JPH0748602A - Production of hydrogen storage alloy powder - Google Patents

Production of hydrogen storage alloy powder

Info

Publication number
JPH0748602A
JPH0748602A JP5212310A JP21231093A JPH0748602A JP H0748602 A JPH0748602 A JP H0748602A JP 5212310 A JP5212310 A JP 5212310A JP 21231093 A JP21231093 A JP 21231093A JP H0748602 A JPH0748602 A JP H0748602A
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
storage alloy
water
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5212310A
Other languages
Japanese (ja)
Inventor
Toru Yamamoto
徹 山本
Katsunori Komori
克典 児守
Gohei Suzuki
剛平 鈴木
Seiji Yamaguchi
誠二 山口
Tadao Kimura
忠雄 木村
Munehisa Ikoma
宗久 生駒
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5212310A priority Critical patent/JPH0748602A/en
Priority to US08/271,826 priority patent/US5605585A/en
Publication of JPH0748602A publication Critical patent/JPH0748602A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a hydrogen storage alloy powder of high service capacity excellent in cycle life characteristics at a low cost by atomizing a molten hydrogen storage alloy with water, reducing an oxide layer on the surface of the obtained powder and cleaning the powder surface. CONSTITUTION:A hydrogen storage alloy 13 melted in a high-frequency melting furnace 11 is supplied to a holding furnace 14 and injected against a collecting tank 17 filled with gaseous nitrogen supplied from a cylinder 19 from an injection nozzle 16 at the lower end of the furnace 14. At that time, water is injected from around the nozzle 16 by means of a high-pressure water pump 18 to atomize the molten alloy, and the hydrogen storage alloy powder is obtained. The powder is dried, Ca and CaCl2, for example, are added to the powder as a reducing agent. The powder is compacted, and the compact is heated in Ar to reduce an oxide film on the powder surface. The powder surface is cleaned with water, etc., to remove the CaO remaining on the surface, and the desired hydrogen storage alloy powder is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵・
放出する水素吸蔵合金粉末、殊に電池の負極に用いる水
素吸蔵合金粉末の製造方法に関するものである。
The present invention relates to the reversible storage and storage of hydrogen.
The present invention relates to a method for producing released hydrogen storage alloy powder, particularly hydrogen storage alloy powder used for a negative electrode of a battery.

【0002】[0002]

【従来の技術】近年、可逆的に水素を吸蔵・放出する水
素吸蔵合金粉末を負極に用いたニッケル−水素電池が、
原理的に短絡の原因となるデンドライトの生成がないた
めサイクル寿命が長く、エネルギー密度も高い二次電池
として注目されている。その水素吸蔵合金微粉末の代表
的な製造工程は、以下の様なものである。まず、適当量
の成分金属を秤量し、これを高周波溶解炉等を用いて水
素吸蔵合金インゴットとし、アニール(焼鈍)処理を行
った後、粉砕機で平均粒径が20〜30μm程度になる
まで機械的粉砕を行い、水素吸蔵合金の微粉末を作製す
る。水素吸蔵合金粉末の粒径は、水素吸蔵能力(放電容
量)と吸脱速さ(高率放電特性)に影響がある。水素吸
蔵能力の面からは粒子径の大きい方が良く、吸脱速さの
面からは粒子径の小さい方が優れている。但し、粒子径
7〜8μm以下になると、表面酸化の影響が大きくな
り、極端に吸蔵能力が落ち、活物質として機能しなくな
る。
2. Description of the Related Art In recent years, nickel-hydrogen batteries using a hydrogen storage alloy powder that reversibly stores and releases hydrogen as a negative electrode have been developed.
In principle, it has been attracting attention as a secondary battery that has a long cycle life and a high energy density because it does not generate dendrites that cause a short circuit. A typical manufacturing process of the hydrogen storage alloy fine powder is as follows. First, an appropriate amount of component metal is weighed and made into a hydrogen storage alloy ingot by using a high frequency melting furnace or the like, annealed (annealed), and then a pulverizer until the average particle diameter becomes about 20 to 30 μm. Mechanical pulverization is performed to produce fine powder of hydrogen storage alloy. The particle size of the hydrogen storage alloy powder affects the hydrogen storage capacity (discharge capacity) and the speed of absorption / desorption (high rate discharge characteristics). The larger the particle size is, the better the hydrogen storage capacity is, and the smaller the particle size is, the better the absorption / desorption rate is. However, when the particle diameter is 7 to 8 μm or less, the influence of surface oxidation becomes large, the storage capacity is extremely reduced, and the particle does not function as an active material.

【0003】前記の水素吸蔵合金微粉末の製造工程にお
いて、合金の粉砕時に水素吸蔵能力のない粒径7〜8μ
m以下の微粉末が相当量生成され、このロスはコスト面
でかなり大きな負担となる。さらに、ニッケル−水素電
池のサイクル寿命試験における劣化原因として水素吸蔵
合金粉末の微粉化が挙げられるが、従来の粉砕品は多数
の角を有する多角形体をしており、充放電時の体積の膨
脹、収縮により角部より微粉化を起こし易く、サイクル
寿命が短い欠点を有する。これらの欠点を解決するた
め、従来ガスアトマイズ法や遠心噴霧法等による微粉化
工法や還元拡散法によるニッケル微粒子からの直接作製
法などが考案されている(例えば、特開平2−2535
58号公報、特開平3−216958号公報、特開平3
−170601号公報)。
In the manufacturing process of the above-mentioned fine powder of hydrogen storage alloy, a grain size of 7 to 8 μm which does not have a hydrogen storage capacity when the alloy is pulverized.
A considerable amount of fine powder of m or less is produced, and this loss is a considerable burden in terms of cost. Further, as a cause of deterioration in the cycle life test of the nickel-hydrogen battery, pulverization of the hydrogen-absorbing alloy powder can be mentioned, but the conventional crushed product has a polygonal body with many corners, and the volume expansion at the time of charging and discharging. However, it has a drawback that it tends to become finer than the corners due to shrinkage and has a short cycle life. In order to solve these drawbacks, a fine atomization method such as a gas atomization method or a centrifugal atomization method or a direct production method from nickel fine particles by a reduction diffusion method has been conventionally devised (for example, JP-A-2-2535).
58, JP-A-3-216958, JP-A-3
-170601 publication).

【0004】[0004]

【発明が解決しようとする課題】この様なガスアトマイ
ズ法や遠心噴霧法により作製した水素吸蔵合金微粉末
は、その作製時に急冷されるため、アモルファス状態に
近づき延性や耐食性が増し、さらに粉体形状が球形であ
るため微粉化に対して抵抗性が増し、サイクル寿命の向
上が可能となる利点がある。しかし、いずれの方法も合
金の粒径が50μm程度までしか細かくならないため、
電池材料として必要な20〜30μmの粒径のものを得
るには分級工程や粉砕工程を要し、大幅なコストアップ
および球形形状の破壊を生じる。一方、還元拡散法は、
出発材料のニッケル粉末の大きさで出来上がりの水素吸
蔵合金微粉末の粒径が決まるため、粒径の調整は容易で
あるが、複数の金属及び金属酸化物粉末を出発材料とし
ているため、水素吸蔵合金微粉末内部における組成の均
一性に欠け、水素吸蔵能力が低くなり放電容量が低くな
る欠点を有していた。また、多量のカルシウム(Ca)
等の還元剤を必要とし、コストアップにつながる課題も
あった。
The hydrogen-absorbing alloy fine powder produced by the gas atomizing method or centrifugal atomizing method as described above is rapidly cooled during its production, so that it approaches an amorphous state and the ductility and corrosion resistance are increased, and the powder shape is further improved. The spherical shape has an advantage that resistance to pulverization increases and cycle life can be improved. However, in either method, the grain size of the alloy is reduced to about 50 μm,
A classifying process and a pulverizing process are required to obtain a battery material having a particle size of 20 to 30 μm, which causes a significant increase in cost and spherical shape destruction. On the other hand, the reduction diffusion method
It is easy to adjust the particle size because the particle size of the finished hydrogen-absorbing alloy fine powder is determined by the size of the nickel powder of the starting material, but it is possible to adjust the particle size by using multiple metal and metal oxide powders as the starting material. The composition of the alloy fine powder lacks uniformity and has a drawback that the hydrogen storage capacity is low and the discharge capacity is low. Also, a large amount of calcium (Ca)
There is also a problem that requires a reducing agent such as the above, leading to an increase in cost.

【0005】また、従来は充填金属、金属酸化物および
Caをプレス成形して、ブロックを作製し、これを不活
性ガス中において高温で反応させて還元拡散を行ってい
た。しかし、反応が始まると発熱反応のため中心付近の
温度が上がり過ぎ、粒子が溶解してしまう危険性がある
ため、ブロックをあまり大きくできない制約があり、量
産性に課題があった。本発明は上記課題に鑑み、低コス
トでサイクル寿命特性に優れた高放電容量の負極を与え
る水素吸蔵合金粉末の製造方法を提供するものである。
Further, conventionally, a filling metal, a metal oxide and Ca are press-molded to form a block, which is reacted at a high temperature in an inert gas to carry out reduction diffusion. However, when the reaction starts, the temperature near the center rises excessively due to the exothermic reaction, and there is a risk that the particles will dissolve, so there is a constraint that the block cannot be made too large, and there was a problem in mass productivity. In view of the above problems, the present invention provides a method for producing a hydrogen storage alloy powder that provides a negative electrode having a high discharge capacity at low cost and excellent cycle life characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は前記の課題を解
決するために、水素吸蔵合金の溶湯を水アトマイズ法に
より10μm〜50μm程度まで微粉化し、水分を乾燥
後還元剤を用いて表面の酸化層を還元し、さらに残存す
る還元剤等を洗浄、除去することによって水素吸蔵合金
粉末を製造するものである。ここで、前記の還元工程
は、CaおよびCaCl2を還元剤に用いて、アルゴン
雰囲気中で700℃以上1100℃以下の温度で還元す
るのが好ましい。この場合、粉末表面に残存するCaO
は塩化アンモニウム水溶液等で除去し、水で洗浄するの
がよい。
[Means for Solving the Problems] In order to solve the above problems, the present invention pulverizes a molten metal of a hydrogen storage alloy to a size of about 10 to 50 μm by a water atomizing method, dries the water content, and then uses a reducing agent to form a powder on the surface. The hydrogen storage alloy powder is manufactured by reducing the oxide layer and further washing and removing the remaining reducing agent and the like. Here, it is preferable that, in the reducing step, Ca and CaCl 2 are used as reducing agents to perform reduction at a temperature of 700 ° C. or more and 1100 ° C. or less in an argon atmosphere. In this case, CaO remaining on the powder surface
Is preferably removed with an aqueous solution of ammonium chloride, and washed with water.

【0007】また、本発明は、水アトマイズ法によって
作製した水素吸蔵合金の微粉末を還元剤と混合して中空
形状に圧縮成型し、この成形体を不活性ガス雰囲気中で
加熱することにより、粉末表面の酸化層を還元すること
を特徴とする。この方法によると、還元反応を均一に行
うことができ、性能の安定した水素吸蔵合金粉末が得ら
れる。この様に本発明は、球形で均一な組成を有する水
素吸蔵合金微粉末の製造方法を提供するものである。
Further, according to the present invention, fine powder of a hydrogen storage alloy produced by a water atomizing method is mixed with a reducing agent and compression molded into a hollow shape, and the molded body is heated in an inert gas atmosphere, It is characterized by reducing the oxide layer on the powder surface. According to this method, the reduction reaction can be carried out uniformly, and a hydrogen storage alloy powder having stable performance can be obtained. Thus, the present invention provides a method for producing a hydrogen storage alloy fine powder having a spherical and uniform composition.

【0008】[0008]

【作用】本発明は前記のような構成によって、従来の粉
砕法およびガスアトマイズ法にない以下の特徴を有す
る。第1に、水アトマイズ法における急冷速度はガスア
トマイズ法に比べて数十倍大きく、粒径10μm程度ま
での微粉化が一気に行え、微粉砕工程を省略でき、低コ
スト化が可能となる。第2に、粉砕工程がないので、粒
子径7〜8μm以下の活物質として働かない水素吸蔵合
金の生成が殆どなく、高放電容量の電極を与える。第3
に、還元後の微粒子形状が球形で従来粉砕品のような多
角形体をしていないので、充放電サイクル時の微粉化が
起こりにくく、サイクル寿命の長い電極を与える。第4
に、表面を還元する際水素吸蔵合金はアニールされ結晶
化が進行し、高放電容量化およびアニール工程の削除が
できる等の利点を有する。さらに、水アトマイズ法のた
め、得られる粒子表面に微細な凹凸が生成し、このため
水素吸脱能力が向上し、アルカリ処理工程を省略できる
利点を有する。
The present invention has the following features, which are not provided by the conventional pulverization method and gas atomization method, due to the above-described structure. First, the quenching rate in the water atomizing method is several tens of times higher than that in the gas atomizing method, and it is possible to pulverize particles up to a particle size of about 10 μm at once, omitting the pulverizing step and reducing the cost. Secondly, since there is no pulverization step, a hydrogen storage alloy having a particle size of 7 to 8 μm or less that does not work as an active material is hardly generated, and an electrode having a high discharge capacity is provided. Third
In addition, since the fine particles after reduction have a spherical shape and do not have a polygonal shape like a conventional crushed product, pulverization is less likely to occur during charge / discharge cycles, and an electrode having a long cycle life is provided. Fourth
In addition, when the surface is reduced, the hydrogen storage alloy is annealed and crystallization progresses, which has the advantages that the discharge capacity can be increased and the annealing step can be eliminated. Further, since the water atomization method is used, fine irregularities are generated on the surface of the obtained particles, which has the advantage of improving the hydrogen absorption / desorption ability and omitting the alkali treatment step.

【0009】一方、従来の還元拡散法の水素吸蔵合金に
比べ、水アトマイズ法で先に均一組成の合金を作製して
いるため、水素吸蔵能力が高く高放電容量となる。さら
に品質も安定する利点がある。アトマイズ法により得ら
れる粉体の粒径は、急冷速度に比例し、従来のガスアト
マイズ法によると105 ℃/秒台の急冷速度が限界で、
球形をした平均粒径50μm以上のものしか作製できな
い。一方、水アトマイズ法によると、急冷速度が106
〜107 ℃/秒と大きく、得られる粉末の平均粒径は1
0μm程度の細かいものまで作製できる。一般にニッケ
ル−水素電池の負極活物質としては、平均粒径が20〜
30μm程度が望ましいとされているが、水アトマイズ
法を用いることによって粉砕工程なしで微粉化までもっ
て行ける利点がある。しかし、水アトマイズ法による
と、得られる粉末表面の酸化が激しく、作製した合金粉
末は水素吸脱能力に欠けていた。そこで、CaやCaC
2 等の還元剤を用いてアルゴン中で700℃以上11
00℃以下の温度で数時間保持することによって表面酸
化膜を還元させ金属化させる。この際、還元反応が進む
につれて発熱を伴い、合金の場所による温度ムラを生
じ、水素吸蔵能力にバラつきができる。これを防ぐた
め、水アトマイズ法によって作製した微粉末を還元剤と
混合して管状などの中空形状に圧縮成型し、これを高温
雰囲気で還元反応させることでかなり均一な温度分布を
有する水素吸蔵合金微粉末を作製することができる。本
発明の製造方法においては、粉末表面層の酸化膜だけを
CaやCaCl2 等の還元剤で還元するため、従来の還
元拡散法に比べ還元剤量が少量で反応時間も短くてすむ
利点もある。
On the other hand, as compared with the conventional hydrogen storage alloy of the reduction diffusion method, the alloy having a uniform composition is first produced by the water atomization method, so that the hydrogen storage capacity is high and the discharge capacity is high. Furthermore, there is an advantage that the quality is stable. The particle size of the powder obtained by the atomizing method is proportional to the quenching rate, and according to the conventional gas atomizing method, the quenching rate on the order of 10 5 ° C / sec is the limit,
Only spherical particles having an average particle size of 50 μm or more can be produced. On the other hand, according to the water atomizing method, the quenching rate is 10 6
Large as to 10 7 ° C. / sec, the average particle size of the resulting powder 1
It is possible to manufacture a fine one of about 0 μm. Generally, as the negative electrode active material of a nickel-hydrogen battery, the average particle size is 20 to
It is said that about 30 μm is desirable, but the use of the water atomizing method has an advantage that fine pulverization can be performed without a pulverizing step. However, according to the water atomizing method, the surface of the obtained powder was heavily oxidized, and the produced alloy powder lacked the ability to adsorb and desorb hydrogen. Therefore, Ca and CaC
l 2 or the like in an argon atmosphere at 700 ° C. or higher 11
The surface oxide film is reduced and metallized by holding it at a temperature of 00 ° C. or lower for several hours. At this time, as the reduction reaction progresses, heat is generated, temperature unevenness occurs depending on the location of the alloy, and the hydrogen storage capacity varies. To prevent this, a fine powder produced by the water atomizing method is mixed with a reducing agent and compression molded into a hollow shape such as a tubular shape, and this is subjected to a reduction reaction in a high temperature atmosphere to produce a hydrogen storage alloy with a fairly uniform temperature distribution. Fine powders can be produced. In the production method of the present invention, since only the oxide film of the powder surface layer is reduced with a reducing agent such as Ca or CaCl 2, there is an advantage that the amount of the reducing agent is small and the reaction time is short as compared with the conventional reduction diffusion method. is there.

【0010】[0010]

【実施例】以下、本発明の実施例を説明する。図1は実
施例における水アトマイズ法に用いた装置の概略構成を
示し、図2はその噴出ノズルの構成を示す。これらの図
において、11は高周波電流を通じるコイル12を捲回
した高周波溶解炉であり、ここで溶解した水素吸蔵合金
13は電熱コイル15を有する保持炉14に供給され
る。保持炉14の下端に設けた噴出ノズル16は、合金
粉末捕集用タンク17内に開口させるとともに、ノズル
本体20には、噴出させる合金の溶湯22に向けて、高
圧ポンプ18から供給される水を噴出させる水通路21
を設けている。19は捕集用タンク17内へ供給する窒
素ガスのボンベである。23は溶湯が通路21の末端か
ら噴射される水によって飛散され、微粉化された水素吸
蔵合金粉末である。
EXAMPLES Examples of the present invention will be described below. FIG. 1 shows a schematic configuration of an apparatus used for the water atomizing method in the example, and FIG. 2 shows a configuration of its ejection nozzle. In these figures, 11 is a high-frequency melting furnace in which a coil 12 for passing a high-frequency current is wound, and the hydrogen storage alloy 13 melted therein is supplied to a holding furnace 14 having an electric heating coil 15. The jet nozzle 16 provided at the lower end of the holding furnace 14 is opened in the alloy powder collecting tank 17, and the nozzle body 20 is supplied with water supplied from the high-pressure pump 18 toward the molten alloy 22 to be jetted. Water passage 21 for ejecting water
Is provided. Reference numeral 19 is a cylinder of nitrogen gas supplied into the collection tank 17. Reference numeral 23 is a hydrogen-absorbing alloy powder that is pulverized by the molten metal being scattered by the water jetted from the end of the passage 21.

【0011】[実施例]水素吸蔵合金として、ランタン
(La)を20重量%含むミッシュメタル(Mm)、ニ
ッケル(Ni)、マンガン(Mn)、アルミニウム(A
l)、およびコバルト(Co)を所定の割合で混合し、
高周波溶解炉11にて溶解してMmNi3.9 Mn0.4
0.5 Co0.2の組成の水素吸蔵合金13をまず作製
し、この合金を保持炉14に流し込む。次に、ボンベ1
9から供給される窒素ガスで満たされた捕集用タンク1
7に向かって噴出ノズル16より水素吸蔵合金の溶湯2
2を噴出させる。この時、高圧水ポンプ18を用いて通
路21から水を噴出ノズルの周囲から噴射させ、水素吸
蔵合金の溶湯を微粉化(アトマイズ)させ、水素吸蔵合
金粉末23を作製する。
[Example] As a hydrogen storage alloy, misch metal (Mm) containing 20% by weight of lanthanum (La), nickel (Ni), manganese (Mn), aluminum (A).
l) and cobalt (Co) in a predetermined ratio,
And melted by high-frequency melting furnace 11 MmNi3 .9 Mn 0.4 A
First, a hydrogen storage alloy 13 having a composition of 0.5 Co 0.2 is prepared, and this alloy is poured into a holding furnace 14. Next, the cylinder 1
Collection tank 1 filled with nitrogen gas supplied from 9
From the jet nozzle 16 toward 7 the molten metal 2 of hydrogen storage alloy
Eject 2. At this time, the high pressure water pump 18 is used to jet water from the periphery of the jet nozzle to atomize the molten metal of the hydrogen storage alloy to produce the hydrogen storage alloy powder 23.

【0012】この様にして出来上がった水素吸蔵合金粉
末は、球形に近いものから瓢箪形状のものなど種々のも
のがあったが、いずれも角はなく曲面で構成され、表面
は厚さ約40nmの酸化膜で覆われていた。粒度分布測
定をした結果、平均粒径は22μmで、粒径は8μmか
ら60μmに分布していることがわかった。次に、この
ようにして得た表面に酸化膜を有する水素吸蔵合金粉末
100重量部に対しCaを1重量部、CaCl2 を0.
1重量部添加し、よく混ぜた後、油圧プレスで内径30
mm、外径50mm、長さ20mmの管状に成型する。
この際中心部の空間面積は、全断面積の10〜50%程
度が望ましい。水素吸蔵合金粉末量が多くなるにしたが
って空間面積も大きくする必要がある。中空部の断面形
状としては、円形以外にも角形、三角形、星型および多
角形などが可能である。
The hydrogen-absorbing alloy powders produced in this manner ranged from those having a nearly spherical shape to those having a gourd shape, but each of them has a curved surface with no corners, and the surface has a thickness of about 40 nm. It was covered with an oxide film. As a result of particle size distribution measurement, it was found that the average particle size was 22 μm and the particle size was distributed from 8 μm to 60 μm. Then, 1 part by weight of Ca to the hydrogen storage alloy powder 100 parts by weight having the oxide film on the thus obtained surface, the CaCl 2 0.
Add 1 part by weight, mix well, and use a hydraulic press to get an inner diameter of 30.
mm, an outer diameter of 50 mm, and a length of 20 mm.
At this time, the space area of the central portion is preferably about 10 to 50% of the total cross-sectional area. It is necessary to increase the space area as the amount of hydrogen storage alloy powder increases. The cross-sectional shape of the hollow portion may be square, triangular, star-shaped, polygonal, etc., in addition to the circular shape.

【0013】この様にして作製した中空のブロックをア
ルゴンガス雰囲気中において900℃で2時間加熱し、
水素吸蔵合金粉末表面の酸化膜の還元を行う。還元を行
う雰囲気としては、アルゴンガス以外には水素ガスや窒
素ガスおよび真空中でも問題はない。また、還元温度と
しては700〜1100℃が適している。700℃以下
では反応に1日近くかかり、1100℃以上では水素吸
蔵合金粉末が溶解、一体化してしまい、予め水アトマイ
ズ法で微粉化した効果がなくなってしまう。還元剤とし
ては、アルミニウムやマグネシウムの使用も可能である
が、還元能力が弱く、酸化膜除去に時間を要する。
The hollow block thus produced was heated at 900 ° C. for 2 hours in an argon gas atmosphere,
The oxide film on the surface of the hydrogen storage alloy powder is reduced. As the atmosphere for the reduction, other than argon gas, hydrogen gas, nitrogen gas, or vacuum may be used. Moreover, 700-1100 degreeC is suitable as a reduction temperature. If the temperature is 700 ° C. or lower, the reaction takes about one day, and if the temperature is 1100 ° C. or higher, the hydrogen storage alloy powder is melted and integrated, and the effect of pulverizing by the water atomizing method in advance disappears. Although aluminum or magnesium can be used as the reducing agent, the reducing ability is weak and it takes time to remove the oxide film.

【0014】次に、この様にして作製した水素吸蔵合金
粉末の表面に残存するCaOを除去するため、塩化アン
モニウム水溶液および蒸溜水でよく洗浄を行う。乾燥
後、この水素吸蔵合金粉末100重量部に、結着剤の合
成ゴム粒子0.5重量部、増粘剤のカルボキシメチルセ
ルロース0.2重量部、導電材のカーボンブラック0.
2重量部および水16重量部を加えて負極ペーストを作
製する。この負極ペースト3gを発泡ニッケル製の集電
体に充填し、乾燥後、ローラープレス法にて加圧一体化
し、リードをスポット溶接により集電体の上端に接続し
負極板を作製する。一方、正極板は、水酸化ニッケルを
主成分とする従来の正極合剤3.2gを発泡ニッケル製
の集電体に充填し、乾燥後加圧して作製する。
Next, in order to remove CaO remaining on the surface of the hydrogen storage alloy powder thus produced, it is washed thoroughly with an aqueous ammonium chloride solution and distilled water. After drying, to 100 parts by weight of this hydrogen storage alloy powder, 0.5 parts by weight of synthetic rubber particles as a binder, 0.2 parts by weight of carboxymethyl cellulose as a thickening agent, and carbon black of 0.
A negative electrode paste is prepared by adding 2 parts by weight and 16 parts by weight of water. 3 g of this negative electrode paste is filled in a foamed nickel current collector, dried and then pressure-integrated by a roller press method, and a lead is connected to the upper end of the current collector by spot welding to produce a negative electrode plate. On the other hand, the positive electrode plate is manufactured by filling 3.2 g of a conventional positive electrode mixture containing nickel hydroxide as a main component in a foamed nickel current collector, and drying and pressing.

【0015】上記のようにして作製した負極板1枚を中
央にし、その両側に2枚を1組にした正極板を配し、そ
れらを厚さ0.2mmのポリプロピレン製の袋状セパレ
ータで包んで重ね合わせ、両端にアクリル樹脂板を当
て、その外周をボルトとナットで締めつけて極板群を組
み立てる。次に、この極板群は、アクリル樹脂製の電槽
に入れ、水酸化カリウム水溶液(密度1.30g/cm
3)を主成分とする電解液を注液し、細孔を有するポリ
プロピレン製の蓋で封口した後、一旦真空にして脱泡を
行い、液リッチの負極規制の評価電池を作製する。図3
はこの評価電池の概略構成を示す。31は電槽、32は
負極板、33は正極板、34はセパレータ、35は電解
液、36はアクリル樹脂板、37はボルト、38はナッ
ト、39は蓋、40は正極端子、41は負極端子であ
る。
One negative electrode plate produced as described above is placed in the center, and two positive electrode plates are set on both sides of the negative electrode plate. The positive electrode plates are wrapped with a polypropylene bag separator having a thickness of 0.2 mm. And lay them on top of each other, apply acrylic resin plates to both ends, and tighten the outer periphery with bolts and nuts to assemble the electrode plate group. Next, this electrode plate group was put into an acrylic resin battery case, and an aqueous potassium hydroxide solution (density 1.30 g / cm 3
After pouring an electrolytic solution containing 3 ) as a main component and sealing with a polypropylene lid having pores, it is once evacuated to defoam to prepare a liquid-rich negative electrode regulation evaluation battery. Figure 3
Shows a schematic configuration of this evaluation battery. 31 is a battery case, 32 is a negative electrode plate, 33 is a positive electrode plate, 34 is a separator, 35 is an electrolytic solution, 36 is an acrylic resin plate, 37 is a bolt, 38 is a nut, 39 is a lid, 40 is a positive electrode terminal, 41 is a negative electrode. It is a terminal.

【0016】[比較例]実施例と同一組成の水素吸蔵合
金を高周波溶解炉で作製し、アルゴンガス中において1
100℃で6時間アニールした後、スタンプミルで粗粉
砕し、さらにジェットミル粉砕機で微粉砕する。次に、
400メッシュのふるいで37μm以上の粒子を除去
し、平均粒径22μmの水素吸蔵合金粉末を得る。その
後アルカリ処理として、密度1.3g/cm3 の水酸化カリ
ウム水溶液に70℃で20分間よく撹拌しながら浸漬
し、次にアルカリを落とすために水洗を6回行う。この
様にして作製した水素吸蔵合金粉末を負極活物質として
実施例と同様にして評価用電池を作製する。
[Comparative Example] A hydrogen storage alloy having the same composition as that of the example was produced in a high frequency melting furnace and was placed in argon gas to
After annealing at 100 ° C. for 6 hours, it is roughly pulverized by a stamp mill and then finely pulverized by a jet mill pulverizer. next,
Particles of 37 μm or more are removed with a 400 mesh sieve to obtain a hydrogen storage alloy powder having an average particle diameter of 22 μm. After that, as an alkali treatment, it is immersed in an aqueous potassium hydroxide solution having a density of 1.3 g / cm 3 at 70 ° C. for 20 minutes while stirring well, and then washed with water 6 times to remove the alkali. Using the hydrogen storage alloy powder thus produced as the negative electrode active material, an evaluation battery is produced in the same manner as in the examples.

【0017】図4に前記実施例および比較例の評価用電
池についてサイクル試験をした時の放電容量の変化を示
す。サイクル試験時の放電条件は、P(水素圧力)−C
(組成)−T(温度)測定より算出される電気量を基準
とし、2C(約1.7A)で0.9Vカットの放電深度
100%、充電は2Cで放電電気量に対して充電深度1
10%(いずれも25℃)とした。一方、容量確認は、
100サイクルごとに0.1Cで11時間充電し、0.
1Cで0.9Vまで放電する条件で行った。図4より初
期放電容量は実施例のものが295mAh/gで比較例
の285mAh/gより10mAh/g高く、サイクル
特性も比較例のものは400サイクル時点で初期放電容
量の80%を切ったが、実施例のものは1200サイク
ルまで持つことがわかった。
FIG. 4 shows the change in discharge capacity when a cycle test was conducted on the evaluation batteries of the above-mentioned Examples and Comparative Examples. The discharge condition during the cycle test is P (hydrogen pressure) -C.
Based on the amount of electricity calculated from (composition) -T (temperature) measurement, the discharge depth is 100% at 0.9V cut at 2C (about 1.7A), and the charge depth is 1 at the discharge electricity amount at 2C.
It was set to 10% (both were 25 ° C.). On the other hand, capacity confirmation is
It is charged at 0.1C for 11 hours every 100 cycles, and then charged to 0.
It was performed under the condition of discharging to 0.9V at 1C. As shown in FIG. 4, the initial discharge capacity of the example was 295 mAh / g, which was higher than the 285 mAh / g of the comparative example by 10 mAh / g, and the cycle characteristic of the comparative example was less than 80% of the initial discharge capacity at 400 cycles. It was found that the examples had up to 1200 cycles.

【0018】実施例の水素吸蔵合金は、水アトマイズ法
で微粉化したため、水素吸蔵合金組成が粉末内で均一に
微結晶化され、次に高温でアニールされたため微結晶の
結晶性が向上し、このため高容量、長寿命な電極になっ
たものと考えられる。コスト面では、比較例の従来品
は、粉砕工程およびアルカリ処理を必要とするが、実施
例では微粉化まで一気にでき、アルカリ処理工程も省略
できるため、比較例と比べ5%程度のコストダウンを図
れることがわかった。なお、水素吸蔵合金としてZrM
nNi等からなるAB2 型のものや他の水素吸蔵合金を
用いて同様の効果が得られる。水アトマイズ法で作製す
る際の粒子径としては、AB2型の場合は10〜20μ
m程度が初期活性の点で優れていた。電池特性面からは
粒子径50μm程度まで使用が可能であった。
Since the hydrogen storage alloys of the examples were pulverized by the water atomizing method, the hydrogen storage alloy composition was uniformly crystallized in the powder and then annealed at a high temperature to improve the crystallinity of the microcrystals. Therefore, it is considered that the electrode has a high capacity and a long life. In terms of cost, the conventional product of the comparative example requires a crushing step and an alkali treatment, but in the example, even fine pulverization can be done at once, and the alkali treatment step can be omitted. Therefore, a cost reduction of about 5% compared to the comparative example can be achieved. I found that I could achieve it. As a hydrogen storage alloy, ZrM
Similar effects can be obtained by using an AB 2 type alloy made of nNi or the like or another hydrogen storage alloy. In the case of AB 2 type, the particle size when prepared by the water atomizing method is 10 to 20 μm.
m was excellent in terms of initial activity. From the viewpoint of battery characteristics, it was possible to use particles having a particle size of about 50 μm.

【0019】[0019]

【発明の効果】以上のように本発明の製造方法によれ
ば、水アトマイズ法で微粉化することにより一気に微粉
末の水素吸蔵合金が得られるため、従来の粉砕法やガス
アトマイズ法で行われている粉砕工程や分級工程、さら
にはアルカリ処理工程を省くことができ、低コスト化が
できる。また、還元拡散法に比べ粒子内の合金組成が均
一となり高放電容量化も図れる。さらに、微粉末が角の
ない球形をしているため、充放電サイクル時の微細化が
起こりにくく長寿命となる。以上のように本発明の水素
吸蔵合金粉末の製造方法によって、低コストで高放電容
量、長寿命のニッケル−水素電池を提供することができ
る。
As described above, according to the production method of the present invention, a fine powder of hydrogen storage alloy can be obtained at a stretch by finely pulverizing by a water atomizing method. Therefore, the conventional pulverizing method or gas atomizing method is used. The crushing step, the classification step, and the alkali treatment step, which are necessary, can be omitted, and the cost can be reduced. In addition, the alloy composition in the particles becomes more uniform than in the reduction diffusion method, and a high discharge capacity can be achieved. Further, since the fine powder has a spherical shape without corners, it is difficult for the fine powder to be miniaturized during a charge / discharge cycle, and the life is long. As described above, according to the method for producing a hydrogen storage alloy powder of the present invention, it is possible to provide a nickel-hydrogen battery having a low cost, a high discharge capacity, and a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における水アトマイズ法に用い
た装置の概略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an apparatus used for a water atomizing method in an example of the present invention.

【図2】同装置の噴出ノズルの要部を断面にした斜視図
である。
FIG. 2 is a perspective view showing a cross section of a main part of an ejection nozzle of the same device.

【図3】実施例において水素電極の評価に用いた電池の
縦断面略図である。
FIG. 3 is a schematic vertical cross-sectional view of a battery used for evaluation of a hydrogen electrode in Examples.

【図4】本発明の実施例および比較例の負極のサイクル
試験における放電容量の変化を比較した図である。
FIG. 4 is a diagram comparing changes in discharge capacity in a cycle test of negative electrodes of an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

11 高周波溶解炉 12 コイル 13 水素吸蔵合金 14 保持炉 15 電熱コイル 16 噴出ノズル 17 捕集用タンク 18 高圧水ポンプ 19 窒素ガスボンベ 20 ノズル本体 21 水通路 22 溶湯 23 水素吸蔵合金粉末 11 High Frequency Melting Furnace 12 Coil 13 Hydrogen Storage Alloy 14 Holding Furnace 15 Electric Heating Coil 16 Jet Nozzle 17 Collection Tank 18 High Pressure Water Pump 19 Nitrogen Gas Cylinder 20 Nozzle Body 21 Water Passage 22 Molten Metal 23 Hydrogen Storage Alloy Powder

フロントページの続き (72)発明者 山口 誠二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 木村 忠雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 生駒 宗久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Seiji Yamaguchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Tadao Kimura 1006, Kadoma, Kadoma City, Osaka Prefecture (72) Person Ikukoma Munehisa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Toyoguchi ▲ Yoshi ▼ Tokoku 1006 Kadoma, Kadoma City, Osaka Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金の溶湯を水アトマイズ法に
より微粉化する工程、得られた粉末を乾燥後還元剤を用
いて表面の酸化層を還元する工程、および還元後の粉末
表面を洗浄する工程を有することを特徴とする水素吸蔵
合金粉末の製造方法。
1. A step of atomizing a molten metal of a hydrogen storage alloy by a water atomizing method, a step of drying the obtained powder after reducing the oxide layer on the surface with a reducing agent, and a step of cleaning the powder surface after the reduction. A method for producing a hydrogen storage alloy powder, comprising the steps of:
【請求項2】 前記還元工程が、還元剤としてCaおよ
びCaCl2 を用い、アルゴン中で700℃以上110
0℃以下の温度で還元することからなる請求項1記載の
水素吸蔵合金粉末の製造方法。
2. The reducing step uses Ca and CaCl 2 as reducing agents and is performed in argon at 700 ° C. or higher and 110 ° C. or higher.
The method for producing a hydrogen storage alloy powder according to claim 1, which comprises reducing at a temperature of 0 ° C or lower.
【請求項3】 水素吸蔵合金の溶湯を水アトマイズ法に
より微粉化する工程と、得られた微粉末を還元剤と混合
して中空形状に圧縮成型する工程と、その成型体を不活
性ガス雰囲気中で加熱して前記微粉末表面の酸化層を還
元する工程を有することを特徴とする水素吸蔵合金粉末
の製造方法。
3. A step of pulverizing a molten metal of a hydrogen storage alloy by a water atomizing method, a step of mixing the obtained fine powder with a reducing agent and compression-molding it into a hollow shape, and an inert gas atmosphere of the molded body. A method for producing a hydrogen storage alloy powder, which comprises a step of heating in an atmosphere to reduce the oxide layer on the surface of the fine powder.
JP5212310A 1993-07-15 1993-08-03 Production of hydrogen storage alloy powder Pending JPH0748602A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5212310A JPH0748602A (en) 1993-08-03 1993-08-03 Production of hydrogen storage alloy powder
US08/271,826 US5605585A (en) 1993-07-15 1994-07-07 Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5212310A JPH0748602A (en) 1993-08-03 1993-08-03 Production of hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH0748602A true JPH0748602A (en) 1995-02-21

Family

ID=16620446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5212310A Pending JPH0748602A (en) 1993-07-15 1993-08-03 Production of hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH0748602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033613A1 (en) * 1997-01-31 1998-08-06 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033613A1 (en) * 1997-01-31 1998-08-06 Sanyo Electric Co., Ltd. Hydrogen storage alloy powder ane method of manufacturing the same
JP3662939B2 (en) * 1997-01-31 2005-06-22 三洋電機株式会社 Hydrogen storage alloy powder and method for producing the same

Similar Documents

Publication Publication Date Title
US5605585A (en) Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
Yu et al. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity
US5616435A (en) Hydrogen-absorbing alloy electrode for metal hydride alkaline battery
JP3215235B2 (en) Method for producing hydrogen storage alloy powder and hydrogen storage alloy powder
JP3417980B2 (en) Hydrogen storage alloy powder for electrode and method for producing the same
JPH0748602A (en) Production of hydrogen storage alloy powder
JP2920343B2 (en) Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP2924382B2 (en) Method for producing hydrogen storage alloy and alkaline storage battery using the alloy
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JP3198896B2 (en) Nickel-metal hydride battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3369838B2 (en) Hydrogen storage alloy electrode
JP2532498B2 (en) Hydrogen storage alloy electrode
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP2983425B2 (en) Production method and electrode for hydrogen storage alloy
JP2983564B2 (en) Hydrogen storage alloy electrode
JPH04318106A (en) Production of hydrogen storage alloy powder
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH04328251A (en) Hydrogen storage alloy electrode
JP3398070B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries