JPS63264869A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPS63264869A
JPS63264869A JP62098933A JP9893387A JPS63264869A JP S63264869 A JPS63264869 A JP S63264869A JP 62098933 A JP62098933 A JP 62098933A JP 9893387 A JP9893387 A JP 9893387A JP S63264869 A JPS63264869 A JP S63264869A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
alloy
electrode
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62098933A
Other languages
Japanese (ja)
Other versions
JPH0812777B2 (en
Inventor
Yoshio Moriwaki
良夫 森脇
Tsutomu Iwaki
勉 岩城
Akiyoshi Shintani
新谷 明美
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62098933A priority Critical patent/JPH0812777B2/en
Publication of JPS63264869A publication Critical patent/JPS63264869A/en
Publication of JPH0812777B2 publication Critical patent/JPH0812777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the pulverization and dissolution of a hydrogen storage alloy to increase the life of an electrode by accommodating a hydrogen storage alloy in a pressure vessel, performing hydrogenation with hydrogen gas and dehydrogenation to form fine powder, separating the powder except for the fine powder, and using only the fine powder for a hydrogen storage electrode. CONSTITUTION:A hydrogen storage alloy 1 is accommodated in a pressure vessel 2, and hydrogenation with hydrogen gas and dehydrogenation are applied to the alloy 1 to form the fine powder. The alloy powder except for the fine powder is separated, and only the fine powder is used for a hydrogen storage electrode. The use of the fine powder having a particle size of 100mu or less obtained by sieving is preferable. By hydrogenation with hydrogen gas, the fine powder is easily obtained, and more pulverization of the alloy is prevented even if charge-discharge of the hydrogen storage electrode is repeated. The dissolution of impurities can be prevented and the life of the hydrogen storage electrode is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合金
を用いる水素吸蔵電極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a hydrogen storage electrode using a hydrogen storage alloy that reversibly stores and releases hydrogen.

従来の技術 各種の電源のうち二次電池としては、鉛蓄電池とアルカ
リ蓄電池とが広く使われている。
BACKGROUND OF THE INVENTION Among various power sources, lead-acid batteries and alkaline batteries are widely used as secondary batteries.

そのうちアルカリ蓄電池には1、ニッケルーカドミウム
蓄電池が大半を占め、焼結式ニッケル極の実用化が利用
の範囲を大きく広げた。
Of these, nickel-cadmium storage batteries account for the majority of alkaline storage batteries, and the practical application of sintered nickel electrodes has greatly expanded the scope of their use.

この電池は放電特性の点で優れ、高率放電を行なっても
電圧や容量の低下が少ない。また、寿命も長く、過充電
など苛酷な条件にも耐え、低温での性能もよい。
This battery has excellent discharge characteristics, with little drop in voltage or capacity even during high rate discharge. They also have a long lifespan, can withstand harsh conditions such as overcharging, and have good performance at low temperatures.

ところが高エネルギー密度に対する対応には、なお相当
の努力が必要である。正極については、例えば、発泡状
ニッケル極などが実用化されたが、負極のカドミウム極
については、現在のところあまり顕著な進歩はない。
However, considerable efforts are still required to cope with high energy densities. As for positive electrodes, for example, foamed nickel electrodes have been put into practical use, but as of now there has not been much significant progress on cadmium negative electrodes.

例えばこの中で負極のカドミウムに代わって亜鉛が取り
上げられている。−次電池用としては成功しているが、
よく知られているように充放電時での変形、樹枝状析出
などによる寿命の問題があるので特殊用の域を出ていな
い。
For example, zinc is being used instead of cadmium in the negative electrode. -Although it has been successful for secondary batteries,
As is well known, there are problems with life expectancy due to deformation during charging and discharging, dendritic precipitation, etc., so they are still limited to special use.

そこで最近注目されてきたのは水素を可逆的に吸蔵・放
出する水素吸蔵合金を用いた水素極である。宇宙用に採
用されている水素ガス拡散電極方式と興なり、この場合
は、カドミウムや亜鉛などと同じ取扱いで電池を構成で
き、実際の放電可能な容量密度をカドミウムより大きく
できることや亜鉛のようなデンドライトの形成や電極の
形状変化などがないことから、高エネルギー密度で長寿
命、無公害のアルカリ蓄電池として有望である。
Therefore, hydrogen electrodes using hydrogen storage alloys that reversibly absorb and release hydrogen have been attracting attention recently. This is based on the hydrogen gas diffusion electrode system used for space applications.In this case, batteries can be constructed using the same treatment as cadmium or zinc, and the actual dischargeable capacity density can be higher than that of cadmium. Because there is no formation of dendrites or changes in the shape of the electrodes, it is promising as a high-energy density, long-life, pollution-free alkaline storage battery.

この水素吸蔵合金を用いた水素吸蔵電極の製造法として
は、従来から水素吸蔵合金を多孔性導電体と共に焼結し
て電極を得る焼結式や発泡金属や金属繊維、パンチング
メタルやエキスバンドメタル、金属ネットなどの多孔性
導電体に水素吸蔵合金を結着剤などと共に充填した方式
がよ(用いられていた。これらに用いられる水素吸蔵合
金は、粉末状であり、一般には機械的な粉砕で粉末化さ
れている。一方この粉砕を水素ガスでの水素化と脱水素
化で行なう例も特開昭53−103910号公報などで
知られている。
Conventional methods for manufacturing hydrogen storage electrodes using this hydrogen storage alloy include a sintering method in which the hydrogen storage alloy is sintered with a porous conductor to obtain an electrode, a method using foamed metal, metal fiber, punched metal, and expanded metal. , a method in which a porous conductor such as a metal net is filled with a hydrogen storage alloy along with a binder is commonly used.The hydrogen storage alloy used in these materials is in powder form and is generally mechanically crushed On the other hand, an example in which this pulverization is carried out by hydrogenation and dehydrogenation with hydrogen gas is also known, such as in JP-A-53-103910.

発明が解決しようとする問題点 水素吸蔵合金を用いた水素吸蔵電極はこのように高エネ
ルギー密度の向上には有効であるが、これまでのところ
、アルカリ蓄電池の水素吸蔵合金負極に使用する際にと
き次のような問題があった。すなわち、水素の吸蔵と放
出、つまり充電と放電を繰返すと、合金粉末の微粉化が
進み電極が変形したり、粉末の脱落が生じたりする。こ
のことによって、電極の性能低下を招(ことがある。
Problems to be Solved by the Invention Hydrogen storage electrodes using hydrogen storage alloys are effective in improving high energy density as described above, but so far, when used as hydrogen storage alloy negative electrodes for alkaline storage batteries, I had the following problem: That is, when hydrogen storage and release, that is, charging and discharging, are repeated, the alloy powder becomes finer and the electrode deforms or the powder falls off. This may lead to a decrease in electrode performance.

また、粉砕した合金粉末中に電極として有効に作用する
合金相以外の不純物相ががなり含まれており、これが電
解液中で溶解して性能を低下させることがあった。
In addition, the pulverized alloy powder contains impurity phases other than the alloy phase that effectively acts as an electrode, and these may dissolve in the electrolyte and degrade performance.

本発明はこの水素吸蔵合金をアルカリ蓄電池の水素吸蔵
合金負極に使用する際に、これまで問題であった微粉化
や溶解などを解決し、長寿命化を図ると同時に水素吸蔵
電極の簡易な製造方法を提供することを目的にする。
The present invention solves the problems of pulverization and dissolution that have hitherto been a problem when using this hydrogen storage alloy as a hydrogen storage alloy negative electrode of an alkaline storage battery, and at the same time aims to extend the life of the hydrogen storage alloy and simplify the production of the hydrogen storage electrode. The purpose is to provide a method.

問題点を解決するための手段 本発明は、水素吸蔵合金を圧力容器に収納し、水素ガス
での水素化と、脱水素化を行ない、前記水素化と、脱水
素化により微粉末化していない部分だけを分離し、残り
をその後水素吸蔵電極用として用いることを特徴とする
水素吸蔵電極の製造方法である。
Means for Solving the Problems The present invention stores a hydrogen storage alloy in a pressure vessel and performs hydrogenation with hydrogen gas and dehydrogenation, and the hydrogen storage alloy is not pulverized by the hydrogenation and dehydrogenation. This is a method for manufacturing a hydrogen storage electrode, which is characterized in that only a portion is separated and the remainder is used as a hydrogen storage electrode.

さらに、好ましくは篩分により粒径が100ミクロン以
下の粒径のみを分離して使用するものである。また微粉
化を十分行なうために水素ガスでの水素化と、脱水素化
は2回以上行ない、さらに酸化を抑制するためにその水
素化を行なった圧力容器内で、その後微粉末化していな
い部分だけを分離することが良い。
Further, it is preferable that only particles having a particle size of 100 microns or less be separated and used by sieving. In addition, to ensure sufficient pulverization, hydrogenation with hydrogen gas and dehydrogenation are performed two or more times, and in order to further suppress oxidation, the parts that have not been pulverized in the pressure vessel after hydrogenation are It is better to separate only the

作用 水素ガスでの水素化と、脱水素化を行ない、水素化と、
脱水素化により微粉末化していない部分だけを分離除去
し、残りを、その後水素吸蔵電極用として用いることに
より微粉化の問題を解決する。すなわち、水素ガスでの
水素化は機械的粉砕と比較して、より微細な粉末を簡単
に得られ、そのことによって水素吸蔵電極で充放電を繰
返してもそれ以上微粉化が進みにくい。また溶解につい
ては、有効合金相だけが選択的に微粉化し合金中の不純
物相は十分に微粉化していないためその部分だけ篩分な
どにより分離できることにより不純物の溶解を防ぐこと
ができる。
Hydrogenation with working hydrogen gas and dehydrogenation are performed.
The problem of pulverization is solved by separating and removing only the portion that has not been pulverized by dehydrogenation, and then using the remainder as a hydrogen storage electrode. That is, hydrogenation with hydrogen gas can easily obtain finer powder than mechanical pulverization, and as a result, even if the hydrogen storage electrode is repeatedly charged and discharged, further pulverization is difficult to proceed. Regarding dissolution, only the effective alloy phase is selectively pulverized, and since the impurity phase in the alloy is not sufficiently pulverized, only that portion can be separated by sieving, etc., thereby preventing the impurities from dissolving.

このように篩分により選択的に微粉化した有効合金相だ
けが利用でき電解液中で溶解しやすい合金中の不純物相
を粗い粒子として分離することができるので水素吸蔵電
極の長寿命化に有効であることがわかった。
In this way, only the effective alloy phase that is selectively pulverized by sieving can be used, and the impurity phase in the alloy that is easily dissolved in the electrolyte can be separated as coarse particles, which is effective for extending the life of the hydrogen storage electrode. It turned out to be.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

水素吸蔵合金として市販のMm(ミツシュメタル)、N
i、Co、Mn、AIの各原材料を一定の組成比に秤量
してアルゴンアーク溶解炉によってMmNi5.aCO
o、sMno、aAto、sの組成を有する合金の製造
をめざした。ついでこの合金を公知の方法に従って真空
熱処理炉で熱処理し、その後、図に示すような装置に収
納した。図は本発明の水素吸蔵電極の一製造装置である
。1〜10cm角程度の塊状の水素吸蔵合金1は、圧力
容器2の上部の粗い金属メツシュ3上に収納した。この
圧力容器2はガスバルブ4を有し、また容器内部に篩分
のためのメツシュ篩5が収納された密閉が可能な構造で
ある。ガスバルブ4は、真空引きや水素ガス導入、さら
には不活性ガスの導入に用いる。
Commercially available hydrogen storage alloys Mm (Mitshu Metal), N
The raw materials MmNi5. aCO
The aim was to produce an alloy having the following compositions: o, sMno, aAto, s. This alloy was then heat treated in a vacuum heat treatment furnace according to a known method, and then placed in an apparatus as shown in the figure. The figure shows an apparatus for manufacturing a hydrogen storage electrode of the present invention. A hydrogen storage alloy 1 in the form of a block of about 1 to 10 cm square was housed on a coarse metal mesh 3 at the top of a pressure vessel 2 . This pressure vessel 2 has a gas valve 4, and has a sealable structure in which a mesh sieve 5 for sieving is housed inside the vessel. The gas valve 4 is used for evacuation, hydrogen gas introduction, and inert gas introduction.

図をもとに本発明の詳細な説明する。まず水素吸蔵合金
1を収納した圧力容器2内をガスバルブ4を介して真空
ポンプにより脱ガスした。そして次に同じバルブ4から
市販の水素ガスを導入し、約30気圧まで加圧した。こ
れにより水素吸蔵合金1はまちな(水素吸蔵反応を開始
した。この水素化を充分行なった後、バルブ4から水素
ガスを放出し、放出を充分行なうために真空ポンプによ
り脱ガスした。この水素化と脱水素化を3回繰返した後
、圧力容器2を振動させ微細化した水素吸蔵合金粉末を
200メツシユのメツシュ篩5で篩分した。メツシュ篩
5を通過した粉末は、その後バルブ4から導入したアル
ゴンガス中でしばら(放置し、その後圧力容器2から外
へ取り出した。この際の200メツシユのメツシュ篩を
通過し回収された水素吸蔵合金粉末量は当初仕込んだ合
金量のほぼ96%であった。一方残り約4%のメツシュ
篩を通過できなかった粉末や粒子を調べてみた結果、こ
れらは水素吸蔵のための有効合金相とは幾分相が異なっ
ていることがX線回折によって確認できた。またこの粗
い粉末や粒子はその後、水素ガスでの水素化を行なった
ところ水素化特性は先の200メツシユのメツシュ篩を
通過し回収された水素吸蔵合金粉末と比較するとかなり
悪い性能であった。
The present invention will be explained in detail based on the drawings. First, the inside of the pressure vessel 2 containing the hydrogen storage alloy 1 was degassed by a vacuum pump via the gas valve 4. Next, commercially available hydrogen gas was introduced through the same valve 4, and the pressure was increased to about 30 atmospheres. As a result, the hydrogen storage alloy 1 started a hydrogen storage reaction. After this hydrogenation was sufficiently performed, hydrogen gas was released from the valve 4, and degassed using a vacuum pump to ensure sufficient release. After repeating dehydrogenation three times, the pressure vessel 2 was vibrated and the fine hydrogen storage alloy powder was sieved through a 200-mesh mesh sieve 5.The powder that passed through the mesh sieve 5 was then introduced through a valve 4. The hydrogen storage alloy powder was left for a while in a heated argon gas, and then taken out from the pressure vessel 2. At this time, the amount of hydrogen-absorbing alloy powder that passed through a 200-mesh sieve and was recovered was approximately 96% of the amount of alloy initially charged. On the other hand, as a result of examining the remaining approximately 4% of powders and particles that did not pass through the mesh sieve, X-ray diffraction revealed that these had a phase that was somewhat different from the effective alloy phase for hydrogen storage. This was confirmed.Also, when this coarse powder and particles were subsequently hydrogenated with hydrogen gas, the hydrogenation properties were considerably poorer than the hydrogen storage alloy powder recovered after passing through a 200-mesh sieve. Met.

次に、200メツシユのメツシュ篩を通過し回収された
水素吸蔵合金粉末を水素吸蔵電極とし、さらに密閉形ニ
ッケルー水素二次電池を構成して評価した結果について
説明する。
Next, the results of evaluating a sealed nickel-metal hydride secondary battery using the hydrogen storage alloy powder recovered after passing through a 200-mesh sieve as a hydrogen storage electrode will be described.

まず200メツシユ通過の水素吸蔵合金粉末をポリビニ
ルアルコールの5%(重量)のエチレングリニ1−ル溶
液、さらに重量比で0.8%のポリエチレン微粉末、同
じ(0,5%の塩化ビニル−アクリロニトリル短繊維を
加えてペースト状にし十分混練し、厚さ0.15am、
孔径1.8m+a、開孔度50%の鉄製でニッケルメッ
キを施したパンチングメタル板に塗着し、0.6+ms
幅のスリットを通して平滑化し、その後120℃で1時
間乾燥して水素吸蔵電極を得た。このようにして得た水
素吸蔵電極を電極Aとする。
First, hydrogen storage alloy powder that has passed through 200 meshes is added to a 5% (by weight) ethylene glycol solution of polyvinyl alcohol, then 0.8% (by weight) polyethylene fine powder, and the same (0.5% vinyl chloride-acrylonitrile solution). Add short fibers to make a paste, knead thoroughly, and make a paste with a thickness of 0.15 am.
Painted on a punched metal plate made of iron and nickel plated with a hole diameter of 1.8m+a and a porosity of 50%, 0.6+ms
It was smoothed through a wide slit and then dried at 120° C. for 1 hour to obtain a hydrogen storage electrode. The hydrogen storage electrode thus obtained is referred to as electrode A.

比較のために、水素ガスでの水素化と脱水素化は同様に
行なうが、水素吸蔵合金粉末を200メツシユのメツシ
ュ篩5で篩分をしないで同様に水素吸蔵電極にしたもの
を電極Bとする。さらに、水素ガスでの水素化と脱水素
化をしないで水素吸蔵合金をボールミルによる機械的な
粉砕法によって200メツシユのメツシュ篩を通過する
まで粉砕して得た水素吸蔵合金粉末を同様に水素吸蔵電
極にしたものを電極Cとして加えた。
For comparison, hydrogenation and dehydrogenation using hydrogen gas were performed in the same way, but the hydrogen storage alloy powder was made into a hydrogen storage electrode in the same manner without being sieved through a 200-mesh sieve 5, and electrode B was used. do. Furthermore, a hydrogen-absorbing alloy powder obtained by mechanically crushing a hydrogen-absorbing alloy using a ball mill without hydrogenation and dehydrogenation until it passes through a 200-mesh sieve was also used as a hydrogen-absorbing alloy powder. The electrode was added as electrode C.

このようにして得た水素吸蔵電極A−Cは、その後密閉
形ニッケルー水素二次電池として単2形で評価を行なっ
た。
The thus obtained hydrogen storage electrodes A-C were then evaluated as AA sealed nickel-metal hydride secondary batteries.

すなわち、先の水素吸蔵電極を各々幅3.9cm長さ2
6C11に裁断し、リード板を所定の2カ所にスポット
溶接により取り付けた。相手径としては、公知の発泡式
ニッケル極を選び、幅3.9cm長さ22cmとして用
いた。この場合もリード板を2カ所取り付けた。
In other words, the hydrogen storage electrodes are each 3.9 cm wide and 2 cm long.
It was cut to 6C11, and lead plates were attached to two predetermined locations by spot welding. As the mating diameter, a known foamed nickel electrode was selected and used with a width of 3.9 cm and a length of 22 cm. In this case as well, lead plates were attached at two locations.

セパレータとしては、ボリアミド不織布、電解液として
は、比重1.20の苛性カリ水溶液に水酸化リチウムを
30g/e溶解して用いた。公称容量は3.0Ahであ
る。
A polyamide nonwoven fabric was used as the separator, and 30 g/e of lithium hydroxide was dissolved in a caustic potassium aqueous solution having a specific gravity of 1.20 as the electrolyte. The nominal capacity is 3.0 Ah.

これらの電池を通常の充放電サイクル試験によって20
℃で評価した結果を説明する。
These batteries were subjected to a normal charge/discharge cycle test for 20
The results of evaluation at °C will be explained.

充電は、0.2C(5時間率)で150%まで、放電は
0.5C(2時間率〉で終止電圧0゜8Vとし充放電サ
イクルを繰り返し行なった。
Charging was carried out at 0.2 C (5 hour rate) to 150%, and discharging was carried out at 0.5 C (2 hour rate) with a final voltage of 0.8 V, and charge and discharge cycles were repeated.

その結果、電極Aを用いて構成した単2形密閉形ニッケ
ルー水素二次電池は、100サイクルの放電容量が3.
15Ah、300サイクルで3゜14Ah、600サイ
クルで3.13Ahであり寿命性能は、極めて優れてい
た。
As a result, the AA sealed type nickel-metal hydride secondary battery constructed using electrode A had a discharge capacity of 3.2 mm over 100 cycles.
The life performance was extremely excellent as it was 15Ah, 3.14Ah for 300 cycles, and 3.13Ah for 600 cycles.

これに対して電極Bで構成した電池は、100サイクル
で3.08Ahであったが、300サイクルで2.95
Ahと公称容量の3.0Ahを下回り、その後急激に放
電容量が低下した。なお、電極Bで構成した電池は電極
Aで構成した電池よりも放電電圧が全体的に低かった。
On the other hand, the battery configured with electrode B had 3.08Ah after 100 cycles, but 2.95Ah after 300 cycles.
Ah and the nominal capacity of 3.0 Ah, and thereafter the discharge capacity decreased rapidly. Note that the discharge voltage of the battery configured with electrode B was lower overall than that of the battery configured with electrode A.

さらに電極Cで構成した電池は当初公称容量の3.0A
hを満たしていたものの100サイクルでは2.81A
hの放電容量が得られたに過ぎずその後は電極Bで構成
した電池と同様に急激に放電容量が低下した。
Furthermore, the battery configured with electrode C had an initial nominal capacity of 3.0A.
2.81A for 100 cycles even though h was satisfied.
A discharge capacity of only h was obtained, and after that, the discharge capacity rapidly decreased similarly to the battery constructed with electrode B.

このような電池を構成した充放電試験結果から水素ガス
での水素吸蔵と水素放出を行なった後、水素吸蔵合金粉
末を篩分により有効合金相だけにしたことによる水素吸
蔵電極Aが、寿命性能に優れていることが確認できた。
The results of charging and discharging tests using such a battery show that after hydrogen storage and release using hydrogen gas, the hydrogen storage electrode A, which is made by sieving the hydrogen storage alloy powder to reduce only the effective alloy phase, has a long life performance. It was confirmed that it was excellent.

なお、先の説明以外に本発明に関して種々の検討を行な
った結果、以下のことが重要であった。
In addition, as a result of various studies regarding the present invention other than those described above, the following points were found to be important.

まず水素ガスでの水素化と、脱水素化の工程は゛実施例
では3回としたが、2回以上行なうことが電池性能上好
ましい。また篩分により一定の粒径で分離しする工糎の
粒径は200メツシユすなわち74ミクロンを用いたが
これは100ミクロン以下であることが好ましい。さら
に水素ガスでの水素化と、脱水素化を行なった水素吸蔵
合金粉末は非常に活性が高いので実施例の不活性ガスの
他に水素吸蔵合金粉末と反応を起こさない液体などで表
面を覆い、酸化を進めないことも有効な手段である。
First, the steps of hydrogenation with hydrogen gas and dehydrogenation were performed three times in the example, but it is preferable to perform them two or more times in terms of battery performance. Further, the particle size of the starch to be separated into a constant particle size by sieving was 200 mesh, that is, 74 microns, but it is preferably 100 microns or less. Furthermore, the hydrogen storage alloy powder that has been hydrogenated with hydrogen gas and dehydrogenated is very active, so in addition to the inert gas used in the example, the surface is covered with a liquid that does not react with the hydrogen storage alloy powder. , it is also an effective means to prevent oxidation from proceeding.

発明の効果 以上のように本発明の水素吸蔵電極の製造方法は、水素
吸蔵合金を圧力容器に収納し、水素ガスでの水素化と、
脱水素化を行ない、前記水素化と、脱水素化により微粉
末化していない部分だけを分離し、残りをその後水素吸
蔵電極用として用いるものであり、水素吸蔵合金をアル
カリ蓄電池の水素吸蔵合金負極に使用すると、これまで
問題であった微粉化や溶解などを解決し長寿命化を図る
とともに水素吸蔵電極の簡易化が可能になる。
Effects of the Invention As described above, the method for manufacturing a hydrogen storage electrode of the present invention includes storing a hydrogen storage alloy in a pressure vessel, hydrogenating it with hydrogen gas, and
Dehydrogenation is performed, and only the part that has not been pulverized by the hydrogenation and dehydrogenation is separated, and the remainder is used for a hydrogen storage electrode.The hydrogen storage alloy is used as a hydrogen storage alloy negative electrode for an alkaline storage battery. When used for this purpose, it will solve the problems of pulverization and dissolution that have hitherto been a problem, prolong the life of the hydrogen storage electrode, and make it possible to simplify the hydrogen storage electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の水素吸蔵電極の製造装置断面図
である。 1・・・水素吸蔵合金、2・・・圧力容器、3・・・粗
い金属メツシュ、4・・・ガスバルブ、5・・・メツシ
ュ篩。
The figure is a sectional view of an apparatus for manufacturing a hydrogen storage electrode according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Hydrogen storage alloy, 2...Pressure vessel, 3...Rough metal mesh, 4...Gas valve, 5...Mesh sieve.

Claims (5)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を圧力容器に収納し、水素ガスでの
水素化と、脱水素化を行ない、前記水素化と、脱水素化
により微粉末化していない部分だけを分離し、残部をそ
の後水素吸蔵電極用として用いることを特徴とする水素
吸蔵電極の製造法。
(1) The hydrogen storage alloy is stored in a pressure vessel, hydrogenated with hydrogen gas and dehydrogenated, and only the portion that has not been pulverized by the hydrogenation and dehydrogenation is separated, and the remainder is removed afterwards. A method for producing a hydrogen storage electrode, characterized in that it is used as a hydrogen storage electrode.
(2)水素ガスでの水素化と、脱水素化を行なった圧力
容器内で、その後微粉末化していない部分だけを分離す
ることを特徴とする特許請求の範囲第1項記載の水素吸
蔵電極の製造法。
(2) Hydrogen storage electrode according to claim 1, characterized in that only the portion that has not been pulverized afterward is separated in a pressure vessel in which hydrogenation with hydrogen gas and dehydrogenation are performed. manufacturing method.
(3)水素化と、脱水素化の工程を2回以上行なうこと
を特徴とする特許請求の範囲第1項または第2項記載の
水素吸蔵電極の製造法。
(3) The method for producing a hydrogen storage electrode according to claim 1 or 2, characterized in that the steps of hydrogenation and dehydrogenation are performed two or more times.
(4)微粉末化していない部分だけを分離する方法が一
定の粒径での篩分法であることを特徴とする特許請求の
範囲第1項、2項または第3項記載の水素吸蔵電極の製
造法。
(4) The hydrogen storage electrode according to claim 1, 2, or 3, wherein the method for separating only the portion that is not pulverized is a sieving method using a constant particle size. manufacturing method.
(5)篩分により一定の粒径で分離しする工程の粒径が
100ミクロン以下であることを特徴とする特許請求の
範囲第1項、第2項、第3項または第4項記載の水素吸
蔵電極の製造法。
(5) The method according to claim 1, 2, 3, or 4, characterized in that the particle size in the step of separating particles with a constant particle size by sieving is 100 microns or less. Method for manufacturing hydrogen storage electrodes.
JP62098933A 1987-04-22 1987-04-22 Manufacturing method of hydrogen storage electrode Expired - Lifetime JPH0812777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62098933A JPH0812777B2 (en) 1987-04-22 1987-04-22 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62098933A JPH0812777B2 (en) 1987-04-22 1987-04-22 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63264869A true JPS63264869A (en) 1988-11-01
JPH0812777B2 JPH0812777B2 (en) 1996-02-07

Family

ID=14232925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62098933A Expired - Lifetime JPH0812777B2 (en) 1987-04-22 1987-04-22 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0812777B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524819A (en) * 1998-08-27 2002-08-06 オヴォニック バッテリー カンパニー インコーポレイテッド Method for producing powder of hydrogen storage alloy
JP2020004508A (en) * 2018-06-25 2020-01-09 凸版印刷株式会社 Negative electrode composition for alkaline secondary battery and negative electrode for alkaline secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103910A (en) * 1977-02-23 1978-09-09 Matsushita Electric Ind Co Ltd Production of hydrogen occluded electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103910A (en) * 1977-02-23 1978-09-09 Matsushita Electric Ind Co Ltd Production of hydrogen occluded electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524819A (en) * 1998-08-27 2002-08-06 オヴォニック バッテリー カンパニー インコーポレイテッド Method for producing powder of hydrogen storage alloy
JP2020004508A (en) * 2018-06-25 2020-01-09 凸版印刷株式会社 Negative electrode composition for alkaline secondary battery and negative electrode for alkaline secondary battery

Also Published As

Publication number Publication date
JPH0812777B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JPS63264869A (en) Manufacture of hydrogen storage electrode
JPS6119063A (en) Hydrogen occlusion electrode
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPH0756799B2 (en) Method for producing hydrogen storage alloy negative electrode
JPS63264868A (en) Manufacture of hydrogen storage electrode
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JP3198896B2 (en) Nickel-metal hydride battery
JPH04328252A (en) Hydrogen storage alloy electrode
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3057737B2 (en) Sealed alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPH04318106A (en) Production of hydrogen storage alloy powder
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery