time of taking out, so that it is not oxidized. Cage,
The discharge capacity is not so different from that according to the present invention.

【0014】微粉末を焼鈍(アニール)処理することに
より微結晶中の結晶性が向上し水素吸脱能力が増し、電
極の放電容量が向上することが知られているが、水素ガ
ス中において焼鈍処理を行うと、粉末表面の酸化被膜の
還元も同時に行えるので、これを用いる電極の内部抵抗
の低下および高容量化を図れる利点を有する。水アトマ
イズ法により作製した水素吸蔵合金粉末を酸化被膜を除
去せずに電極を作製して電池を構成した場合は、初期特
性において容量が出ないが、十数サイクル程度の充放電
をすることによりほぼ粉砕品と同等の放電容量を示す。
これは、充電時の発生水素により水素吸蔵合金粉末表面
の酸化被膜が還元されるためと考えられる。一方、酸処
理や加振機で酸化被膜をある程度除去したものは、初期
から少し高い放電容量を示す。
It is known that annealing (annealing) the fine powder improves the crystallinity in the microcrystals, increases the hydrogen absorption / desorption ability, and improves the discharge capacity of the electrode, but it is annealed in hydrogen gas. When the treatment is carried out, the oxide film on the powder surface can be reduced at the same time, so that there is an advantage that the internal resistance and the capacity of the electrode using the same can be reduced. When a battery is constructed by producing electrodes from the hydrogen storage alloy powder produced by the water atomizing method without removing the oxide film, the capacity does not appear in the initial characteristics, but by charging and discharging about a dozen or more cycles, It has almost the same discharge capacity as the crushed product.
It is considered that this is because the oxide film on the surface of the hydrogen storage alloy powder is reduced by the hydrogen generated during charging. On the other hand, those obtained by removing the oxide film to some extent with an acid treatment or a vibrator show a slightly higher discharge capacity from the initial stage.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。図1は実
施例における水アトマイズ法に用いた装置の概略構成を
示し、図2はその噴出ノズルの構成を示す。これらの図
において、11は高周波電流を通じるコイル12を捲回
した高周波溶解炉であり、ここで溶解した水素吸蔵合金
13は電熱コイル15を有する保持炉14に供給され
る。保持炉14の下端に設けた噴出ノズル16は、合金
粉末捕集用タンク17内に開口させるとともに、ノズル
本体20には、噴出させる合金の溶湯22に向けて、高
圧ポンプ18から供給される水を噴出させる水通路21
を設けている。19は捕集用タンク17内へ供給する窒
素ガスのボンベである。23は溶湯が通路21の末端か
ら噴射される水によって飛散され、微粉化された水素吸
蔵合金粉末である。
EXAMPLES Examples of the present invention will be described below. FIG. 1 shows a schematic configuration of an apparatus used for the water atomizing method in the example, and FIG. 2 shows a configuration of its ejection nozzle. In these figures, 11 is a high-frequency melting furnace in which a coil 12 for passing a high-frequency current is wound, and the hydrogen storage alloy 13 melted therein is supplied to a holding furnace 14 having an electric heating coil 15. The jet nozzle 16 provided at the lower end of the holding furnace 14 is opened in the alloy powder collecting tank 17, and the nozzle body 20 is supplied with water supplied from the high-pressure pump 18 toward the molten alloy 22 to be jetted. Water passage 21 for ejecting water
Is provided. Reference numeral 19 is a cylinder of nitrogen gas supplied into the collection tank 17. Reference numeral 23 is a hydrogen-absorbing alloy powder that is pulverized by the molten metal being scattered by the water jetted from the end of the passage 21.

【0016】[実施例1]水素吸蔵合金として、ランタ
ン(La)を20重量%含むミッシュメタル(Mm)、
ニッケル(Ni)、マンガン(Mn)、アルミニウム
(Al)、およびコバルト(Co)を所定の割合で混合
し、高周波溶解炉11にて溶解してMmNi 3.7 Mn
0.4 Al0.3 Co0.6の組成の水素吸蔵合金13をまず
作製し、この合金を保持炉14に流し込む。次に、ボン
ベ19から供給される窒素ガスで満たされた捕集用タン
ク17に向かって噴出ノズル16より水素吸蔵合金の溶
湯22を噴出させる。この時、高圧水ポンプ18を用い
て通路21から水を噴出ノズルの周囲から噴射させ、水
素吸蔵合金の溶湯を微粉化(アトマイズ)させ、水素吸
蔵合金粉末23を作製する。
Example 1 As a hydrogen storage alloy, a lanta
Metal (Mm) containing 20% by weight of metal (La),
Nickel (Ni), manganese (Mn), aluminum
(Al) and cobalt (Co) are mixed in a predetermined ratio
Then, it is melted in the high frequency melting furnace 11 and MmNi 3.7 Mn
0.4 Al0.3 Co0.6First, the hydrogen storage alloy 13 with the composition
It is produced and this alloy is poured into the holding furnace 14. Then Bon
Collection tank filled with nitrogen gas supplied from
From the jet nozzle 16 to melt the hydrogen storage alloy.
The hot water 22 is spouted. At this time, the high pressure water pump 18 is used.
Water from the passage 21 is sprayed from around the jet nozzle,
Hydrogen absorption by atomizing molten metal of elemental storage alloy (atomize)
The alloy powder 23 is prepared.

【0017】この様にして出来上がった水素吸蔵合金粉
末は、球形に近いものから瓢箪形状のものなど種々のも
のがあったが、いずれも角はなく曲面で構成され、表面
は厚さ約80nmの酸化被膜で覆われていた。この合金
粉末の粒度分布を測定した結果、平均粒径は22μm
で、粒径は8μmから60μmに分布し、10μm以下
の粒子が0.5wt%以下であった。なお、捕集用タン
クを窒素ガスで充満せず、空気中で水アトマイズを行っ
た場合は、得られる合金粉末表面の酸化被膜の厚さは2
00nmを越し、酸化被膜の除去がかなり難しくなっ
た。
The hydrogen-absorbing alloy powders produced in this manner ranged from those having a nearly spherical shape to those having a gourd shape, but each of them has a curved surface with no corners, and the surface has a thickness of about 80 nm. It was covered with an oxide film. As a result of measuring the particle size distribution of this alloy powder, the average particle size is 22 μm.
Then, the particle size was distributed from 8 μm to 60 μm, and the particles of 10 μm or less were 0.5 wt% or less. When the collection tank is not filled with nitrogen gas and water atomization is performed in air, the thickness of the oxide film on the surface of the obtained alloy powder is 2
When the thickness exceeds 00 nm, removal of the oxide film became considerably difficult.

【0018】次に、この水素吸蔵合金粉末100重量部
に、結着剤の合成ゴム粒子0.5重量部、増粘剤のカル
ボキシメチルセルロース0.2重量部、導電材のカーボ
ンブラック0.2重量部および水16重量部を加えて負
極用ペーストを作製する。このペースト3gをリードを
取り付けた発泡ニッケル製の集電体(芯材)に充填し、
乾燥後、ローラープレス法にて加圧一体化し負極板を作
製する。一方、正極板は、水酸化ニッケルを主成分とす
る従来の正極合剤ペースト2.2gを前記と同様の発泡
ニッケル製集電体に充填し、乾燥後加圧して作製する。
Next, to 100 parts by weight of this hydrogen storage alloy powder, 0.5 parts by weight of synthetic rubber particles as a binder, 0.2 parts by weight of carboxymethyl cellulose as a thickening agent, and 0.2 parts by weight of carbon black as a conductive material. Parts and 16 parts by weight of water are added to prepare a negative electrode paste. 3 g of this paste was filled in a nickel foam current collector (core material) with leads attached,
After drying, pressure integration is performed by a roller press method to produce a negative electrode plate. On the other hand, the positive electrode plate is prepared by filling 2.2 g of the conventional positive electrode mixture paste containing nickel hydroxide as a main component in the same foamed nickel current collector as described above, and drying and pressing.

【0019】上記のようにして作製した負極板1枚を中
央にし、その両側に2枚を1組にした正極板を配し、そ
れらを厚さ0.2mmのポリプロピレン製の袋状セパレ
ータで包んで重ね合わせ、両端にアクリル樹脂板を当
て、その外周をボルトとナットで締めつけて極板群を組
み立てる。次に、この極板群は、アクリル樹脂製の電槽
に入れ、水酸化カリウム水溶液(密度1.30g/cm
3)を主成分とする電解液を注液し、細孔を有するポリ
プロピレン製の蓋で封口した後、一旦真空にして脱泡を
行い、液リッチの負極規制の評価電池を作製する。図3
はこの評価電池の概略構成を示す。31は電槽、32は
負極板、33は正極板、34はセパレータ、35は電解
液、36はアクリル樹脂板、37はボルト、38はナッ
ト、39は蓋、40は正極端子、41は負極端子であ
る。
One negative electrode plate produced as described above is placed in the center, two positive electrode plates are arranged on both sides thereof, and the positive electrode plates are wrapped with a bag-shaped separator made of polypropylene having a thickness of 0.2 mm. And lay them on top of each other, apply acrylic resin plates to both ends, and tighten the outer periphery with bolts and nuts to assemble the electrode plate group. Next, this electrode plate group was put into an acrylic resin battery case, and an aqueous potassium hydroxide solution (density 1.30 g / cm 3
After pouring an electrolytic solution containing 3 ) as a main component and sealing with a polypropylene lid having pores, it is once evacuated to defoam to prepare a liquid-rich negative electrode regulation evaluation battery. Figure 3
Shows a schematic configuration of this evaluation battery. 31 is a battery case, 32 is a negative electrode plate, 33 is a positive electrode plate, 34 is a separator, 35 is an electrolytic solution, 36 is an acrylic resin plate, 37 is a bolt, 38 is a nut, 39 is a lid, 40 is a positive electrode terminal, 41 is a negative electrode. It is a terminal.

【0020】[実施例2]まず、実施例1と同様の水ア
トマイズの装置において、水の代わりに2Nの次亜燐酸
水溶液を用いて水素吸蔵合金微粉末を作製する。この方
法により得られる合金粉末表面の酸化被膜の厚さは、4
0nm程度となり、水だけを用いる場合に比べ約1/2
の厚さとなる。これは、次亜燐酸の還元作用によるもの
と考えられる。図4は、用いた次亜燐酸水溶液の濃度と
得られた合金粉末表面の酸化被膜の厚さとの関係を示し
ている。次亜燐酸の濃度が0.2N以下では酸化防止効
果が小さく、また5N以上ではかえって酸化被膜が厚く
なる。次亜燐酸の濃度は0.2N〜5Nが適している。
[Embodiment 2] First, in a water atomizing apparatus similar to that of Embodiment 1, hydrogen storage alloy fine powder is prepared by using 2N aqueous solution of hypophosphorous acid instead of water. The thickness of the oxide film on the surface of the alloy powder obtained by this method is 4
It is about 0 nm, which is about 1/2 of that when using only water.
It becomes the thickness of. This is considered to be due to the reducing action of hypophosphorous acid. FIG. 4 shows the relationship between the concentration of the used hypophosphorous acid aqueous solution and the thickness of the oxide film on the surface of the obtained alloy powder. When the concentration of hypophosphorous acid is 0.2N or less, the antioxidant effect is small, and when it is 5N or more, the oxide film becomes thicker. A suitable concentration of hypophosphorous acid is 0.2N to 5N.

【0021】次に、上記で得られた水素吸蔵合金粉末を
アニール炉に入れ、一旦真空まで引き、その後水素ガス
をやや加圧状態となるまで導入し(0.1kg/c
2)、1000℃で3時間加熱した後、8時間かけて
室温まで徐冷を行い、次にもう一度高真空にし合金粉末
中に吸収された水素を除去してから大気圧まで戻す。こ
うして水素吸蔵合金粉末を作製する。これによって、酸
化被膜の厚さは平均で20nm程度まで減少する。焼鈍
処理条件としては、保持温度800℃以上、冷却時間5
時間以上がP(水素圧力)−C(組成)−T(温度)特
性の測定から必要なことがわかった。この様にして焼鈍
処理した水素吸蔵合金粉末を負極活物質として実施例1
と同様の方法で負極板を作製し、従来の正極板と組み合
わせて実施例1と同一構成の評価電池を作製する。な
お、焼鈍処理は、真空中で行っても焼鈍処理なしのもの
に比べ放電容量の増加は認められたが、その程度は水素
ガス中で焼鈍処理したものの方が大きかった。これは粉
末表面の酸化被膜が水素によって還元され一部除去され
るためと思われる。この際水素の純度としては99.9
%以上のものが特に有効であった。
Next, the hydrogen-absorbing alloy powder obtained above was put into an annealing furnace, the vacuum was once drawn, and then hydrogen gas was introduced until it became a slightly pressurized state (0.1 kg / c).
m 2 ), heating at 1000 ° C. for 3 hours, then gradually cooling to room temperature over 8 hours, then applying high vacuum again to remove hydrogen absorbed in the alloy powder, and then returning to atmospheric pressure. In this way, hydrogen storage alloy powder is produced. As a result, the thickness of the oxide film is reduced to about 20 nm on average. Annealing conditions are as follows: holding temperature 800 ° C or higher, cooling time 5
It was found from the measurement of the P (hydrogen pressure) -C (composition) -T (temperature) characteristics that time or more was required. The hydrogen storage alloy powder thus annealed was used as the negative electrode active material in Example 1
A negative electrode plate is manufactured in the same manner as in 1. and is combined with a conventional positive electrode plate to manufacture an evaluation battery having the same configuration as in Example 1. It should be noted that although the annealing treatment was performed in vacuum, an increase in discharge capacity was recognized as compared with the case without annealing treatment, but the extent of the increase was larger in the annealing treatment in hydrogen gas. This is probably because the oxide film on the powder surface is reduced by hydrogen and partially removed. At this time, the purity of hydrogen is 99.9.
% Or more was particularly effective.

【0022】[実施例3]まず、実施例1と同様、水ア
トマイズ法により水素吸蔵合金微粉末を作製し、次にこ
の合金粉末を40℃の0.2N硝酸に浸漬し、超音波加
振機で1分間加振した後、2回水洗し、次に70℃、密
度1.3g/cm3 の水酸化カリウム水溶液中に浸漬し
20分間よく撹拌し、その後水洗を6回行う。図5は、
液温40℃、エッチング時間を1分間とした時の硝酸濃
度と合金粉末表面の酸化被膜の厚さとの関係を示してい
る。硝酸濃度が0.1Nより薄いとエッチング効果が弱
く、また1Nより濃いと下地の金属層まで侵され酸化膜
がかえって厚くなることがわかる。この様にして作製し
た酸化被膜の厚さ20nmの水素吸蔵合金粉末を負極活
物質として実施例1と同様の方法で負極板を作製し、従
来の正極板と組み合わせて実施例1と同一構成の液リッ
チ負極規制の評価電池を作製する。
[Embodiment 3] First, in the same manner as in Embodiment 1, a hydrogen absorbing alloy fine powder is prepared by a water atomizing method, and then this alloy powder is immersed in 0.2N nitric acid at 40 ° C. and ultrasonically vibrated. After being shaken for 1 minute with a machine, it is washed twice with water, then immersed in an aqueous potassium hydroxide solution having a density of 1.3 g / cm 3 at 70 ° C., well stirred for 20 minutes, and then washed with water 6 times. Figure 5
It shows the relationship between the nitric acid concentration and the thickness of the oxide film on the surface of the alloy powder when the solution temperature is 40 ° C. and the etching time is 1 minute. It can be seen that when the nitric acid concentration is lower than 0.1 N, the etching effect is weak, and when it is higher than 1 N, the underlying metal layer is attacked and the oxide film becomes thicker. A negative electrode plate was prepared in the same manner as in Example 1 using the hydrogen storage alloy powder having an oxide film thickness of 20 nm thus produced as a negative electrode active material, and was combined with a conventional positive electrode plate to have the same configuration as in Example 1. A liquid-rich negative electrode regulation evaluation battery is manufactured.

【0023】[実施例4]まず、実施例1と同様の水ア
トマイズ法により水素吸蔵合金粉末を作製した後、実施
例2と同様の方法により水素ガス中1100℃で水素吸
蔵合金微粉末を焼鈍する。次に、この合金粉末を30
℃、0.2Nの塩酸に浸漬し、超音波加振機で2分間加
振した後、6回水洗を行う。この様にして作製した酸化
被膜の厚さ15nmの水素吸蔵合金粉末を負極活物質と
して実施例1と同様の方法で負極板を作製し、従来の正
極板と組み合わせて実施例1と同一構成の評価電池を作
製する。
Example 4 First, a hydrogen storage alloy powder was prepared by the same water atomizing method as in Example 1, and then the hydrogen storage alloy fine powder was annealed at 1100 ° C. in hydrogen gas by the same method as in Example 2. To do. Next, 30 parts of this alloy powder
After dipping in 0.2 N hydrochloric acid at 0 ° C. for 2 minutes with an ultrasonic shaker, washing with water is performed 6 times. A negative electrode plate was produced in the same manner as in Example 1 using the hydrogen storage alloy powder having an oxide film thickness of 15 nm thus produced as the negative electrode active material, and combined with a conventional positive electrode plate to obtain the same configuration as in Example 1. An evaluation battery is produced.

【0024】[実施例5]まず、実施例2同様、0.5
Nの次亜燐酸水溶液を用いた水アトマイズ法により水素
吸蔵合金微粉末を作製し、次に、この合金粉末を通常の
分級作業と同様ふるい目8μmのステンレス鋼ワイヤー
製のメッシュ上に載せ、上蓋をした後、受け皿の上に設
置し、窒素ガスを充満させ20分間加振する。この操作
により水素吸蔵合金粉末の表面酸化被膜は、その一部が
粉体間の衝突で剥離し、メッシュを通り受け皿に堆積す
る。そこで、メッシュ上に残った水素吸蔵合金粉末を負
極活物質として実施例1と同様の方法で負極板を作製
し、従来の正極板と組み合わせて実施例1と同一構成の
評価電池を作製する。なお、ふるいを通過した水素吸蔵
合金酸化物の量は約1wt%程度で、水素吸蔵合金粉末
の表面酸化被膜の厚さは20nmである。
[Embodiment 5] First, like Embodiment 2, 0.5
A hydrogen-absorbing alloy fine powder is prepared by a water atomizing method using an aqueous solution of N hypophosphorous acid, and then this alloy powder is placed on a mesh made of stainless steel wire having a sieve size of 8 μm as in the case of a normal classification work, and an upper lid is provided. Then, place on a saucer, fill with nitrogen gas, and vibrate for 20 minutes. By this operation, a part of the surface oxide film of the hydrogen storage alloy powder is peeled off due to the collision between the powders, passes through the mesh and is deposited on the saucer. Then, the hydrogen storage alloy powder remaining on the mesh is used as a negative electrode active material to prepare a negative electrode plate in the same manner as in Example 1, and in combination with a conventional positive electrode plate, an evaluation battery having the same configuration as in Example 1 is prepared. The amount of hydrogen storage alloy oxide that passed through the sieve was about 1 wt%, and the thickness of the surface oxide film of the hydrogen storage alloy powder was 20 nm.

【0025】[比較例1]高周波溶解炉で実施例1と同
一組成の水素吸蔵合金を作製し、1100℃で真空アニ
ール後、スタンプミルで粗粉砕、さらにジェットミル粉
砕機で平均粒径25μmまで微粉砕する。次に、400
メッシュのふるいで37μm以上の粒子を除去する。こ
の様にして作製した水素吸蔵合金粉末は、平均粒径が2
2μmであり、表面の酸化被膜の厚さは10nmであ
る。この合金粉末を負極活物質として実施例1と同様に
して評価電池を作製する。なお、この水素吸蔵合金粉末
の粒度分布測定の結果から10μm以下の粒子は約12
wt%であることがわかった。
[Comparative Example 1] A hydrogen storage alloy having the same composition as that of Example 1 was produced in a high frequency melting furnace, vacuum annealed at 1100 ° C, coarsely pulverized by a stamp mill, and further averaged by a jet mill pulverizer to an average particle size of 25 µm. Finely pulverize. Then 400
Remove particles of 37 μm or larger with a sieve of mesh. The hydrogen storage alloy powder thus produced has an average particle size of 2
2 μm, and the thickness of the oxide film on the surface is 10 nm. Using this alloy powder as a negative electrode active material, an evaluation battery is manufactured in the same manner as in Example 1. From the result of particle size distribution measurement of this hydrogen storage alloy powder, particles of 10 μm or less are about 12
It was found to be wt%.

【0026】[比較例2]Arガスアトマイズ法により
水素吸蔵合金粉末を作製する。得られた粉末の平均粒径
は約65μmでほぼ真球形状をしており、表面の酸化も
非常に少ない。次に、比較例1と同様の方法により真空
中で焼鈍処理を行い、さらに平均粒径を小さくするた
め、この粒子をジェットミルで粉砕し微粉化する。その
後、400メッシュのふるいで分級し、平均粒径22μ
mとする。この水素吸蔵合金粉末の酸化被膜厚さは10
nmで、粒度分布測定の結果から15μm以下の粒子が
約6wt%あることがわかった。この様にして作製した
水素吸蔵合金粉末を負極活物質として実施例1と同様に
して評価電池を作製する。
[Comparative Example 2] A hydrogen storage alloy powder is produced by an Ar gas atomizing method. The obtained powder has an average particle size of about 65 μm and has a substantially spherical shape, and the surface is also hardly oxidized. Next, by the same method as in Comparative Example 1, annealing treatment is performed in vacuum, and in order to further reduce the average particle diameter, the particles are pulverized and finely divided by a jet mill. After that, classify with a sieve of 400 mesh, average particle size 22μ
m. The oxidation coating thickness of this hydrogen storage alloy powder is 10
As a result of particle size distribution measurement, it was found that about 6 wt% of particles having a particle size of 15 μm or less was measured. An evaluation battery is manufactured in the same manner as in Example 1 using the hydrogen storage alloy powder manufactured as described above as a negative electrode active material.

【0027】図6は、上記各実施例および比較例の評価
電池についてサイクル試験をした時の負極の放電容量の
変化を示す。サイクル試験時の充電条件は、PCT測定
より算出される電気量を基準とし、2C(約1.7A)
で、放電電気量に対して充電深度100%、放電条件は
2Cで0.9Vカットの放電深度100%とした。一
方、容量確認は、100サイクルごとに0.1Cで12
時間充電(充電深度120%)し、0.1Cで0.9V
まで放電する条件で行った。
FIG. 6 shows changes in the discharge capacity of the negative electrode when a cycle test was conducted on the evaluation batteries of the above-mentioned Examples and Comparative Examples. The charging condition during the cycle test is based on the amount of electricity calculated from the PCT measurement, and is 2C (about 1.7A).
Then, the depth of charge was 100% with respect to the amount of electricity discharged, and the discharge condition was a discharge depth of 100% at 0.9 V cut at 2C. On the other hand, the capacity is confirmed by 0.1C every 12 cycles at 12
Time charge (charge depth 120%), 0.9V at 0.1C
It was performed under the condition of discharging up to.

【0028】図6から、負極の初期放電容量は比較例1
および比較例2のものがそれぞれ290mAh/g、2
85mAh/gと実施例1の262mAh/gよりやや
高かいが、他の実施例のものの280mAh/g程度と
はあまり変わらないことがわかる。しかし、100回の
充放電後においては、実施例1の電池は280mAh/
gまで、また他の実施例のものは285〜293mAh
/gまでそれぞれ放電容量が増加している。100サイ
クルまでの初期のサイクルを詳しく調べた結果、これら
の電池は15サイクル目までに容量増加していることが
わかった。サイクル試験の結果は、比較例の場合は90
0サイクル程度でピーク時の容量の80%を切るが、実
施例の場合は容量の80%を切るのが1300サイクル
程度で、寿命特性に優れることがわかった。これは比較
例の電池は、粉砕工程で粒径7〜8μm以下の電池反応
に寄与しない微粉末が多量(約12wt%)に生成され
るため、初期容量(負極利用率)があまり高くならず、
かつ粉体形状が多角形体で角を有するため充放電サイク
ル中に割れ易く微粉化し易いことによると考えられる。
一方、本実施例ものは、初期は表面を酸化被膜で覆われ
ているため容量は低いが、サイクルを繰り返すうちに表
面の酸化被膜が発生水素で還元され水素吸蔵能力を増加
するため、および粉体形状が水アトマイズ法により機械
的な破断面を持たない球状体もしくはそれに類した形状
を有するため、微粉化が起こりにくいものと考えられ
る。
From FIG. 6, the initial discharge capacity of the negative electrode is shown in Comparative Example 1
And those of Comparative Example 2 are 290 mAh / g and 2 respectively.
It can be seen that the value is 85 mAh / g, which is slightly higher than the 262 mAh / g of Example 1, but is not so different from the value of about 280 mAh / g of the other Examples. However, after 100 times of charging and discharging, the battery of Example 1 was 280 mAh /
g up to 285 to 293 mAh in other examples
The discharge capacity increases up to / g. As a result of detailed examination of the initial cycles up to 100 cycles, it was found that the capacity of these batteries increased by the 15th cycle. The result of the cycle test is 90 in the case of the comparative example.
It was found that 80% of the capacity at the peak was cut off at about 0 cycles, but in the case of Example, about 80% of the capacity was cut at about 1300 cycles, which was excellent in life characteristics. This is because the battery of the comparative example produces a large amount (about 12 wt%) of fine powder that does not contribute to the battery reaction and has a particle size of 7 to 8 μm or less in the crushing process, so the initial capacity (negative electrode utilization rate) does not become so high. ,
In addition, it is considered that the powder shape is polygonal and has corners, so that it easily breaks into fine particles during charge / discharge cycles.
On the other hand, in the case of the present example, the capacity is low because the surface is covered with the oxide film at the beginning, but the oxide film on the surface is reduced by the generated hydrogen during repeated cycles to increase the hydrogen storage capacity. It is considered that pulverization is unlikely to occur because the body has a spherical body having no mechanical fracture surface or a similar shape by the water atomizing method.

【0029】一方、コスト面では、比較例によると粉砕
工程を必要とするが、本実施例では微粉化まで一気に出
来るため工数が省ける。実施例2を比較例1と比べると
20%程度、比較例2と比べると30%程度のコストダ
ウンを図れる。なお、水素吸蔵合金としてZrMn0.5
0.1 Cr0.2 Ni1.2 からなるAB 2型のものを用い
て水アトマイズ法により微粉化したものを用いて作製し
た電池は、サイクル特性に優れたものであり、上記実施
例と同様粉砕工程を省くことができ、コストダウンを図
れる。
On the other hand, in terms of cost, according to the comparative example, crushing was carried out.
Although a process is required, in this example, even fine powder is output at once.
Since it comes, man-hours can be saved. Comparing Example 2 with Comparative Example 1
Cost reduction of about 20%, about 30% compared to Comparative Example 2
I can plan. As a hydrogen storage alloy, ZrMn0.5 
V0.1 Cr0.2 Ni1.2 AB consisting of Type 2 is used
It was made by using finely pulverized water atomizing method
Battery has excellent cycle characteristics,
As in the example, the crushing process can be omitted and cost can be reduced.
Be done.

【0030】[0030]

【発明の効果】以上のように本発明によれば、急冷速度
が大きい水アトマイズ法により微粉化することにより一
気に微粉末の水素吸蔵合金が得られるため、従来の粉砕
法やガスアトマイズ法を採用した場合に行われている微
粉化工程を省くことができ、さらにガスアトマイズ法に
比べアルゴンガス等の高価な不活性ガスを使用しないた
め製造コストの低減が図れる。また、粉砕工程がないた
め、本発明により得られる粉末は角のない球体形状をし
ているためところから、電極を構成して充放電サイクル
した時の微細化が起こりにくく長寿命となる。さらに、
微粉化に際して合金表面が軽く酸化されるため安定で、
従来のように合金粉末を不活性ガスや真空中あるいは水
中で保管する必要がなく、保管が容易な利点を有する。
以上のように本発明の製造方法によって、低コストで長
寿命の水素電極を与える水素吸蔵合金粉末を提供するこ
とができる。
As described above, according to the present invention, a fine powder of hydrogen storage alloy can be obtained at a stretch by pulverizing by a water atomizing method having a large quenching rate. Therefore, the conventional pulverizing method or gas atomizing method was adopted. The pulverization process which is performed in some cases can be omitted, and the manufacturing cost can be reduced because an expensive inert gas such as argon gas is not used as compared with the gas atomizing method. Further, since there is no pulverization step, the powder obtained according to the present invention has a spherical shape without corners, which makes it difficult for the powder to be miniaturized when the electrode is configured and charged and discharged, and has a long life. further,
Stable because the alloy surface is lightly oxidized when pulverized.
There is no need to store the alloy powder in an inert gas, vacuum, or water as in the conventional case, and there is an advantage that storage is easy.
As described above, according to the production method of the present invention, it is possible to provide a hydrogen storage alloy powder that provides a hydrogen electrode having a low cost and a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における水アトマイズ法に用い
た装置の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an apparatus used for a water atomizing method in an example of the present invention.

【図2】同装置の噴出ノズルの要部を断面にした斜視図
である。
FIG. 2 is a perspective view showing a cross section of a main part of an ejection nozzle of the same device.

【図3】実施例において水素電極の評価に用いた電池の
縦断面略図である。
FIG. 3 is a schematic vertical cross-sectional view of a battery used for evaluation of a hydrogen electrode in Examples.

【図4】水アトマイズ法に用いた次亜燐酸水溶液濃度と
得られる合金粉末表面の酸化被膜の厚みとの関係を示す
図である。
FIG. 4 is a diagram showing the relationship between the concentration of the aqueous solution of hypophosphorous acid used in the water atomizing method and the thickness of the oxide film on the surface of the obtained alloy powder.

【図5】エッチングに用いた硝酸濃度とエッチング後の
合金粉末表面の酸化被膜の厚みとの関係を示す図であ
る。
FIG. 5 is a diagram showing the relationship between the nitric acid concentration used for etching and the thickness of the oxide film on the surface of the alloy powder after etching.

【図6】各種負極のサイクル試験における放電容量の変
化を比較した図である。
FIG. 6 is a diagram comparing changes in discharge capacity in cycle tests of various negative electrodes.

【符号の説明】[Explanation of symbols]

11 高周波溶解炉 12 コイル 13 水素吸蔵合金 14 保持炉 15 電熱コイル 16 噴出ノズル 17 捕集用タンク 18 高圧水ポンプ 19 窒素ガスボンベ 20 ノズル本体 21 水通路 22 溶湯 23 水素吸蔵合金粉末 11 High frequency melting furnace 12 coils 13 Hydrogen storage alloy 14 Holding furnace 15 Electric heating coil 16 jet nozzle 17 Collection tank 18 High-pressure water pump 19 nitrogen gas cylinder 20 nozzle body 21 water passage 22 molten metal 23 Hydrogen storage alloy powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 誠二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 木村 忠雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 生駒 宗久 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−179055(JP,A) 特開 平4−106872(JP,A) 特開 昭63−178447(JP,A) 特開 平3−93160(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 B22F 9/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Yamaguchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Tadao Kimura 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Munehisa Ikoma, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References Japanese Patent Laid-Open No. 4-179055 (JP, A) Japanese Patent Laid-Open No. 4-106872 (JP, A) JP-A-63-178447 (JP, A) JP-A-3-93160 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/38 B22F 9/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を窒素ガス雰囲気中で水ア
トマイズ法により微粉化する工程を有することを特徴と
する電極用水素吸蔵合金粉末の製造方法。
1. A method for producing a hydrogen storage alloy powder for an electrode, comprising a step of pulverizing the hydrogen storage alloy by a water atomizing method in a nitrogen gas atmosphere.
【請求項2】 水アトマイズ法に用いる水が次亜燐酸水
溶液である請求項1記載の電極用水素吸蔵合金粉末の製
造方法。
2. The method for producing a hydrogen storage alloy powder for an electrode according to claim 1, wherein the water used in the water atomizing method is an aqueous solution of hypophosphorous acid.
【請求項3】 微粉化した水素吸蔵合金粉末を水素ガス
中で焼鈍処理する工程を有する請求項1記載の電極用水
素吸蔵合金粉末の製造方法。
3. The method for producing a hydrogen storage alloy powder for an electrode according to claim 1, comprising a step of annealing the finely divided hydrogen storage alloy powder in hydrogen gas.
【請求項4】 さらに、水素吸蔵合金粉末の表面に生成
した酸化被膜を一部除去する工程を有する請求項1記載
の電極用水素吸蔵合金粉末の製造方法。
4. The method for producing a hydrogen storage alloy powder for an electrode according to claim 1, further comprising a step of partially removing an oxide film formed on the surface of the hydrogen storage alloy powder.
【請求項5】 機械的な破断面がなく表面に厚さ80n
m以下の酸化被膜を有する球状体もしくはそれに類した
形状の電極用水素吸蔵合金粉末。
5. A surface having no mechanical fracture surface and a thickness of 80 n.
A hydrogen storage alloy powder for an electrode , which has a spherical shape having an oxide film of m or less or a shape similar thereto.
JP19886093A 1993-07-15 1993-07-15 Hydrogen storage alloy powder for electrode and method for producing the same Expired - Lifetime JP3417980B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19886093A JP3417980B2 (en) 1993-07-15 1993-07-15 Hydrogen storage alloy powder for electrode and method for producing the same
US08/271,826 US5605585A (en) 1993-07-15 1994-07-07 Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19886093A JP3417980B2 (en) 1993-07-15 1993-07-15 Hydrogen storage alloy powder for electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0729571A JPH0729571A (en) 1995-01-31
JP3417980B2 true JP3417980B2 (en) 2003-06-16

Family

ID=16398129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19886093A Expired - Lifetime JP3417980B2 (en) 1993-07-15 1993-07-15 Hydrogen storage alloy powder for electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3417980B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3691906B2 (en) * 1996-05-29 2005-09-07 日本重化学工業株式会社 Method for producing powdered hydrogen storage alloy
CN102423805A (en) * 2011-11-23 2012-04-25 西安理工大学 Preparation method of CuCr alloy powder with low chromium content
CN104028768A (en) * 2014-05-27 2014-09-10 山东省金圣隆机械有限公司 Nickel alloy powder atomization manufacturing process and equipment thereof
CN106001590A (en) * 2016-07-24 2016-10-12 刘志强 Iron-based intermetallic compound prealloy atomized powder new material

Also Published As

Publication number Publication date
JPH0729571A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
US5605585A (en) Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same
EP0647973B1 (en) Hydrogen-absorbing alloy electrode and process for producing the same
JP3417980B2 (en) Hydrogen storage alloy powder for electrode and method for producing the same
JP2920343B2 (en) Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JP2002343349A (en) Hydrogen storage alloy electrode
JPH0748602A (en) Production of hydrogen storage alloy powder
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JP2532498B2 (en) Hydrogen storage alloy electrode
JPH04318106A (en) Production of hydrogen storage alloy powder
JPH10102174A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JPH09320576A (en) Hydrogen absorbing alloy electrode and sealed nickelhydrogen storage battery
JP3553752B2 (en) Method for producing hydrogen storage alloy electrode
JP2003173772A (en) Hydrogen storage alloy powder for electrode and its manufacturing method
JPH10106621A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

EXPY Cancellation because of completion of term