JPS6231947A - Manufacture of hydrogen occlusion electrode - Google Patents

Manufacture of hydrogen occlusion electrode

Info

Publication number
JPS6231947A
JPS6231947A JP60171501A JP17150185A JPS6231947A JP S6231947 A JPS6231947 A JP S6231947A JP 60171501 A JP60171501 A JP 60171501A JP 17150185 A JP17150185 A JP 17150185A JP S6231947 A JPS6231947 A JP S6231947A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
electrode
hydrogen storage
specified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60171501A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yanagihara
伸行 柳原
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Akiyoshi Shintani
新谷 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60171501A priority Critical patent/JPS6231947A/en
Publication of JPS6231947A publication Critical patent/JPS6231947A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the initial performance and reduce the manhour of production process by performing the hydrogenation and micronization of alloy at the same time regardless of high temperature heat treatment. CONSTITUTION:For example, materials are weighed so as to constitute a specified composition and placed in a crucible, then melted to prepare an alloy. The alloy is placed in a vacuum heat treating furnace and heat-treated under a specified vacuum condition at a specified temperature for a specified time. The alloy is put into a pressure resistant, sealed container, and hydrogen is occluded into the alloy, then hydrogen is discharged from the alloy. This cycle is repeated several times until the alloy is crushed to fine powder, then hydrogen is removed to obtain a hydrogenated alloy powder. The fine alloy powder is immersed in a specified solution, then washed and dried. The alloy powder is mixed with a binder, and the mixture is press-filled into a foam metal, and dried to obtain a hydrogen occlusion electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は負極材料として水素を可逆的に吸蔵。[Detailed description of the invention] Industrial applications The present invention reversibly stores hydrogen as a negative electrode material.

放出する合金を用いた水素吸蔵電極の製造方法に関する
もので、無公害で高エネルギー密度のアルカリ蓄電池が
提供できるものである。
The present invention relates to a method of manufacturing a hydrogen storage electrode using a hydrogen-emitting alloy, and provides a pollution-free alkaline storage battery with high energy density.

従来の技術 従来の鉛−酸化鉛蓄電池、ニッケルーカドミウム蓄電池
などの電池は酸化物電極を持つために、重量まだは容積
の単位当りのエネルギー密度が比較的低い。そこでエネ
ルギー貯蔵容量の向上を図るだめに、負極として可逆的
に水素を吸蔵、放出する水素吸蔵合金を用い、吸蔵した
水素を活物質とする電極が提案されている。たとえば特
開昭51−13934号公報には水素吸蔵合金として、
Laにi5. LaCo5  などの負極材料が示され
ている。
BACKGROUND OF THE INVENTION Since conventional batteries such as lead-lead oxide batteries and nickel-cadmium batteries have oxide electrodes, they have a relatively low energy density per unit of weight and volume. Therefore, in order to improve the energy storage capacity, an electrode has been proposed in which a hydrogen storage alloy that reversibly stores and releases hydrogen is used as a negative electrode, and the stored hydrogen is used as an active material. For example, in Japanese Patent Application Laid-Open No. 51-13934, as a hydrogen storage alloy,
La i5. Negative electrode materials such as LaCo5 are shown.

さらにはこのLa の部分に他の金属、N i 、 C
oの3、一 部分にも他の金属で置換された多元系合金も提案されて
いるが、高温における放電特性、サイクル寿命など改善
すべき課題を持っている。一方、水素を活物質とする水
素吸蔵合金は塊状のままでは使用できないので、機械的
粉砕によって400メツシュ通過(37μm以下)まで
の微粉末に加工しなければならない。この製造工程に多
くの時間を要していた。
Furthermore, other metals, Ni, and C are added to this La portion.
3. Multi-component alloys in which other metals are partially substituted have also been proposed, but these have issues that need to be improved, such as discharge characteristics at high temperatures and cycle life. On the other hand, since a hydrogen storage alloy containing hydrogen as an active material cannot be used in its lump form, it must be mechanically pulverized into a fine powder that can pass through 400 meshes (37 μm or less). This manufacturing process required a lot of time.

発明が解決しようとする問題点 上記合金等において、Laの部分に他の金属を置換した
り、またはNi、 Co、の部分に他の金属で置換した
りする多元系合金は溶解時の条件によっては、合金の内
部に歪を作ったり、均質性に優れた合金相になりにくい
場合もある。この事は水素解離圧力の平坦性に現われ、
水素を解離する時の圧力傾斜が大きくなる。この現象は
負極とした場合、放電性能の電圧平坦性にも影響を及ぼ
し、放電性能が悪くなる問題点を有する。また、前記の
多元系合金を用いて電極を構成すると不均質な部分の金
属が電池の充、放電のくりかえしによってアルカリ水溶
液(電解液)中に溶解したり、また溶解した金属が析出
したりする。この溶解、析出の繰り返しによって、金属
がセパレータヲ通シテ正極と負極間で微少短絡を発生し
、電池特性を著しく低下させる。したがって、この不均
質な部分を完全に除き、放電特性の向上と微少短絡現象
による性能低下を防止し、サイクル寿命の長い水素吸蔵
電極を製造することにある。
Problems to be Solved by the Invention Among the above alloys, multi-component alloys in which La is replaced with other metals, or Ni and Co are replaced with other metals, may vary depending on the melting conditions. may create strain inside the alloy, or may be difficult to form an alloy phase with excellent homogeneity. This appears in the flatness of the hydrogen dissociation pressure,
The pressure gradient when dissociating hydrogen increases. When this phenomenon is used as a negative electrode, it also affects the voltage flatness of discharge performance, resulting in a problem that the discharge performance deteriorates. Furthermore, when an electrode is constructed using the multi-component alloy mentioned above, the metal in the heterogeneous portion may dissolve into the alkaline aqueous solution (electrolyte) due to repeated charging and discharging of the battery, or the dissolved metal may precipitate. . By repeating this melting and precipitation, the metal passes through the separator, causing a slight short circuit between the positive electrode and the negative electrode, which significantly deteriorates the battery characteristics. Therefore, it is an object of the present invention to completely eliminate this heterogeneous portion, improve discharge characteristics, prevent performance deterioration due to minute short circuit phenomena, and manufacture a hydrogen storage electrode with a long cycle life.

しかし、充・放電サイクルを繰り返えす事によって、さ
らに合金粒子が微細化し、前以って合金表面を修飾して
いたにもかかわらず新しい面が出て、電解液中への溶解
や、セパレータ表面への析出現象がおこりうる。したが
ってサイクル寿命をもっと伸長する場合に問題が発生す
る可能性を持っている。と同時にこの水素吸蔵合金を電
極支持体に加圧一体化して負極を作り、正極とセパレー
タを用いて電池を構成するわけであるが、この合金を細
かい微粉末(30μm以下)に粉砕するの   1に多
くの労力と時間を必要とし、製造コストのアップにもつ
ながり1.hり簡易な製造方法が望まれ6・\−7゛ ていた。
However, by repeating charge/discharge cycles, the alloy particles become even finer, and new surfaces appear even though the alloy surface has been modified in advance, causing dissolution in the electrolyte and separator Surface precipitation phenomena may occur. Therefore, problems may occur when the cycle life is further extended. At the same time, this hydrogen storage alloy is pressurized and integrated into an electrode support to create a negative electrode, and a positive electrode and separator are used to construct a battery. 1. It requires a lot of labor and time, which leads to an increase in manufacturing costs. A simpler manufacturing method was desired.

そこで、本発明は高温熱処理の有無にかかわらず、合金
の水素化と微粉砕とを同時に行って、初期特性の向上と
製造工程の工数を減少することを目的とする。
Therefore, an object of the present invention is to simultaneously hydrogenate and pulverize an alloy, regardless of the presence or absence of high-temperature heat treatment, to improve the initial properties and reduce the number of steps in the manufacturing process.

問題点を解決するための手段 本発明は水素を可逆的に吸蔵、放出する水素吸蔵合金及
び950〜1260″Cの温度範囲で熱処理した前記合
金のいずれかを含む合金に水素の吸蔵と放出を複数回行
なわせる水素化処理と微粉砕とを同時に行なう工程と、
水素を脱気後前記水素化処理した合金の微粉末をアルカ
リ水溶液で表面処理(アルカリ処理)する工程とを有し
、さらに、その後少なくとも水洗と乾燥を施しだ水素化
合金の微粉末を結着剤と共に電極支持体に加圧一体化す
る工程とからなる水素吸蔵電極の製造方法である。
Means for Solving the Problems The present invention provides hydrogen storage alloys that reversibly store and release hydrogen, and alloys containing any of the aforementioned alloys that are heat-treated in a temperature range of 950 to 1260''C. A process in which hydrogenation treatment and pulverization are performed multiple times at the same time,
After degassing the hydrogen, surface treating the hydrogenated alloy fine powder with an alkaline aqueous solution (alkali treatment), and then binding the hydrogenated alloy fine powder which has been at least washed with water and dried. This is a method for manufacturing a hydrogen storage electrode, which comprises a step of integrating the hydrogen storage electrode with the agent into an electrode support under pressure.

さらにまた前記水素吸蔵合金及び高温熱処理をした前記
合金の水素化処理と水素化による微粉砕を同時に行なっ
た後この水素化した微粉末を結着6ヘーノ 剤と共に電極支持体に加圧一体化する工程と、前記一体
化した電極基板をアルカリ水溶液で含浸(アルカリ処理
)する工程を有し、その後少なくとも水洗と乾燥を行な
う工程とからなる水素吸蔵電極の製造方法に関するもの
である。
Furthermore, the hydrogen storage alloy and the high-temperature heat-treated alloy are hydrogenated and pulverized by hydrogenation at the same time, and then the hydrogenated fine powder is integrated with a binding agent 6 into an electrode support under pressure. The present invention relates to a method for manufacturing a hydrogen storage electrode, which comprises a step of impregnating the integrated electrode substrate with an aqueous alkali solution (alkali treatment), and then performing at least washing with water and drying.

作用 ここでのLaNi5 、 LaCo5はムB5型の開型
的な金属間化合物構造をとる。しかし、La、阻、C。
Function LaNi5 and LaCo5 here have a B5 type open intermetallic compound structure. However, La, Sui, C.

の所に他の金属を置換したいわゆる多元系合金を形成す
る場合、その合金の溶解時において不均質な部分も含有
し、水素解離圧力の一定した曲線を示さなく、やや大き
い傾斜を持って推移する。この水素解離圧力の傾斜が電
極性能(放電電位の安定性)にもかかわって来る。と同
時にこの不均質(歪)な部分が電解液中に溶出しやすい
などの問題点も発生する。
When forming a so-called multi-element alloy in which other metals are substituted, the alloy also contains inhomogeneous parts when melted, and the hydrogen dissociation pressure does not show a constant curve, but changes with a somewhat large slope. do. This gradient of hydrogen dissociation pressure also affects electrode performance (stability of discharge potential). At the same time, problems arise, such as the fact that this heterogeneous (distorted) portion tends to dissolve into the electrolyte.

この金属の溶解、析出はサイクル寿命にも大きな影響を
与え、品質の優れたアルカリ蓄電池を製造する上で問題
となる。高温状態ではその度合はさらに大きくなり、実
用的な観点からも改善が必77、−1 要である。
This dissolution and precipitation of metal has a great effect on the cycle life, and is a problem in manufacturing alkaline storage batteries of excellent quality. The degree of this problem becomes even greater in high-temperature conditions, and improvements are needed from a practical standpoint.

そこで、高温熱処理を行なう工程で、溶解時の均質性を
さらに向上させ、合金内部歪、不均質部分を大幅に減少
させ、さらにはアルカリ処理を施すことによって、合金
粉末表面での溶解しやすい金属を前以って除去しておく
事と、合金表面をOH基等で修飾しておく事によって、
電解液中への溶解が著しく減少することになる。しかし
、充。
Therefore, in the high-temperature heat treatment process, we further improve the homogeneity during melting, significantly reduce the internal strain and inhomogeneous parts of the alloy, and furthermore, by applying alkali treatment, we are able to improve the melting properties of easily melted metals on the surface of the alloy powder. By removing in advance and modifying the alloy surface with OH groups,
Dissolution in the electrolyte will be significantly reduced. However, Mitsuru.

放電サイクルによって、さらに細かく微粉化される可能
性もあり、一部が溶解、析出をおこす心配もあるので、
粉砕工程の簡易化を含めて、前以って水素した微粉末状
合金(脱気状態)を用いる事によって、これらの相剰作
用で初期放電性能を含めた特性も優れ、しかも高温時に
おけるサイクル寿命の長い水素吸蔵電極を負極とするア
ルカリ蓄電池を製造することができる。
Due to the discharge cycle, there is a possibility that it will become even finer, and there is also a risk that some of it will dissolve or precipitate.
In addition to simplifying the crushing process, by using a finely powdered alloy that has been hydrogenated in advance (in a degassed state), the mutual effect of these factors results in excellent characteristics including initial discharge performance, and also increases cycle resistance at high temperatures. It is possible to manufacture an alkaline storage battery using a long-life hydrogen storage electrode as a negative electrode.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

市販のMm(ミツシュメタルi La:60. 06 
:26、Nd ニア、Prその他二8程度)、 Ni 
(純度99チ以上)、 Co (純度99チ以上)の各
試料を一定の組成比に秤量し水冷銅るつぼ内に入れ、ア
ーク溶解炉によって加熱溶解させ、MmNi5Cjo2
合金を製造した。ついで、この合金を真空熱処理炉内に
配置し、1o  Torrの真空度、1000°Cの温
度に7時間保持して、高温熱処理を行なった。
Commercially available Mm (Mitshu Metal i La: 60.06
:26, Nd near, Pr other about 28), Ni
(purity of 99 cm or more) and Co (purity of 99 cm or more) were weighed to a certain composition ratio, placed in a water-cooled copper crucible, and heated and melted in an arc melting furnace to form MmNi5Cjo2.
An alloy was produced. Next, this alloy was placed in a vacuum heat treatment furnace and maintained at a vacuum of 10 Torr and a temperature of 1000° C. for 7 hours to perform high temperature heat treatment.

この合金試料を耐圧の密閉可能な容器に入れ、水素を印
加して水素を吸蔵させ、完了後引続き水素を放出させる
操作を複数回行なって合金を微粒子(30μm以下)ま
で粉砕し、脱気して水素を除き水素化した合金微粉末を
作り、この水素化した微粉末を50’Cの温度の30%
KOH水溶液中に24時間浸漬した後、水洗と乾燥を行
ない、ポリビニルアルコールの様な結着剤と共に発泡メ
タル内に加圧充てんした後、乾燥して製造した水素吸蔵
電極を人としだ。
This alloy sample is placed in a pressure-resistant sealable container, hydrogen is applied to absorb hydrogen, and after completion of the operation, hydrogen is released several times to crush the alloy into fine particles (30 μm or less) and degas it. Hydrogen is removed to form a hydrogenated fine alloy powder, and this hydrogenated fine powder is heated to 30% of the temperature of 50'C.
After being immersed in a KOH aqueous solution for 24 hours, the electrode was washed with water, dried, and then filled with a binder such as polyvinyl alcohol into a foamed metal under pressure, and then dried, and the resulting hydrogen storage electrode was used as a human body.

上記水素化した合金微粉末を作り、この水素化した微粉
末をポリビニルアルコールの様な結着剤   1と共に
発泡メタル内に加圧充てんした後、50’Cの温度の3
0%KOH水溶液に24時間浸漬した97、−ノ 後、水洗と乾燥を行なって製造した水素吸蔵電極をBと
した。
The above-mentioned hydrogenated alloy fine powder is prepared, and the hydrogenated fine powder is pressurized and filled into a foamed metal together with a binder such as polyvinyl alcohol.
A hydrogen storage electrode manufactured by immersing in a 0% KOH aqueous solution for 24 hours, washing with water, and drying was designated as B.

比較のため従来方法として、熱処理、水素化処理、アル
カリ処理すべての工程を含まない水素吸蔵電極をCとし
た。対極である正極としては公知の方法で作った酸化ニ
ッケル電極を用い、セパレータを介して円筒型(単2サ
イズ)のアルカリ蓄電池を構成した。充電電流を0・1
C(10時間率)放電電流を0・2C(6時間率)とし
、充電電気量は正極容量に対して130%(過充電)と
し、放電終止電圧は1・OVとした。負極容量は正極容
量の1・3倍とし、正極容量は2ムhで正極律則により
試験を行々った。電池サイクル寿命試験の温度は46°
Cで行ない、20’Cにて容量測定を行なった。初期の
放電特性は6サイクル目とし、放電電位を比較した。サ
イクル寿命は1oサイクル毎に放電容量を測定した。
For comparison, as a conventional method, a hydrogen storage electrode that does not include all steps of heat treatment, hydrogenation treatment, and alkali treatment was designated as C. A nickel oxide electrode made by a known method was used as a positive electrode, which is a counter electrode, and a cylindrical (size AA size) alkaline storage battery was constructed with a separator interposed therebetween. Charging current 0.1
C (10 hour rate) discharge current was 0.2 C (6 hour rate), the amount of charged electricity was 130% (overcharge) of the positive electrode capacity, and the discharge end voltage was 1.OV. The negative electrode capacity was 1.3 times the positive electrode capacity, and the positive electrode capacity was 2 μh, and tests were conducted according to the positive electrode rule. Battery cycle life test temperature is 46°
The capacitance was measured at 20'C. The initial discharge characteristics were determined at the 6th cycle, and the discharge potentials were compared. The cycle life was determined by measuring the discharge capacity every 10 cycles.

第1図に充・放電2サイクル目の放電性能を示す。電池
Cは放電電圧が他のム、Bと比較して低く、放電容量も
小さい。ムとBは放電電圧、容量1OA 。
Figure 1 shows the discharge performance in the second charge/discharge cycle. Battery C has a lower discharge voltage and a smaller discharge capacity than the other batteries B. and B are the discharge voltage and the capacity is 1OA.

共殆んど大差ない。Cより人、Bが優れている理由とし
て、水素解離圧力がCよりは、人、Bの方が平坦性に富
み、水素解離圧力が高いことに起因していると同時に水
素化処理によって水素吸蔵電極の活性化が十分行なわれ
ているために、水素の吸蔵も効率よく進行し、水素貯蔵
容量も十分確保することが出来ている。この点電池Cは
水素の吸蔵効率がわるく十分な容量を確保出来ず、負極
律則で容量が低下している。この点においてまず、熱処
理効果と水素化処理効果が現われている。まだ製造工程
上からも、工程の簡易化による製造工数の大幅な減少し
、電池コストの低減化に貢献している。コスト低減度合
を工数より算出すると約猶に節減できる。電極製造コス
トにして20〜30%のコストダウンが可能と々る。
There is almost no difference. The reason why Human B is superior to C is that the hydrogen dissociation pressure of Human B is more flat and higher than that of C. Since the electrodes are sufficiently activated, hydrogen storage progresses efficiently, and a sufficient hydrogen storage capacity can be secured. In this respect, battery C has poor hydrogen storage efficiency and cannot secure sufficient capacity, and its capacity decreases due to the negative electrode rule. In this respect, first, the heat treatment effect and the hydrogenation treatment effect appear. In terms of the manufacturing process, the simplification of the manufacturing process significantly reduces manufacturing man-hours, contributing to lower battery costs. If the degree of cost reduction is calculated from the number of man-hours, it can be saved approximately. It is possible to reduce electrode manufacturing costs by 20 to 30%.

第2図は46°Cにおけるサイクル寿命を示したもので
ある。電池Cの容量は50サイクルで初期容量(6サイ
クル)の60%まで低下している。
Figure 2 shows the cycle life at 46°C. The capacity of battery C decreased to 60% of the initial capacity (6 cycles) after 50 cycles.

これは明らかに電池内の微少短絡現象(金属の析出と脱
落)による容量低下であって、充電電圧の挙動からもわ
かる。また、ムとBの電極は殆んど大差々く、100サ
イクルまで確認しているが容量低下は殆んど見られない
。一定時間放置するとCの容量低下が人、Bと比べて大
きい事から、Cの電極は自己放電が太きいと考えられる
。一方結Bの電極は自己放電の観点からも優れた特性を
持っている。この特性の改善にはアルカリ処理の効果が
現われている。
This is clearly a decrease in capacity due to a micro-short circuit phenomenon (metal deposition and falling off) within the battery, which can also be seen from the behavior of the charging voltage. In addition, there is almost a large difference between the electrodes M and B, and although the test has been carried out up to 100 cycles, there is hardly any decrease in capacity. When left for a certain period of time, the capacity drop of C is greater than that of humans and B, so it is thought that the self-discharge of electrode C is greater. On the other hand, the electrode of type B has excellent characteristics from the viewpoint of self-discharge. The effect of alkali treatment is seen in the improvement of this property.

高温熱処理をしない合金を水素化処理とアルカリ処理と
を併用した場合については初期放電性能がよくない。と
くに充、放電サイクル中期から末期における放電電圧が
低い。合金の均質性が部分的によくない所があり、水素
解離圧力の平坦性におう所が大きい。しかしCの電極よ
りははるかにすぐれたサイクル寿命特性を示す。
When an alloy that is not subjected to high-temperature heat treatment is subjected to both hydrogenation treatment and alkali treatment, the initial discharge performance is poor. In particular, the discharge voltage is low from the middle to the end of the charging and discharging cycles. There are some areas where the homogeneity of the alloy is not good, and there are large gaps in the flatness of the hydrogen dissociation pressure. However, it exhibits much better cycle life characteristics than the C electrode.

水素化する事により、サイクル寿命と共に合金粉末はさ
らに大きく細分化される度合が少ないので、合金の新し
い面、修飾していない面の露出により一部溶解析出が促
進する事も少ないものと考えられる。ここでは熱処理し
た合金を水素化してアルカリ処理を施した実施例につい
て述べたが、先にも述べた様に未熱処理の合金を水素化
とアルカリ処理を併用する事により、合金の粉砕工程と
水素化に要する時間が節約になって製造工数の低減化が
図られる。したがって、未熱処理または熱処理合金を前
以って水素化して、水素化による活性化と微粉砕化を同
時に行なえる点から初期性能の向上と製造工程の簡易化
に大きく役立つものである。水素化処理工程において、
水素吸蔵後、高温(200’C以上)で真空脱水素化し
た後、水素化合金粉末を取出し、電極試料に用いると安
全な作業ができる。
Due to hydrogenation, the degree of further fragmentation of the alloy powder over the cycle life is small, so it is thought that there is little promotion of partial dissolution precipitation due to exposure of new and unmodified surfaces of the alloy. . Here, we have described an example in which a heat-treated alloy was hydrogenated and subjected to alkali treatment, but as mentioned earlier, by using both hydrogenation and alkali treatment on an unheat-treated alloy, the alloy pulverization process and hydrogen This saves the time required for conversion and reduces the number of manufacturing steps. Therefore, by hydrogenating an unheated or heat-treated alloy in advance, activation by hydrogenation and pulverization can be performed simultaneously, which greatly contributes to improving initial performance and simplifying the manufacturing process. In the hydrogenation process,
After absorbing hydrogen, it is dehydrogenated in vacuum at a high temperature (200'C or higher), and then the hydrogenated alloy powder is taken out and used as an electrode sample, allowing safe work.

熱処理温度の範囲について、第3図のLa(希土類)と
N1の状態図を用いて説明する。
The heat treatment temperature range will be explained using the phase diagram of La (rare earth) and N1 in FIG. 3.

950’C以下では融点がLaNi 〜LaNi 2の
合金相に相当し、LaNi 5の融点が1325°Cで
あるので、この合金系に類似するAB5型の合金におい
て金属間の拡散が十分性なわれなくて均質化が進み  
 iにくく、熱処理効果も少ない。一方、1250℃以
上ではLaNi 5のNi IJノツチに移行すると融
点は13A−ノ 1246°Cまで下がるので、LaNi 5に類似する
合金系において好ましくない。また蒸気圧の高い金属を
加えると合金の組成ずれ等の問題もあり、熱処理温度は
1250℃以下が適切な条件である。
Below 950'C, the melting point corresponds to the alloy phase of LaNi to LaNi 2, and the melting point of LaNi 5 is 1325°C, so intermetallic diffusion is not sufficient in AB5 type alloys similar to this alloy system. As a result, homogenization has progressed.
It is difficult to heat, and the effect of heat treatment is also small. On the other hand, at temperatures above 1250°C, the melting point decreases to 13A-1246°C when LaNi 5 transitions to the Ni IJ notch, which is not preferred in alloy systems similar to LaNi 5. Furthermore, if a metal with a high vapor pressure is added, there may be problems such as a shift in the composition of the alloy, so the appropriate heat treatment temperature is 1250° C. or lower.

とくに、希土類金属とN1を主体とする水素吸蔵合金の
熱処理温度は950〜1150°Cが最適である。一方
、T1とNiを主体とする水素吸蔵合金の熱処理温度は
1050〜1250’Oが最適である。この様に合金の
種類によっても熱処理条件は異なるが、本発明の一部に
含有される熱処理条件としては960〜1250′Cが
適切な温度範囲と云う事になる。
In particular, the optimum heat treatment temperature for hydrogen storage alloys mainly composed of rare earth metals and N1 is 950 to 1150°C. On the other hand, the optimum heat treatment temperature for a hydrogen storage alloy mainly composed of T1 and Ni is 1050 to 1250'O. Although the heat treatment conditions differ depending on the type of alloy as described above, the appropriate temperature range for the heat treatment conditions included in a part of the present invention is 960 to 1250'C.

発明の効果 以上の様に本発明によれば、高温時のサイクル寿命が長
く、初期放電特性が優れ、自己放電に対して大きな効果
を発揮し、さらに、製造工程の簡易化に共なうコストダ
ウンが図れるなど実用性の高い水素吸蔵電極の製造方法
を提供するものである。
As described above, the present invention has a long cycle life at high temperatures, excellent initial discharge characteristics, and is highly effective against self-discharge.Furthermore, the manufacturing process is simplified, resulting in lower costs. The present invention provides a method for manufacturing a hydrogen storage electrode that is highly practical in that it can be reduced in size.

【図面の簡単な説明】[Brief explanation of the drawing]

14、、−7 第1図は本発明と従来型水素吸蔵電極を用いた電池の放
電初期の特性を比較した図、第2図は本発明と従来型水
素吸蔵電極を用いた電池のサイクル寿命特性を比較した
図、第3図はLaとNi合金の状態図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 0        0.5         /、θ 
       t、s         z、。 方(電 7容 !(ハh) 第2図 2.0  −−;ご−−−−−−−−−−−−\\  
    B ハ      ゝ\ 、J゛・、 4= 第3図 N + (wt%)
14,,-7 Figure 1 is a comparison of the early discharge characteristics of batteries using the present invention and conventional hydrogen storage electrodes, and Figure 2 is a comparison of the cycle life of batteries using the present invention and conventional hydrogen storage electrodes. FIG. 3, which is a diagram comparing the characteristics, is a phase diagram of La and Ni alloys. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 0 0.5 /, θ
t, s z,. (Electric 7 volume! (hah) Fig. 2 2.0 --; Go -----------------\\\
B ゝ\ , J゛・, 4= Figure 3 N + (wt%)

Claims (2)

【特許請求の範囲】[Claims] (1)水素を可逆的に吸蔵・放出する水素吸蔵合金及び
950〜1250℃の温度範囲で熱処理した前記合金の
いずれかを含む合金に水素の吸蔵と放出を複数回行なわ
せる水素化処理と微粉砕とを同時に行なう工程と、水素
を脱気後前記水素化処理した合金の微粉末をアルカリ水
溶液で表面処理(アルカリ処理)する工程とを有し、さ
らにその後少なくとも水洗と乾燥とを施した水素化合金
の微粉末を結着剤と共に電極支持体に加圧一体化する工
程とからなることを特徴とする水素吸蔵電極の製造方法
(1) A hydrogen storage alloy that reversibly stores and releases hydrogen, and an alloy containing any of the aforementioned alloys that have been heat-treated in a temperature range of 950 to 1,250°C, are subjected to hydrogen storage and release multiple times. and a step of surface-treating the fine powder of the hydrogenated alloy with an alkaline aqueous solution (alkali treatment) after degassing the hydrogen, and then at least washing and drying the hydrogen-treated alloy. 1. A method for producing a hydrogen storage electrode, comprising the step of pressurizing and integrating fine powder of a chemical alloy into an electrode support together with a binder.
(2)水素を可逆的に吸蔵放出する水素吸蔵合金及び熱
処理をした前記合金の水素化処理と微粉砕とを同時に行
なった後、この水素化した微粉末を結着剤と共に電極支
持体に加圧一体化する工程と前記一体化した電極基板を
アルカリ水溶液で含浸(アルカリ処理)する工程を有し
、その後少なくとも水洗と乾燥を行なう工程からなるこ
とを特徴とする水素吸蔵電極の製造方法。
(2) Hydrogen storage alloys that reversibly absorb and release hydrogen and heat-treated said alloys are simultaneously hydrogenated and finely pulverized, and then this hydrogenated fine powder is added to an electrode support together with a binder. A method for manufacturing a hydrogen storage electrode, comprising a step of pressurizing the integrated electrode substrate, a step of impregnating the integrated electrode substrate with an alkaline aqueous solution (alkali treatment), and then a step of at least washing with water and drying.
JP60171501A 1985-08-02 1985-08-02 Manufacture of hydrogen occlusion electrode Pending JPS6231947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60171501A JPS6231947A (en) 1985-08-02 1985-08-02 Manufacture of hydrogen occlusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60171501A JPS6231947A (en) 1985-08-02 1985-08-02 Manufacture of hydrogen occlusion electrode

Publications (1)

Publication Number Publication Date
JPS6231947A true JPS6231947A (en) 1987-02-10

Family

ID=15924268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60171501A Pending JPS6231947A (en) 1985-08-02 1985-08-02 Manufacture of hydrogen occlusion electrode

Country Status (1)

Country Link
JP (1) JPS6231947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454669A (en) * 1987-08-25 1989-03-02 Matsushita Electric Ind Co Ltd Hydrogen occlusion alloy electrode
JPH01102861A (en) * 1987-10-14 1989-04-20 Matsushita Electric Ind Co Ltd Manufacture of sealed type ni-h secondary battery
EP1998392A1 (en) 2007-05-30 2008-12-03 Sanyo Electric Co., Ltd. Hydrogen storage alloy for alkaline battery and production method thereof, as well as alkaline battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454669A (en) * 1987-08-25 1989-03-02 Matsushita Electric Ind Co Ltd Hydrogen occlusion alloy electrode
JP2532498B2 (en) * 1987-08-25 1996-09-11 松下電器産業株式会社 Hydrogen storage alloy electrode
JPH01102861A (en) * 1987-10-14 1989-04-20 Matsushita Electric Ind Co Ltd Manufacture of sealed type ni-h secondary battery
EP1998392A1 (en) 2007-05-30 2008-12-03 Sanyo Electric Co., Ltd. Hydrogen storage alloy for alkaline battery and production method thereof, as well as alkaline battery
US7829220B2 (en) 2007-05-30 2010-11-09 Sanyo Electric Co., Ltd. Hydrogen storage alloy for alkaline battery and production method thereof, as well as alkaline battery

Similar Documents

Publication Publication Date Title
EP0522297B1 (en) Hydrogen storage electrode
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JPS6119063A (en) Hydrogen occlusion electrode
JPS63264867A (en) Manufacture of hydrogen storage electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JPS6215760A (en) Manufacture of hydrogen-occlusion electrode
JPH0756799B2 (en) Method for producing hydrogen storage alloy negative electrode
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JPH03245460A (en) Hydrogen storage alloy electrode, its manufacture and sealed alkaline storage battery using the electrode
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH04328252A (en) Hydrogen storage alloy electrode
JPH02220355A (en) Hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JPH04318106A (en) Production of hydrogen storage alloy powder
JPH01132049A (en) Hydrogen storage electrode
JPS61203561A (en) Battery electrode
JPH0935708A (en) Hydrogen storage alloy electrode and its manufacture
JPH03216959A (en) Manufacture of electrode for battery
JPS63264869A (en) Manufacture of hydrogen storage electrode
JPH09213317A (en) Manufacture of hydrogen storage alloy electrode
JPS6119058A (en) Hydrogen occlusion electrode
JPH05101819A (en) Electrode of hydrogen storage alloy and manufacture thereof
JPH05225976A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS6269461A (en) Manufacture of negative electrode for secondary cell