JPH04318106A - Production of hydrogen storage alloy powder - Google Patents

Production of hydrogen storage alloy powder

Info

Publication number
JPH04318106A
JPH04318106A JP3177842A JP17784291A JPH04318106A JP H04318106 A JPH04318106 A JP H04318106A JP 3177842 A JP3177842 A JP 3177842A JP 17784291 A JP17784291 A JP 17784291A JP H04318106 A JPH04318106 A JP H04318106A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
storage alloy
alloy powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3177842A
Other languages
Japanese (ja)
Inventor
Shinjiro Wakao
若尾 慎二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3177842A priority Critical patent/JPH04318106A/en
Publication of JPH04318106A publication Critical patent/JPH04318106A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a hydrogen storage alloy powder having oxidation resistance and easy to handle in the air with a simple operation by dipping a hydrogen storage alloy in hypophosphorous acid. CONSTITUTION:The powders of the commercially available misch metal, nickel, cobalt and aluminum are weighed and mixed in a specified composition ratio, and the mixture is heated and arc-melted to obtain a hydrogen storage alloy ingot. The ingot is dipped in hypophosphorous acid (about 30% concn.) for about 2hr, and the ingot is expanded and pulverized while generating hydrogen gas. The powder is washed with water, the aq. hypophosphorous acid is filtered off, and the powder is dried in the air at about 60 deg.C for about 2hr. Consequently, a hydrogen storage alloy powder having high activity and capable of rapidly initially activated is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、二次電池などの負極、
ヒートポンプ、水素貯蔵装置などに用いる電気化学的に
又は物理的に水素の吸蔵・放出が可能な水素吸蔵合金粉
末の製造法に関する。
[Industrial Application Field] The present invention is applicable to negative electrodes such as secondary batteries,
The present invention relates to a method for producing hydrogen storage alloy powder that can electrochemically or physically absorb and release hydrogen for use in heat pumps, hydrogen storage devices, etc.

【0002】0002

【従来の技術】従来の水素吸蔵合金粉末の製造法は、真
空又はアルゴン雰囲気中で高周波誘導加熱炉によりMm
Ni5などの任意の水素吸蔵合金の所定割合の組成成分
原料の金属粉を溶解・鋳造してその合金インゴットを得
た後、これをジョークラッシャーなどで粗粉砕したもの
を、ボールミル等で微粉砕することにより製造するか、
ヒートポンプ、水素貯蔵装置等を構成する高圧容器内に
充填し、該容器内に実際の運転時よりも高温で且つ高圧
の水素ガスを導入して該粗粒合金に水素を吸蔵させ、そ
の後減圧して水素を放出させる工程を数回乃至十数回繰
り返して、活性化と微粉化を行うことにより製造してい
る。
[Prior Art] The conventional method for producing hydrogen-absorbing alloy powder is to use a high-frequency induction heating furnace in a vacuum or argon atmosphere.
After melting and casting the metal powder of a predetermined proportion of the raw material of any hydrogen storage alloy such as Ni5 to obtain the alloy ingot, this is coarsely crushed using a jaw crusher or the like, and then finely crushed using a ball mill or the like. manufactured by or
Fill a high-pressure container constituting a heat pump, hydrogen storage device, etc., introduce hydrogen gas at a higher temperature and higher pressure than during actual operation into the container to cause the coarse grain alloy to absorb hydrogen, and then reduce the pressure. It is manufactured by repeating the process of releasing hydrogen several times to more than ten times to activate and pulverize it.

【0003】0003

【発明が解決しようとする課題】然し乍ら、上記の2つ
の水素吸蔵合金粉末の製造法には、次のような欠点があ
る。即ち、上記の粗粉砕された合金をボールミルなどで
微粉砕する方法は、その微粉砕工程において合金粉末は
酸化し易く、発火することもあるので、N2又はArの
雰囲気中で微粉砕を行う必要があり、その作業が面倒で
ある。又、得られた合金粉末は、保存中にも酸化が進行
するため、真空、N2又はAr雰囲気中で保存する必要
がある。更に又、ボールミルで微粉砕して得たこの合金
粉末を用いて電池用負極を作成するが、初期は合金の活
性が低いため正極、セパーレター、電解液等と共に電池
に組み込んだ後、電池の充放電を多数回繰り返して該負
極の初期活性化を行う必要があるなどの不都合を伴う。 又、前記の粗粉砕された合金を高圧容器に充填し、上記
のように微粉化と活性化を行うには、合金の種類にもよ
るが、温度は100〜200℃、圧力は50〜100気
圧に達し、而も水素の放出には逆に真空減圧を例えば1
0−3トールの真空度とする必要があるので、大規模な
水素の吸蔵・放出装置と運転を要し、又、製造コストは
著しく増大する。而もその得られた合金粉末は、空気中
に取り出せば直ちに酸化し、発火する。その扱い量も数
十キロから数百キロのオーダーになるため、上記したよ
うに、その高圧容器内に充填して初期活性化を行うに相
当の時間と手間を要する。而もこのように、いずれの製
造法により得られた合金粉末は、空気中で取り扱うこと
ができない不便がある。上記従来の製造法の不都合を鑑
み、前記の大規模な製造設備を要せず、容易且つ安価に
製造でき、空気中でも安定で容易に取り扱い得られ、而
も初期活性化が迅速に行うことができる高活性の水素吸
蔵合金粉末の製造法の実現が望ましい。
However, the above two methods for producing hydrogen storage alloy powders have the following drawbacks. In other words, in the method of finely pulverizing the coarsely pulverized alloy using a ball mill or the like, the alloy powder is easily oxidized and may catch fire during the pulverizing process, so it is necessary to perform the pulverization in an atmosphere of N2 or Ar. There is, and the work is troublesome. Furthermore, since oxidation of the obtained alloy powder progresses even during storage, it is necessary to store it in vacuum, N2 or Ar atmosphere. Furthermore, negative electrodes for batteries are made using this alloy powder obtained by finely pulverizing it in a ball mill, but since the activity of the alloy is initially low, it is not necessary to charge the battery after incorporating it into the battery together with the positive electrode, separator, electrolyte, etc. This involves inconveniences such as the need to perform initial activation of the negative electrode by repeating discharge many times. In addition, in order to fill the coarsely ground alloy into a high-pressure container and perform pulverization and activation as described above, the temperature is 100 to 200°C and the pressure is 50 to 100°C, although it depends on the type of alloy. Atmospheric pressure is reached, and in order to release hydrogen, the pressure must be reduced by vacuum, for example, 1
Since a vacuum degree of 0-3 Torr is required, a large-scale hydrogen storage/desorption device and operation are required, and the manufacturing cost increases significantly. However, if the obtained alloy powder is taken out into the air, it immediately oxidizes and ignites. Since the amount to be handled is on the order of tens of kilograms to hundreds of kilograms, it takes considerable time and effort to fill the high-pressure container and perform initial activation, as described above. However, the alloy powder obtained by any of these manufacturing methods has the inconvenience of not being able to be handled in the air. In view of the above-mentioned disadvantages of the conventional manufacturing method, the method does not require the aforementioned large-scale manufacturing equipment, can be manufactured easily and inexpensively, is stable in air, can be easily handled, and can be quickly activated in the initial stage. It is desirable to realize a method for producing highly active hydrogen-absorbing alloy powder.

【0004】0004

【課題を解決するための手段】本発明は、上記従来の課
題を解決し、上記の要望を満足した水素吸蔵合金粉末の
製造法に係り、水素吸蔵合金を次亜りん酸に浸漬処理す
ることを特徴とする。
[Means for Solving the Problems] The present invention relates to a method for producing a hydrogen-absorbing alloy powder that solves the above-mentioned conventional problems and satisfies the above-mentioned demands, and includes immersing the hydrogen-absorbing alloy in hypophosphorous acid. It is characterized by

【0005】[0005]

【作用】本発明の作用は明らかでないが、次のように考
えられる。次亜りん酸は強力な還元剤であるため、これ
に水素吸蔵合金を浸漬すると合金は次亜りん酸により表
面の酸化物を還元して活性化される。同時に、次亜りん
酸の水素は、合金に侵入し、これにより合金結晶格子の
膨脹が起こると共に、反応中水素ガスを発生して合金を
微粉化する。このようにして、水素の吸収速度の大きい
高活性状態の水素吸蔵合金の粉末が得られる。更に、合
金粒子表面では合金の成分元素、例えばニッケルが次亜
りん酸と反応して、ニッケル−りんめっきと類似した表
面層が形成され、合金粒子に耐酸化性を付与するものと
考えられる。
[Action] Although the effect of the present invention is not clear, it is thought to be as follows. Hypophosphorous acid is a strong reducing agent, so when a hydrogen storage alloy is immersed in it, the alloy is activated by reducing the oxides on its surface. At the same time, the hydrogen of the hypophosphorous acid penetrates into the alloy, which causes expansion of the alloy crystal lattice and generates hydrogen gas during the reaction, pulverizing the alloy. In this way, a highly active hydrogen storage alloy powder with a high hydrogen absorption rate is obtained. Furthermore, it is thought that on the surface of the alloy particles, component elements of the alloy, such as nickel, react with hypophosphorous acid to form a surface layer similar to nickel-phosphorous plating, which imparts oxidation resistance to the alloy particles.

【0006】[0006]

【実施例】次に本発明の実施例を説明する。市販のミッ
シュメタル、ニッケル、コバルト、アルミニウムの各粉
末を所定の組成比、例えばMmNi4.0Co0.5A
l0.5となるように秤量混合し、これらをアーク溶解
法により加熱溶融して水素吸蔵合金インゴットを得た。 このインゴットを次亜りん酸(濃度:30%)に室温で
2時間浸漬した。この間、合金インゴットは膨脹すると
共に、水素ガスを発生しながら微粉化した。この粉末を
水洗し、次亜りん酸水溶液を▲ろ▼過除去した後、空気
中60℃で2時間乾燥して本発明の水素吸蔵合金粉末を
得た。この乾燥過程で合金粉末は発火することはなく安
定であった。尚、このようにして作製した合金粉は、以
下に示すようにボールミルで微粉砕して作製した合金粉
末に比べ、水素の吸収速度は極めて速かった。又、この
合金粉末は98%が250メッシュのふるいを通過した
。この250メッシュ以下の粉末に対して導電剤として
カーボニルニッケル粉末を15wt.%、結着剤として
四フッ化エチレン粉末を5wt.%添加して混合し、こ
れをニッケル金網に圧着して水素吸蔵合金電極を作製し
た。これを本発明電極と称する。又、比較のため、従来
法により、前記合金インゴットを粗粉砕した後、これを
Ar雰囲気中ボールミルで粉砕して250メッシュ以下
の合金粉末を作製し、これを用いて同様に水素吸蔵合金
電極を作製した。この電極を比較電極Aと称する。 尚、該粗粉砕の合金をボールミルで粉砕して得られた該
合金粉末は、ポットから取り出す際発火はしなかったが
、温度上昇が認められた。更に比較のため、該合金イン
ゴットを粗粉砕した後、従来法により、これを圧力容器
に充填し、80℃、50気圧で水素を吸蔵させ、その後
10−3トールのオーダーの減圧で放出させる操作を5
回繰り返して250メッシュ以下に水素化粉砕した合金
粉末を用いて同様に水素吸蔵合金電極を作製した。これ
を比較電極Bと称する。尚、該水素化粉砕では合金粉末
を空気中で圧力容器から取り出すとしばらくの後に発火
するので、Ar雰囲気中で取り出し、24時間放置した
後に空気中に取り出すことが必要であった。尚、因みに
、次亜りん酸と同様に強力な還元剤であるヒドラジンに
合金インゴットを浸漬すると合金は微粉化したが、乾燥
過程での発火が避けられず、合金粉末を得ることができ
なかった。このことは、次亜りん酸の場合は、還元作用
と併せて合金粉末の表面にニッケル−りん酸めっきの酸
化防止膜が生成するに特徴があることが認められた。 このように作製した本発明電極、比較電極A及び比較電
極Bを、夫々作用極とし、ニッケル板を対極として組み
合わせ、アルカリ電解液として30wt.%の水酸化カ
リウム水溶液を用いて開放型の試験セルを夫々作製した
。ここで、これら各電極中の水素吸蔵合金粉末の重量は
約1gである。この各試験セルを用いてまず放電を行い
、合金中に水素が含まれていないことを予め確認した。 次に、初回の充放電で取り出せる容量を確認した。 又、更に充放電を繰り返して、容量が安定するのに要し
た充放電サイクル数を調べた。充放電は、試験セルを6
mA/cm2の電流密度で各水素吸蔵合金電極の電気化
学的水素吸蔵量の130%まで充電した後、10mA/
cm2の電流密度で各水素吸蔵合金電極の電圧が−0.
75Vvs.Hg/HgOに成るまで放電することによ
って行った。以上の試験結果を下記表1にまとめて示し
た。
[Example] Next, an example of the present invention will be described. Commercially available misch metal, nickel, cobalt, and aluminum powders were mixed at a predetermined composition ratio, for example, MmNi4.0Co0.5A.
They were weighed and mixed so as to have a weight of l0.5, and then heated and melted by an arc melting method to obtain a hydrogen storage alloy ingot. This ingot was immersed in hypophosphorous acid (concentration: 30%) for 2 hours at room temperature. During this time, the alloy ingot expanded and was pulverized while generating hydrogen gas. This powder was washed with water, the hypophosphorous acid aqueous solution was removed by filtration, and then dried in air at 60° C. for 2 hours to obtain the hydrogen storage alloy powder of the present invention. During this drying process, the alloy powder did not catch fire and was stable. Note that the hydrogen absorption rate of the alloy powder thus produced was extremely high compared to the alloy powder produced by finely pulverizing with a ball mill as shown below. Also, 98% of this alloy powder passed through a 250 mesh sieve. 15 wt. %, and 5 wt.% of tetrafluoroethylene powder as a binder. % was added and mixed, and this was pressed onto a nickel wire gauze to produce a hydrogen storage alloy electrode. This is called the electrode of the present invention. For comparison, the alloy ingot was coarsely pulverized by the conventional method, and then pulverized in a ball mill in an Ar atmosphere to produce an alloy powder of 250 mesh or less, and this was used to similarly form a hydrogen storage alloy electrode. Created. This electrode is called comparison electrode A. Incidentally, the alloy powder obtained by pulverizing the coarsely pulverized alloy in a ball mill did not ignite when taken out from the pot, but an increase in temperature was observed. Furthermore, for comparison, after the alloy ingot was coarsely pulverized, it was filled into a pressure vessel according to the conventional method, and hydrogen was absorbed at 80°C and 50 atm, and then released at a reduced pressure on the order of 10-3 Torr. 5
A hydrogen storage alloy electrode was similarly prepared using the alloy powder which was repeatedly hydrogenated and crushed to a size of 250 mesh or less. This is called comparison electrode B. In the hydrogenation grinding process, if the alloy powder is taken out of the pressure vessel in the air, it will catch fire after a while, so it was necessary to take it out in an Ar atmosphere and leave it for 24 hours before taking it out into the air. Incidentally, when the alloy ingot was immersed in hydrazine, which is a strong reducing agent similar to hypophosphorous acid, the alloy was pulverized, but ignition during the drying process was unavoidable, and alloy powder could not be obtained. . In the case of hypophosphorous acid, it has been found that, in addition to its reducing action, an antioxidant film of nickel-phosphoric acid plating is formed on the surface of the alloy powder. The electrode of the present invention, comparative electrode A, and comparative electrode B produced in this manner were combined with each other as a working electrode and a nickel plate as a counter electrode, and a 30 wt. % potassium hydroxide aqueous solution was used to prepare open-type test cells. Here, the weight of the hydrogen storage alloy powder in each of these electrodes is about 1 g. First, discharge was performed using each of the test cells, and it was confirmed in advance that hydrogen was not contained in the alloy. Next, we checked the capacity that could be extracted during the first charge and discharge. Further, charging and discharging were repeated, and the number of charging and discharging cycles required for the capacity to become stable was determined. Charge/discharge the test cell 6 times.
After charging each hydrogen storage alloy electrode to 130% of the electrochemical hydrogen storage capacity at a current density of mA/cm2,
At a current density of cm2, the voltage of each hydrogen storage alloy electrode is -0.
75V vs. This was done by discharging until Hg/HgO was reached. The above test results are summarized in Table 1 below.

【0007】[0007]

【表1】[Table 1]

【0008】該表1から分かるように、合金インゴット
を次亜りん酸に浸漬して粉砕することにより、初回放電
容量が増加し、初期活性化サイクル数が減少する。又、
本発明電極は初期活性化サイクルを行う前に既に高い活
性を有し且つ合金粒子表面の耐酸化性が付与されている
ためと考えられる。
As can be seen from Table 1, by immersing the alloy ingot in hypophosphorous acid and pulverizing it, the initial discharge capacity increases and the number of initial activation cycles decreases. or,
This is believed to be because the electrode of the present invention already has high activity before the initial activation cycle and the surface of the alloy particles is provided with oxidation resistance.

【0009】上記実施例では、次亜りん酸での浸漬粉砕
処理を室温で2時間としたが、それより細かい粉末を得
るには処理時間を長くするか、処理温度を上げるか、次
亜りん酸濃度を上げるかにより達成される。又、それよ
り粗い微粉末を得るには、上記とは逆に、処理時間を短
くするか、処理温度を下げるか、次亜りん酸を希釈し濃
度を低くするかにより達成される。
In the above example, the immersion pulverization treatment with hypophosphorous acid was carried out at room temperature for 2 hours, but in order to obtain finer powder, the treatment time should be lengthened, the treatment temperature should be increased, or the hypophosphorous acid This can be achieved by increasing the acid concentration. Further, in order to obtain a coarser fine powder, contrary to the above, it can be achieved by shortening the treatment time, lowering the treatment temperature, or diluting the hypophosphorous acid to lower its concentration.

【0010】上記の実施例により製造した本発明の水素
吸蔵合金粉末は、これを電極に用いる場合を示したが、
ヒートポンプ、水素貯蔵装置等の所望の目的の装置に用
いても良いことは言うまでもない。いずれの場合でも、
水素の吸収速度が早く、高活性であるが、空気中で取り
扱うことができ、而も初期活性化が容易であることから
極めて有利である。
[0010] The hydrogen storage alloy powder of the present invention produced according to the above embodiments was used for electrodes, but
Needless to say, it may be used in devices for desired purposes such as heat pumps and hydrogen storage devices. In any case,
It has a fast hydrogen absorption rate and high activity, and is extremely advantageous because it can be handled in the air and initial activation is easy.

【0011】上記の実施例では、水素吸蔵合金のインゴ
ットを次亜りん酸に浸漬処理した場合を示したが、該イ
ンゴットをクラッシャーなどで粗粉砕したものを次亜り
ん酸に浸漬処理するようにしても上記と同様に微粉化し
て上記の優れた特性を有する水素合金粉末を得ることが
できる。
[0011] In the above example, a case was shown in which an ingot of a hydrogen storage alloy was immersed in hypophosphorous acid, but the ingot was coarsely crushed using a crusher or the like and then immersed in hypophosphorous acid. However, it is possible to obtain a hydrogen alloy powder having the above-mentioned excellent properties by pulverizing it in the same manner as above.

【0012】尚、本発明の製造法の対象とする水素吸蔵
合金は、La−Ni、Zr−Ni、Ti−Ni、La−
NiのNiの一部をCo、Al、Hn等で置換して成る
多元合金、LaをMmで置換して成るMm−Ni合金、
Zr−V−Ni系等のラベス相AB2型合金、Ti−F
eなど任意の合金である。
[0012] The hydrogen storage alloys to which the manufacturing method of the present invention is applied include La-Ni, Zr-Ni, Ti-Ni, and La-Ni.
A multi-component alloy formed by substituting a part of Ni with Co, Al, Hn, etc., an Mm-Ni alloy formed by substituting La with Mm,
Laves phase AB2 type alloy such as Zr-V-Ni system, Ti-F
It is any alloy such as e.

【0013】[0013]

【発明の効果】このように本発明によるときは、水素吸
蔵合金を次亜りん酸に浸漬するだけの簡単な作業で、耐
酸化性に優れ、空気中で取り扱うことができ、而も高活
性で初期活性化のための操作回数が少なく、安定した特
性が得られる水素吸蔵合金粉末が容易且つ高能率に又、
従来法のような大規模な製造設備と作業を要せず、安価
に得られる効果を有する。
[Effects of the Invention] As described above, according to the present invention, a hydrogen-absorbing alloy with excellent oxidation resistance, can be handled in the air, and has high activity by simply immersing it in hypophosphorous acid. It is easy and highly efficient to produce hydrogen-absorbing alloy powder that requires fewer operations for initial activation and provides stable properties.
It does not require large-scale production equipment and operations unlike conventional methods, and has the advantage of being inexpensive.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  水素吸蔵合金を次亜りん酸に浸漬処理
することを特徴とする水素吸蔵合金粉末の製造法。
1. A method for producing a hydrogen storage alloy powder, which comprises immersing a hydrogen storage alloy in hypophosphorous acid.
JP3177842A 1991-04-17 1991-04-17 Production of hydrogen storage alloy powder Pending JPH04318106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177842A JPH04318106A (en) 1991-04-17 1991-04-17 Production of hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177842A JPH04318106A (en) 1991-04-17 1991-04-17 Production of hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH04318106A true JPH04318106A (en) 1992-11-09

Family

ID=16038072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177842A Pending JPH04318106A (en) 1991-04-17 1991-04-17 Production of hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH04318106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645833A1 (en) * 1993-08-31 1995-03-29 SANYO ELECTRIC Co., Ltd. Method for producing a hydrogen absorbing alloy electrode
EP0696823A1 (en) * 1994-02-25 1996-02-14 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
JP2004047290A (en) * 2002-07-12 2004-02-12 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, manufacturing method of the same, and alkaline storage battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645833A1 (en) * 1993-08-31 1995-03-29 SANYO ELECTRIC Co., Ltd. Method for producing a hydrogen absorbing alloy electrode
CN1066857C (en) * 1993-08-31 2001-06-06 三洋电机株式会社 Method for producing a hydrogen absorbing alloy electrode
EP0696823A1 (en) * 1994-02-25 1996-02-14 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
EP0696823A4 (en) * 1994-02-25 1996-04-24 Yuasa Battery Co Ltd Hydrogen absorbing electrode and production method thereof
US5935732A (en) * 1994-02-25 1999-08-10 Yuasa Corporation Hydrogen absorbing electrode and its manufacturing method
JP2004047290A (en) * 2002-07-12 2004-02-12 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, manufacturing method of the same, and alkaline storage battery
JP4497797B2 (en) * 2002-07-12 2010-07-07 三洋電機株式会社 Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery

Similar Documents

Publication Publication Date Title
US5518509A (en) Method for producing a hydrogen absorbing alloy electrode
US5932369A (en) Hydrogen occluding alloy and electrode made of the alloy
JPH04318106A (en) Production of hydrogen storage alloy powder
JP3432870B2 (en) Method for producing metal hydride electrode
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
JPH05217578A (en) Manufacture of hydrogen storage alloy electrode
JPS63264869A (en) Manufacture of hydrogen storage electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JPH0987784A (en) Hydrogen storage alloy
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JPH07296810A (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JPH09176777A (en) Hydrogen storage alloy
JPH05225974A (en) Hydrogen storage alloy electrode
JPH10195569A (en) Hydrogen storage alloy excellent in initial activity
JPH1025528A (en) Hydrogen storage alloy
JPH09176776A (en) Hydrogen storage alloy
JPH09213317A (en) Manufacture of hydrogen storage alloy electrode
JPH10195571A (en) Hydrogen storage alloy excellent in initial activity
JPH0959733A (en) Hydrogen storage alloy
JPH09176778A (en) Hydrogen storage alloy
JPH0971836A (en) Hydrogen storage alloy
JPS6269461A (en) Manufacture of negative electrode for secondary cell