JPH04328251A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH04328251A
JPH04328251A JP3097337A JP9733791A JPH04328251A JP H04328251 A JPH04328251 A JP H04328251A JP 3097337 A JP3097337 A JP 3097337A JP 9733791 A JP9733791 A JP 9733791A JP H04328251 A JPH04328251 A JP H04328251A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
active material
metal plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3097337A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hasebe
裕之 長谷部
Masafumi Fujiwara
雅史 藤原
Kazuhiro Takeno
和太 武野
Yuji Sato
優治 佐藤
Katsuharu Ikeda
克治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP3097337A priority Critical patent/JPH04328251A/en
Publication of JPH04328251A publication Critical patent/JPH04328251A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase a binding force of a bored metal plate with active material mix and a collecting efficiency by letting hydrogen storage alloy powders bite the bored metal plate comprising the main component of the hydrogen storage allay powders having the active material mix applied on it. CONSTITUTION:After mixing to obtain a composition of LmNi4.0Co0.4Mn0.3 AQAl0.3, it is dissolved and cooled to be an ingot, and it is then crushed to obtain hydrogen storage allay powders of an average grain size of about 50mum. The powders are then mixed with carbon black, CMC and polyacrylic acid soda by 1, 0.5, 0.5wt.% respectively, and obtained matter is agitated while water is added for obtaining negative electrode active material paste. This paste is applied on a bored metal plate, it is dried, and a roller press is applied, so a hydrogen storage allay electrode is formed. Hydrogen storage allay can thus be let to bite the bored metal plate, the binding force of the bored metal plate with the active material mix, and the collecting efficiency can be heightened.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は水素吸蔵合金電極に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode.

【0002】0002

【従来の技術】近年、電子部品の高集積化や実装技術の
進歩により電子機器のポータブル化,コードレス化が進
んでいる。それに伴って、前記電子機器を駆動するため
の二次電池に対する高容量化の要求が高まってきている
BACKGROUND OF THE INVENTION In recent years, electronic devices have become more portable and cordless due to higher integration of electronic components and advances in packaging technology. Along with this, there has been an increasing demand for higher capacity secondary batteries for driving the electronic devices.

【0003】こうした高容量化の要求に応えるため、負
極に水素吸蔵合金を使用したニッケル水素二次電池では
、ニッケルカドミウム二次電池の2倍程度にまで電池容
量を高めたものが開発されている。
[0003] In order to meet these demands for higher capacity, nickel-metal hydride secondary batteries that use a hydrogen storage alloy for the negative electrode have been developed with battery capacity approximately twice that of nickel-cadmium secondary batteries. .

【0004】ところで、上記ニッケル水素二次電池等に
組み込まれる水素吸蔵合金電極は、通常、次のように製
造される。まず、水素吸蔵合金のインゴットを水素ガス
粉砕法又は機械粉砕法により粉末化して水素吸蔵合金粉
末を製造するか、或いは溶融合金をガスアトマイズ法に
より噴霧して球状の水素吸蔵合金粉末を製造する。つづ
いて、前記水素吸蔵合金粉末を主成分とする活物質ペー
ストを調製する。この活物質ペーストを導電性芯体に塗
布した後、乾燥,プレス,裁断する。こうして前記導電
性芯体に水素吸蔵合金粉末を主成分とする活物質合剤を
塗着した水素吸蔵合金電極が製造される。
By the way, the hydrogen storage alloy electrode incorporated in the above-mentioned nickel-metal hydride secondary battery etc. is usually manufactured as follows. First, a hydrogen storage alloy ingot is pulverized by a hydrogen gas pulverization method or a mechanical pulverization method to produce a hydrogen storage alloy powder, or a molten alloy is sprayed by a gas atomization method to produce a spherical hydrogen storage alloy powder. Next, an active material paste containing the hydrogen storage alloy powder as a main component is prepared. After applying this active material paste to the conductive core, it is dried, pressed, and cut. In this way, a hydrogen storage alloy electrode is manufactured by coating the conductive core with an active material mixture containing hydrogen storage alloy powder as a main component.

【0005】上述した水素吸蔵合金電極に用いられる導
電性芯体としては、例えばパンチドメタルに代表される
穿孔金属板、或いは金属ネットやセルメット(住友電工
社製商品名)などの発泡メタルに代表される三次元金属
多孔体が挙げられる。しかしながら、前記三次元金属多
孔体からなる導電性芯体は、その製造工程が複雑なため
高価であり、しかも機械的強度に劣るため活物質ペース
トの充填量が制限されて電極の水素吸蔵合金密度を高め
ることが困難であるという問題がある。
[0005] The conductive core used in the above-mentioned hydrogen storage alloy electrode includes, for example, a perforated metal plate typified by punched metal, or typified by metal net or foamed metal such as Celmet (trade name manufactured by Sumitomo Electric Industries, Ltd.). Examples include three-dimensional metal porous bodies. However, the conductive core made of the three-dimensional metal porous body is expensive due to its complicated manufacturing process, and has poor mechanical strength, which limits the amount of active material paste that can be filled and increases the density of the hydrogen storage alloy of the electrode. The problem is that it is difficult to increase the

【0006】一方、前記穿孔金属板は、平滑な金属板に
直径数mm程度の開口部を多数形成した単純な構造であ
るため、安価で、しかも機械的強度に優れるという利点
がある。このようなことから、導電性芯体として穿孔金
属板を用いた水素吸蔵合金電極が各種検討されている。
On the other hand, the perforated metal plate has the advantage of being inexpensive and having excellent mechanical strength because it has a simple structure in which many openings with a diameter of several mm are formed in a smooth metal plate. For this reason, various hydrogen storage alloy electrodes using perforated metal plates as conductive cores have been studied.

【0007】しかしながら、前記穿孔金属板を用いた水
素吸蔵合金電極は、穿孔金属板の表面上に活物質合剤を
塗布して圧着させているものの該活物質合剤が脱落し易
く、更に集電効率が劣るため大電流放電時に電池電圧が
低くなるという問題点があった。
However, in the hydrogen storage alloy electrode using the perforated metal plate, although the active material mixture is applied and pressed onto the surface of the perforated metal plate, the active material mixture easily falls off and further collects. Due to poor power efficiency, there was a problem in that the battery voltage decreased during large current discharge.

【0008】なお、前記穿孔金属板と活物質合剤との結
着力を高め、かつ電極の集電効率を高めるために、穿孔
金属板の表面をサンドブラスト処理等により物理的に荒
らしたり、薬品処理等により化学的に荒らしたり、或い
は活物質ペーストに多量の結着剤を混ぜることが試みら
れている。しかしながら、これらの試みは、工程数が増
えて製造が複雑化したり、電池特性が低下する等の問題
があるために本質的な解決には至っていない。
[0008] In order to increase the binding force between the perforated metal plate and the active material mixture and to improve the current collection efficiency of the electrode, the surface of the perforated metal plate may be physically roughened by sandblasting or the like, or treated with chemicals. Attempts have been made to chemically roughen the active material paste, or to mix a large amount of a binder into the active material paste. However, these attempts have not resulted in a fundamental solution due to problems such as an increase in the number of steps, complicating manufacturing, and deterioration of battery characteristics.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、穿孔金属板と活物
質合剤との結着力を高め、かつ集電効率を高めた水素吸
蔵合金電極を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in order to solve the problems of the prior art, and it provides a hydrogen hydride solution that increases the bonding force between the perforated metal plate and the active material mixture, and improves the current collection efficiency. The present invention aims to provide a storage alloy electrode.

【0010】0010

【課題を解決するための手段】本発明は、穿孔金属板に
水素吸蔵合金粉末を主成分とする活物質合剤を塗着した
水素吸蔵合金電極において、前記穿孔金属板に水素吸蔵
合金粉末を食い込ませたことを特徴とする水素吸蔵合金
電極である。前記穿孔金属板としては、パンチドメタル
、ニッケルメッキを施したパンチドメタルなどを挙げる
ことができる。前記活物質合剤としては、例えば、水素
吸蔵合金粉末に導電材粉末と結着剤を配合した組成のも
のが挙げられる。
[Means for Solving the Problems] The present invention provides a hydrogen storage alloy electrode in which a perforated metal plate is coated with an active material mixture containing hydrogen storage alloy powder as a main component. This is a hydrogen-absorbing alloy electrode characterized by a wedge-shaped structure. Examples of the perforated metal plate include punched metal and nickel-plated punched metal. Examples of the active material mixture include those having a composition in which hydrogen storage alloy powder is mixed with conductive material powder and a binder.

【0011】前記水素吸蔵合金としては、格別制限され
るものではなく、電解液中で電気化学的に発生させた水
素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出
できるものであればよい。例えば、一般式XY5−a 
Za(但し、XはLaを含む希土類元素、YはNi、Z
はCo、Mn、Al、Fe、Ti、Cu、Zn、Zr、
Cr、V、Bから選ばれる少なくとも1種の元素、aは
0≦a<2.0を示す)にて表されるものが用いられる
。 具体的にはLaNi5 、MmNi5 、LmNi5(
Lm;ランタン富化したミッシュメタル)、及びこれら
のNiの一部をCo、Mn、Al、Fe、Ti、Cu、
Zn、Zr、Cr、V、Bのような元素で置換した多元
素系のものを挙げることができる。
[0011] The hydrogen storage alloy is not particularly limited, and any metal may be used as long as it can store hydrogen electrochemically generated in the electrolyte and can easily release the stored hydrogen during discharge. . For example, general formula XY5-a
Za (however, X is a rare earth element including La, Y is Ni, Z
is Co, Mn, Al, Fe, Ti, Cu, Zn, Zr,
At least one element selected from Cr, V, and B (a represents 0≦a<2.0) is used. Specifically, LaNi5, MmNi5, LmNi5 (
Lm; lanthanum-enriched misch metal), and some of these Nis are converted into Co, Mn, Al, Fe, Ti, Cu,
Examples include multi-element materials substituted with elements such as Zn, Zr, Cr, V, and B.

【0012】前記導電材粉末としては、例えばカーボン
ブラック、黒鉛、アセチレンブラック等を挙げることが
できる。かかる導電材粉末の配合割合は、水素吸蔵合金
粉末100重量部に対して0.1〜4重量部の範囲とす
ることが望ましい。より好ましい導電性粉末の配合割合
は、水素吸蔵合金粉末100重量部に対して0.1〜2
重量部の範囲である。
[0012] Examples of the conductive material powder include carbon black, graphite, and acetylene black. The blending ratio of the conductive material powder is preferably in the range of 0.1 to 4 parts by weight per 100 parts by weight of the hydrogen storage alloy powder. A more preferable blending ratio of the conductive powder is 0.1 to 2 parts by weight per 100 parts by weight of the hydrogen storage alloy powder.
Parts by weight range.

【0013】前記結着剤としては、例えばポリアクリル
酸ソーダ、ポリアクリル酸カリウムなどのポリアクリル
酸塩、ポリテトラフルオロエチレン(PTFE)などの
フッ素系樹脂、及びカルボキシメチルセルロース(CM
C)等を挙げることができる。かかる結着剤の配合割合
は、水素吸蔵合金粉末100重量部に対して0.1〜5
重量部の範囲とすることが望ましい。
Examples of the binder include polyacrylates such as sodium polyacrylate and potassium polyacrylate, fluororesins such as polytetrafluoroethylene (PTFE), and carboxymethyl cellulose (CM
C) etc. The blending ratio of the binder is 0.1 to 5 parts by weight per 100 parts by weight of the hydrogen storage alloy powder.
It is desirable that the amount be in the range of parts by weight.

【0014】前記穿孔金属板の表面(開口部を除く)に
水素吸蔵合金粉末が食い込む面積率は、20%以上とす
ることが望ましい。前記水素吸蔵合金粉末としては、前
記穿孔金属板への食い込みを容易にし、かつ穿孔金属板
と活物質合剤との結着力等を十分に改善する観点から、
その表面に稜線を有するもの,つまり角を持つ形状とす
ることが望ましい。かかる形状の水素吸蔵合金粉末は、
例えば水素吸蔵合金のインゴットを粉砕することにより
作製できる。
[0014] It is desirable that the area ratio in which the hydrogen storage alloy powder bites into the surface of the perforated metal plate (excluding the openings) is 20% or more. As the hydrogen storage alloy powder, from the viewpoint of making it easy to bite into the perforated metal plate and sufficiently improving the binding force between the perforated metal plate and the active material mixture,
It is desirable that the surface has ridge lines, that is, a shape with corners. Hydrogen storage alloy powder with such a shape is
For example, it can be produced by crushing an ingot of a hydrogen storage alloy.

【0015】上述した水素吸蔵合金電極は、例えば次の
ように製造する。まず、前記水素吸蔵合金粉末を主成分
とする活物質ペーストを調製する。つづいて、この活物
質ペーストを前記穿孔金属板に塗布し、これを乾燥した
後、圧延プレスや裁断を施して水素吸蔵合金電極を製造
する。こうした水素吸蔵合金電極の製造において、前記
穿孔金属板に水素吸蔵合金粉末を食い込ませるには、例
えば圧延プレス工程等或いは独立した工程により前記活
物質合剤を塗着した穿孔金属板に水素吸蔵合金粉末が食
い込む程度の圧力を加えればよい。
The hydrogen storage alloy electrode described above is manufactured, for example, as follows. First, an active material paste containing the hydrogen storage alloy powder as a main component is prepared. Subsequently, this active material paste is applied to the perforated metal plate, dried, and then rolled and pressed to produce a hydrogen storage alloy electrode. In manufacturing such a hydrogen storage alloy electrode, in order to make the hydrogen storage alloy powder bite into the perforated metal plate, the hydrogen storage alloy powder is applied to the perforated metal plate coated with the active material mixture using a rolling press process or an independent process, for example. Just apply enough pressure to make the powder bite.

【0016】[0016]

【作用】本発明によれば、穿孔金属板に水素吸蔵合金粉
末を主成分とする活物質合剤を塗着した水素吸蔵合金電
極において、前記穿孔金属板に水素吸蔵合金粉末を食い
込ませたことによって、穿孔金属板と活物質合剤との結
着力を高め、かつパンチドメタルと活物質合剤との導電
性を向上させて集電効率を高めることができる。その結
果、活物質合剤の脱落を防止できると共に、電池特性,
特に大電流放電特性を改善した水素吸蔵合金電極を得る
ことができる。
[Operation] According to the present invention, in a hydrogen storage alloy electrode in which a perforated metal plate is coated with an active material mixture containing hydrogen storage alloy powder as a main component, the hydrogen storage alloy powder is bitten into the perforated metal plate. This increases the binding force between the perforated metal plate and the active material mixture, and improves the conductivity between the punched metal and the active material mixture, thereby increasing current collection efficiency. As a result, it is possible to prevent the active material mixture from falling off, and to improve battery characteristics.
In particular, a hydrogen storage alloy electrode with improved large current discharge characteristics can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を詳細に説明する。 実施例1,2及び比較例1,2EXAMPLES Examples of the present invention will be described in detail below. Examples 1 and 2 and comparative examples 1 and 2

【0018】まず、ランタン富化ミッシュメタル(Lm
)、ニッケル、コバルト、マンガン、アルミニウムを組
成がLmNi4.0 Co0.4 Mn0.3 Al0
.3 となるように秤量して混合した後、高周波誘導炉
で溶解,冷却して水素吸蔵合金インゴットを作製した。 つづいて、このインゴットを電気炉で熱処理した後、ハ
ンマーミルで粉砕して表面に稜線を有する平均粒径が約
50μmの水素吸蔵合金粉末を得た。この水素吸蔵合金
粉末にカーボンブラック1重量%、CMC0.5重量%
、及びポリアクリル酸ソーダ0.5重量%を混合した後
、撹拌しながらペースト状になるまで水を添加して負極
活物質ペーストを調製した。ひきつづき、この負極活物
質ペーストを厚さ80μmのパンチドメタル(軟鋼製、
表面に厚さ3μmのニッケルメッキ付き)に塗着,乾燥
して幅5cmの活物質合剤塗着板を得た。
First, lanthanum-enriched misch metal (Lm
), nickel, cobalt, manganese, and aluminum with a composition of LmNi4.0 Co0.4 Mn0.3 Al0
.. After weighing and mixing so as to give a hydrogen storage alloy ingot of 3, the mixture was melted and cooled in a high frequency induction furnace to produce a hydrogen storage alloy ingot. Subsequently, this ingot was heat treated in an electric furnace and then ground in a hammer mill to obtain a hydrogen storage alloy powder having ridge lines on the surface and having an average particle size of about 50 μm. This hydrogen storage alloy powder contains 1% by weight of carbon black and 0.5% by weight of CMC.
, and 0.5% by weight of sodium polyacrylate were mixed, and then water was added with stirring until it became paste-like to prepare a negative electrode active material paste. Subsequently, this negative electrode active material paste was applied to a punched metal (made of mild steel) with a thickness of 80 μm.
The surface was coated with nickel plating with a thickness of 3 μm) and dried to obtain an active material mixture coated plate with a width of 5 cm.

【0019】次いで、前記活物質合剤塗着板を対向する
直径150mmのローラ間に通すローラプレスを3回行
なった。かかる各ローラプレスにおいて、ローラ間隔を
変えることにより活物質合剤塗着板に加わる圧力を下記
表1に示すように調節して4種の水素吸蔵合金電極を作
製した。実施例3,4
[0019] Next, roller pressing was performed three times in which the active material mixture coated plate was passed between opposing rollers having a diameter of 150 mm. In each of the roller presses, four types of hydrogen storage alloy electrodes were produced by changing the roller spacing to adjust the pressure applied to the active material mixture coated plate as shown in Table 1 below. Examples 3 and 4

【0020】まず、組成がLmNi4.0 Co0.4
 Mn0.3 Al0.3 であってガスアトマイズ法
により表面が滑らかな球状の水素吸蔵合金粉末(平均粒
径:約50μm)を製造した。この水素吸蔵合金粉末を
用いて実施例1,2と同じ条件で水素吸蔵合金電極を作
製した。
First, the composition is LmNi4.0 Co0.4
A spherical hydrogen storage alloy powder (average particle size: about 50 μm) with a smooth surface was produced by gas atomization using Mn0.3 Al0.3. A hydrogen storage alloy electrode was produced using this hydrogen storage alloy powder under the same conditions as in Examples 1 and 2.

【0021】得られた実施例1〜4及び比較例1,2の
水素吸蔵合金電極にエポキシ樹脂を含浸させて硬化させ
た後、切断して断面を顕微鏡で観察してパンチドメタル
への水素吸蔵合金粉末の食い込み具合を調べた。その結
果を下記表1に併記する。
The obtained hydrogen storage alloy electrodes of Examples 1 to 4 and Comparative Examples 1 and 2 were impregnated with epoxy resin and cured, and then cut and the cross section was observed with a microscope to determine the hydrogen absorption into the punched metal. The degree of penetration of the storage alloy powder was investigated. The results are also listed in Table 1 below.

【0022】また、実施例1〜4及び比較例1,2の水
素吸蔵合金電極について、それぞれ電極表面に粘着テー
プを貼り付けた後、この粘着テープを電極面と垂直の方
向に1cm/秒の速度で引き剥がし、粘着テープ1cm
2 当りに付いた活物質合剤の量を測定する剥離試験を
行なった。その結果を下記表1に併記する。
[0022] For the hydrogen storage alloy electrodes of Examples 1 to 4 and Comparative Examples 1 and 2, adhesive tape was attached to the electrode surface, and then the adhesive tape was applied at a rate of 1 cm/sec in a direction perpendicular to the electrode surface. Peel off at speed and remove 1cm of adhesive tape.
A peel test was conducted to measure the amount of active material mixture attached to each piece. The results are also listed in Table 1 below.

【0023】更に、実施例1〜4及び比較例1,2の水
素吸蔵合金電極をそれぞれニッケル電極と共にナイロン
セパレータを介して捲回し、AAサイズのニッケル水素
二次電池を組立てた。得られた電池について、それぞれ
1/3CmAで充電した後、3Aで放電し、平均放電電
圧を求める大電流放電特性試験を行なった。その結果を
表1に併記する。
Furthermore, the hydrogen storage alloy electrodes of Examples 1 to 4 and Comparative Examples 1 and 2 were each wound together with a nickel electrode through a nylon separator to assemble an AA size nickel-metal hydride secondary battery. The obtained batteries were charged at 1/3 CmA and then discharged at 3 A, and a large current discharge characteristic test was conducted to determine the average discharge voltage. The results are also listed in Table 1.

【0024】[0024]

【表1】[Table 1]

【0025】表1から明らかなように実施例1〜4の電
極は、比較例1,2の電極と比べて活物質合剤の剥離量
が少なく、かつ電池に組込んだ場合の大電流放電時の平
均放電電圧が高いことがわかる。これは、パンチドメタ
ルの表面に水素吸蔵合金粉末が食い込んでいるため、パ
ンチドメタルと活物質合剤との結着力が高くなっている
こと、パンチドメタルと活物質合剤との導電性が向上し
て集電効率が高くなっていることによるものである。
As is clear from Table 1, the electrodes of Examples 1 to 4 have a smaller amount of active material mixture peeled off than the electrodes of Comparative Examples 1 and 2, and when incorporated into a battery, the electrodes have a large current discharge. It can be seen that the average discharge voltage at the time is high. This is due to the hydrogen storage alloy powder biting into the surface of the punched metal, which increases the binding strength between the punched metal and the active material mixture, and the electrical conductivity between the punched metal and the active material mixture. This is due to the improved current collection efficiency.

【0026】また、実施例1の電極は、実施例3の電極
と同じ圧力でローラプレスして作製されているもののパ
ンチドメタルへの水素吸蔵合金粉末の食い込みが大きい
ため活物質の剥離量が小さく、かつ電池に組込んだ場合
の大電流放電時の平均放電電圧が高いことがわかる。一
方、実施例2の電極は、実施例4の電極と同じ圧力でロ
ーラプレスして作製されているもののパンチドメタルへ
の水素吸蔵合金粉末の食い込みが大きいため活物質の剥
離量が小さく、かつ電池に組込んだ場合の大電流放電時
の平均放電電圧が高いことがわかる。これらは、水素吸
蔵合金粉末が表面に稜線を有する形状であるためパンチ
ドメタルに食い込み易くなっていることによる。なお、
上記実施例ではローラプレスを3回行なったが、圧力を
高めればローラプレスを1回で行なうことも可能である
Although the electrode of Example 1 was produced by roller pressing at the same pressure as the electrode of Example 3, the amount of active material peeled off was large due to the large penetration of the hydrogen storage alloy powder into the punched metal. It can be seen that the average discharge voltage during large current discharge is high when the battery is small and incorporated into a battery. On the other hand, although the electrode of Example 2 was produced by roller pressing at the same pressure as the electrode of Example 4, the amount of exfoliation of the active material was small because the hydrogen storage alloy powder penetrated into the punched metal to a large extent. It can be seen that when incorporated into a battery, the average discharge voltage during large current discharge is high. These problems are caused by the fact that the hydrogen storage alloy powder has a shape with ridge lines on its surface, so it easily bites into the punched metal. In addition,
Although the roller press was performed three times in the above embodiment, it is possible to perform the roller press only once by increasing the pressure.

【0027】また、上記実施例ではローラプレスで加え
た圧力によってパンチドメタルに水素吸蔵合金粉末を食
い込ませたが、ローラプレス以外の工程で加えた圧力に
よってパンチドメタルに水素吸蔵合金粉末を食い込ませ
ても同様の結果を得ることができる。
In addition, in the above embodiment, the hydrogen storage alloy powder was bitten into the punched metal by the pressure applied by the roller press, but the hydrogen storage alloy powder was bitten into the punched metal by the pressure applied in a process other than the roller press. Similar results can be obtained even if

【0028】[0028]

【発明の効果】以上詳述した如く、穿孔金属板と活物質
合剤との結着力を高め、かつパンチドメタルと活物質合
剤との導電性を向上させて集電効率を高めることができ
、ひいては活物質合剤の脱落を防止できると共に、電池
特性,特に大電流放電特性を改善した水素吸蔵合金電極
を提供することができる。
[Effects of the Invention] As detailed above, it is possible to increase the binding force between the perforated metal plate and the active material mixture, and to improve the conductivity between the punched metal and the active material mixture, thereby increasing the current collection efficiency. As a result, it is possible to prevent the active material mixture from falling off, and to provide a hydrogen storage alloy electrode that has improved battery characteristics, particularly large current discharge characteristics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  穿孔金属板に水素吸蔵合金粉末を主成
分とする活物質合剤を塗着した水素吸蔵合金電極におい
て、前記穿孔金属板に水素吸蔵合金粉末を食い込ませた
ことを特徴とする水素吸蔵合金電極。
[Claim 1] A hydrogen storage alloy electrode in which a perforated metal plate is coated with an active material mixture containing hydrogen storage alloy powder as a main component, characterized in that the hydrogen storage alloy powder is bitten into the perforated metal plate. Hydrogen storage alloy electrode.
JP3097337A 1991-04-26 1991-04-26 Hydrogen storage alloy electrode Pending JPH04328251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3097337A JPH04328251A (en) 1991-04-26 1991-04-26 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3097337A JPH04328251A (en) 1991-04-26 1991-04-26 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH04328251A true JPH04328251A (en) 1992-11-17

Family

ID=14189675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097337A Pending JPH04328251A (en) 1991-04-26 1991-04-26 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH04328251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044577A1 (en) * 1997-04-02 1998-10-08 Sanyo Electric Co., Ltd. Sintered hydrogen storage alloy electrode and nickel-hydrogen storage battery
US9153837B2 (en) 2009-04-10 2015-10-06 Mitsubishi Electric Corporation Electric storage device electrode and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044577A1 (en) * 1997-04-02 1998-10-08 Sanyo Electric Co., Ltd. Sintered hydrogen storage alloy electrode and nickel-hydrogen storage battery
US6287725B1 (en) 1997-04-02 2001-09-11 Sanyo Electric Co., Ltd. Sintered hydrogen storage alloy electrode and nickel-hydrogen storage battery
US9153837B2 (en) 2009-04-10 2015-10-06 Mitsubishi Electric Corporation Electric storage device electrode and method for manufacturing same

Similar Documents

Publication Publication Date Title
US5435874A (en) Process for making cathode components for use in electrochemical cells
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
WO1999065095A1 (en) Nickel-hydrogen secondary cell
JPH01649A (en) Hydrogen storage alloy electrode and its manufacturing method
JP3387381B2 (en) Alkaline storage battery
JPH04328251A (en) Hydrogen storage alloy electrode
US20020045097A1 (en) Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
US6218047B1 (en) Active electrode compositions comprising Raney based catalysts and materials
US5766792A (en) Hydrogen storage alloy electrode and manufacturing method of the same
JP3044495B2 (en) Metal oxide / hydrogen battery
JP3514491B2 (en) Metal oxide / hydrogen secondary batteries
JP3094033B2 (en) Nickel hydride rechargeable battery
JP3253162B2 (en) Nickel hydride rechargeable battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JP3211086B2 (en) Lithium battery
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
US6300010B1 (en) Hydrogen absorbing alloy powder for use in the negative electrodes of alkaline rechargeable batteries and process for producing the same
JP3019402B2 (en) Non-aqueous electrolyte secondary battery
JP3221917B2 (en) Metal oxide / hydrogen secondary batteries
JP3614567B2 (en) Sealed nickel metal hydride battery
JP3490800B2 (en) Hydrogen storage alloy electrode, method for producing the same, and metal hydride storage battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP4056207B2 (en) Method for producing alkaline storage battery