JPH0763007B2 - Manufacturing method of hydrogen storage electrode - Google Patents

Manufacturing method of hydrogen storage electrode

Info

Publication number
JPH0763007B2
JPH0763007B2 JP62126252A JP12625287A JPH0763007B2 JP H0763007 B2 JPH0763007 B2 JP H0763007B2 JP 62126252 A JP62126252 A JP 62126252A JP 12625287 A JP12625287 A JP 12625287A JP H0763007 B2 JPH0763007 B2 JP H0763007B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
alloy
discharge
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62126252A
Other languages
Japanese (ja)
Other versions
JPS63291363A (en
Inventor
宗久 生駒
博志 川野
康子 伊藤
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62126252A priority Critical patent/JPH0763007B2/en
Publication of JPS63291363A publication Critical patent/JPS63291363A/en
Publication of JPH0763007B2 publication Critical patent/JPH0763007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケル・水素蓄電池等のアルカリ蓄電池の負
極に用いる水素吸蔵電極の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage electrode used as a negative electrode of an alkaline storage battery such as a nickel-hydrogen storage battery.

従来の技術 従来この種の電極はまだ実用化には至っていないが、そ
の製法としてつぎのような方法が提案されている。すな
わち、アーク溶解炉や高周波溶解炉により水素吸蔵合金
の溶湯を作製し、高周波溶解炉の場合は鋳型に流し込ん
で自然冷却する方法、もしくはアーク溶解炉の場合は銅
ルツボ中で水冷する方法により水素吸蔵合金を作製した
後、合金塊を粗粉砕し、ついでボールミル中などで微粉
砕した粉末と結着剤との混練物を電極支持体に塗着もし
くは充填した後、加圧一体化する工程により水素吸蔵電
極を作製する方法がある。
2. Description of the Related Art Conventionally, electrodes of this type have not yet been put to practical use, but the following method has been proposed as a manufacturing method thereof. That is, a molten metal of a hydrogen storage alloy is produced in an arc melting furnace or a high frequency melting furnace, and is poured into a mold in the case of a high frequency melting furnace to be naturally cooled, or in the case of an arc melting furnace is cooled by water in a copper crucible. After producing the occlusion alloy, the alloy lump is roughly crushed, and then the kneaded product of the powder and the binder finely crushed in a ball mill or the like is applied or filled on the electrode support, and then pressure integration is performed. There is a method of producing a hydrogen storage electrode.

発明が解決しようとする問題点 このような従来提案されている製造方法では、水素吸蔵
電極を負極に用い、ニッケル正極と組み合わせて密閉形
ニッケル水素蓄電池を構成した場合、現在実用化されて
いるニッケル・カドミウム蓄電池に比べ、低温での高率
放電特性に劣り、自己放電が大きいという問題があっ
た。
Problems to be Solved by the Invention In such a conventionally proposed manufacturing method, when a hydrogen storage electrode is used as a negative electrode and a sealed nickel-metal hydride storage battery is configured by combining it with a nickel positive electrode, nickel currently in practical use is used.・ Compared to the cadmium storage battery, there was a problem that it was inferior in high-rate discharge characteristics at low temperature and large in self-discharge.

本発明はこのような問題点を同時に解決するもので、簡
単な製造法により、低温での高率放電特性を向上させ、
さらに自己放電を低減させることを目的とする。
The present invention solves such problems at the same time, by a simple manufacturing method, to improve high rate discharge characteristics at low temperature,
Further, the purpose is to reduce self-discharge.

問題点を解決するための手段 この問題点を解決するために本発明は、水素吸蔵合金の
溶湯を液体急冷法で冷却し、薄片もしくは薄帯を作製す
る工程と、これを不活性ガス中もしくは真空中で熱処理
する工程と、熱処理した薄片もしくは薄帯を微粉砕する
工程と、粉砕した粉末と結着剤との混練物を電極支持体
に塗着もしくは充填した後乾燥する工程と、前記電極に
加圧操作を施して所望の厚さにする工程を有するもので
ある。
Means for Solving the Problem In order to solve this problem, the present invention provides a step of cooling a molten metal of a hydrogen storage alloy by a liquid quenching method to produce a thin piece or a thin strip, and a step of forming the thin piece or the thin strip in an inert gas or A step of heat-treating in a vacuum; a step of finely crushing the heat-treated flakes or a ribbon; a step of applying or kneading a kneaded product of the crushed powder and a binder to an electrode support and then drying; It has a step of applying a pressure operation to a desired thickness.

作用 この製造法により、水素吸蔵合金における水素の吸蔵放
出に有効なCaCu5型結晶の均質部分が増大することや、
薄片もしくは薄帯を作製するため、結晶の方位配列がお
こる結果、種々の電池特性が改善される。水素吸蔵合金
中の水素の吸蔵・放出に無効な不均質相の金属は、アル
カリ電解液中での充放電の繰り返しや、比較的高温度で
保存すると溶解し、電解液中に金属イオンとして存在す
る結果、電池の自己放電速度を増大させる。
Action This manufacturing method increases the number of homogeneous parts of CaCu 5 type crystals effective for hydrogen storage and release in hydrogen storage alloys,
Since the flakes or strips are produced, the orientation of the crystals is aligned, and as a result, various battery characteristics are improved. The inhomogeneous phase metal, which is ineffective in absorbing and releasing hydrogen in the hydrogen storage alloy, dissolves after repeated charge and discharge in the alkaline electrolyte or when stored at a relatively high temperature and exists as a metal ion in the electrolyte. As a result, the self-discharge rate of the battery is increased.

また、アーク溶解炉や高周波溶解炉で合金を溶解し、自
然冷却して水素吸蔵合金を作製すると、結晶粒の配向は
無秩序に配列している結果、合金中に吸蔵されている水
素を電気化学的に低温で高率放電する場合、固相内の水
素の拡散の遅れを生じ、過電圧が増大し、電池電圧が低
下する。
Moreover, when an alloy is melted in an arc melting furnace or a high-frequency melting furnace and naturally cooled to produce a hydrogen-absorbing alloy, the orientation of the crystal grains is disordered and, as a result, the hydrogen absorbed in the alloy is electrochemically generated. When a high rate discharge is performed at a low temperature, the diffusion of hydrogen in the solid phase is delayed, the overvoltage increases, and the battery voltage decreases.

以上のことより、均質性が良好で結晶が方位配列した水
素吸蔵合金粉末から成る水素吸蔵電極を用いることによ
り、自己放電特性が良好で低温の高率放電特性に優れた
蓄電池が得られることとなる。
From the above, by using a hydrogen storage electrode composed of a hydrogen storage alloy powder having good homogeneity and crystallographically oriented, it is possible to obtain a storage battery having good self-discharge characteristics and excellent low-rate high-rate discharge characteristics. Become.

実 施 例 以下本発明をその実施例により説明する。液体急冷法に
は、水素吸蔵合金の溶湯を作成する高周波による溶解部
と、合金の溶湯を急冷するためのアモルファス合金を作
成されるのと同様の高速で回転する双ロール法(冷却速
度104〜105K/sec)を用いた。市販のミッシュメタルMm
(希土類元素の混合物、例えばCe45wt%,La30wt%,Nd5w
t%他の希土類元素20wt%)とNi,Al,Co,Mnの各試料をMm
Ni3.55Mn0.4Al0.3Co0.75の組成比に秤量し混合した。こ
れらの試料を前記した双ロール法により急冷の可能な高
周波炉で合金を溶解させ、高速で回転する双ロール間
(ロール間のスキマは10μm)に合金の溶湯を流し込
み、厚さ10〜15μmのMmNi3.55Mn0.4Al0.3Co0.75の水素
吸蔵合金の薄片を得た。この薄片を真空中(10-3〜10-4
Torr),1050℃で6時間熱処理を行った後、前記薄片を
ボールミル中で38μm以下の粉末に粉砕した。ついで1.
5wt%のポリビニルアルコール水溶液と混練し、ペース
ト状とし発泡ニッケル多孔体に充填、乾燥後、加圧操作
を施し、負極に用いる本発明の水素吸蔵電極(A)を得
た。
Examples Hereinafter, the present invention will be described with reference to Examples. The liquid quenching method includes a high-frequency melting part that creates a hydrogen-absorbing alloy melt, and a twin-roll method that rotates at the same high speed as when an amorphous alloy is used to quench the alloy melt (cooling speed 10 4 ~ 10 5 K / sec) was used. Commercially available misch metal Mm
(A mixture of rare earth elements such as Ce45wt%, La30wt%, Nd5w
t% Other rare earth elements 20 wt%) and Ni, Al, Co, Mn samples are Mm
The composition ratio of Ni 3.55 Mn 0.4 Al 0.3 Co 0.75 was measured and mixed. These samples were melted in a high-frequency furnace capable of rapid cooling by the twin roll method described above, and the molten metal of the alloy was poured between twin rolls rotating at a high speed (the gap between the rolls was 10 μm) to obtain a thickness of 10-15 μm. Thin pieces of hydrogen storage alloy of MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 were obtained. This thin piece is placed under vacuum (10 -3 to 10 -4
Torr) at 1050 ° C. for 6 hours, and then the flakes were pulverized in a ball mill into powder of 38 μm or less. Then 1.
The mixture was kneaded with a 5 wt% aqueous solution of polyvinyl alcohol to form a paste, which was filled in a foamed nickel porous body, dried, and subjected to a pressure operation to obtain a hydrogen storage electrode (A) of the present invention used for a negative electrode.

比較例として、前記と同様に液体急冷法で作製したMmNi
3.55Mn0.4Al0.3Co0.75の薄片を真空中で熱処理を施さず
に前述した同様な方法により作製した水素吸蔵電極
(B)および高周波溶解炉で合金を溶解した後、急冷せ
ずに自然冷却する通常の合金製造法で作製した合金を前
記と同様な方法により作製した水素吸蔵電極(C)を用
いた。
As a comparative example, MmNi prepared by the liquid quenching method as described above.
A thin piece of 3.55 Mn 0.4 Al 0.3 Co 0.75 was prepared by the same method as described above without heat treatment in vacuum, and the alloy was melted in a high frequency melting furnace and a hydrogen storage electrode, and then naturally cooled without quenching. The hydrogen storage electrode (C) prepared by the same method as described above was used for the alloy prepared by the usual alloy manufacturing method.

次に、酸化ニッケル正極として公知の方法で得られた発
泡式(ニッケル正極(寸法39×60×0.75mm)を用い、セ
パレータにはポリアミドの不織布、電解液に水酸化リチ
ウムを40g/溶解した比重1.30のKOH水溶液を使用し、
前記負極(寸法39×80×0.5mm)と組み合わせ、正極容
量規制になるように公称容量1000mAhの単3サイズの密
閉形ニッケル−水素蓄電池を構成した。これらの電池を
20℃の一定温度下で充電を0.1cmAで15時間、放電を0.2c
mAの条件で充放電サイクルを10サイクル行った後、低温
での高率放電特性の測定を行った。放電特性の測定は、
0.1cmAで15時間、20℃で充電した後、0℃の雰囲気中に
2時間放置し、1cmA,2cmA,3cmAの各放電率で放電を行っ
た。
Next, a foamed type obtained by a known method as a nickel oxide positive electrode (nickel positive electrode (size 39 × 60 × 0.75 mm) was used, a separator was made of polyamide nonwoven fabric, and a specific gravity of 40 g / mol of lithium hydroxide was dissolved in the electrolytic solution. Using 1.30 KOH aqueous solution,
In combination with the negative electrode (size 39 × 80 × 0.5 mm), a sealed nickel-hydrogen storage battery of AA size having a nominal capacity of 1000 mAh was constructed so as to regulate the capacity of the positive electrode. These batteries
Charged at 0.1cmA for 15 hours at a constant temperature of 20 ℃, discharged at 0.2c
After performing 10 charge / discharge cycles under the condition of mA, the high rate discharge characteristics at low temperature were measured. To measure the discharge characteristics,
After charging at 0.1 cmA for 15 hours and at 20 ° C., it was left in an atmosphere at 0 ° C. for 2 hours and discharged at each discharge rate of 1 cmA, 2 cmA and 3 cmA.

第1図には、放電率と容量比率の関係を示した。容量比
率は、0℃で1.0Vまで0.2cmAの放電率で放電した容量を
100%とした。各放電率での終止電圧は1.0Vとした。第
1図から明らかなように、電極(C)を負極に用いた電
池の容量比率は3cmAで35%である。この場合、電池容量
は正極で規制されているが、負極の0℃での高率放電時
の過電圧が大きいため、電池電圧が低下し、0.2cmAの容
量に比べ高率放電時の1.0Vまでの容量が減少することに
より、容量比率が低下する。電極(C)の水素吸蔵合金
粉末は自然冷却により作製した合金塊を粉砕したもの
で、X線回折法などによる解析の結果、結晶粒の配向は
無秩序に配列している。このことから合金中の水素を0
℃で高率放電した場合、固相内の水素の拡散の遅れを生
じ、過電圧が増大する。
FIG. 1 shows the relationship between the discharge rate and the capacity ratio. The capacity ratio is the capacity discharged at a discharge rate of 0.2 cmA up to 1.0 V at 0 ° C.
It was 100%. The final voltage at each discharge rate was 1.0V. As is clear from FIG. 1, the capacity ratio of the battery using the electrode (C) as the negative electrode is 35% at 3 cmA. In this case, the battery capacity is regulated by the positive electrode, but since the overvoltage at the time of high rate discharge at 0 ° C of the negative electrode is large, the battery voltage drops and up to 1.0 V at the high rate discharge compared to the capacity of 0.2 cmA. The capacity ratio is decreased due to the decrease in the capacity. The hydrogen storage alloy powder of the electrode (C) is obtained by crushing an alloy lump produced by natural cooling, and as a result of analysis by the X-ray diffraction method, the orientation of crystal grains is randomly arranged. From this, the hydrogen in the alloy is
When discharged at a high rate at ° C, the diffusion of hydrogen in the solid phase is delayed and the overvoltage increases.

しかしながら、本発明の電極(A)を負極に用いた電池
の容量比率は3cmAで75%であり、電極(C)を用いた電
池に比べ2倍以上放電特性が向上していることがわか
る。電極(A)に用いた本発明の製造法で作製した粉末
は、液体急冷法で厚さ10〜15μmの薄片であり、X線回
折の結果から合金の結晶が方位配列していることから、
高率放電時に合金中に吸蔵された水素がスムーズに固相
内に拡散し、負極の過電圧が減少し、電池電圧の低下が
抑制され、0℃での高率放電特性が向上する。
However, the capacity ratio of the battery using the electrode (A) of the present invention as the negative electrode was 75% at 3 cmA, and it is understood that the discharge characteristics are more than doubled as compared with the battery using the electrode (C). The powder produced by the production method of the present invention used for the electrode (A) is a thin piece having a thickness of 10 to 15 μm by the liquid quenching method, and the crystal of the alloy is azimuthally aligned from the result of X-ray diffraction.
Hydrogen occluded in the alloy at the time of high rate discharge smoothly diffuses into the solid phase, the overvoltage of the negative electrode is reduced, the decrease of the battery voltage is suppressed, and the high rate discharge characteristics at 0 ° C. are improved.

また、合金の製法に熱処理の工程を含まない合金の粉末
を用いた電極(B)は、本発明の電極(A)に比べ放電
特性は劣る。液体急冷法で作製した合金は、熱処理を施
さずに電極に用いると、電極(A)に比べ放電電位の平
坦性が悪くなる。したがって、0℃での高率放電を1.0V
までの容量で比較すると電極(A)に比べ劣る。しかし
ながら、電極(B)も液体急冷法で作製しているため、
結晶は方位配列していることから、電極(C)より放電
特性は向上する。
Further, the electrode (B) using the alloy powder, which does not include a heat treatment step in the alloy manufacturing method, is inferior in discharge characteristics to the electrode (A) of the present invention. When the alloy produced by the liquid quenching method is used for the electrode without heat treatment, the flatness of the discharge potential becomes worse than that of the electrode (A). Therefore, the high rate discharge at 0 ℃ is 1.0V
It is inferior to the electrode (A) in comparison with the capacity up to. However, since the electrode (B) is also manufactured by the liquid quenching method,
Since the crystals are azimuthally arranged, the discharge characteristics are improved as compared with the electrode (C).

つぎに、薄片の厚さについて検討したところ、厚さが40
〜45μmになるように作製した薄片を用いた場合、放電
特性は電極(A)より劣ることがわかった。このMmNi
3.55Mn0.4Al0.3Co0.75合金の結晶は、前述の10〜15μm
の薄片と同様に方位配列しているが、薄片の厚さが厚い
ために、0℃で3cmAの放電を行った場合に固相内の水素
拡散の過程が律速となり、放電時の過電圧が増大する結
果、電池電圧が低下する。したがって、薄片の厚さは40
μm以下が好ましい。
Next, we examined the thickness of the flakes and found that the thickness was 40
It was found that the discharge characteristic was inferior to that of the electrode (A) when the thin piece manufactured so as to have a thickness of ˜45 μm was used. This MmNi
The crystal of 3.55 Mn 0.4 Al 0.3 Co 0.75 alloy has the above-mentioned 10-15 μm.
The orientation is the same as that of the flakes, but since the thickness of the flakes is thick, the process of hydrogen diffusion in the solid phase becomes rate-determining when discharging at 3 cmA at 0 ° C, and the overvoltage during discharging increases. As a result, the battery voltage drops. Therefore, the thickness of the flakes is 40
μm or less is preferable.

第2図には、前記と同じ電極(A),(B),(C)を
用いた電池の自己放電特性を調べた結果を示す。自己放
電特性は、20℃で公称容量に対して0.1cmAで150%充電
した後、45℃の雰囲気下に放置した。第2図から明らか
なように高周波溶解炉で自然冷却して作製した合金粉末
から成る電極(C)を用いた電池の自己放電は、14日間
45℃の雰囲気下で放置すると、容量維持率は12.5%とな
り、87.5%自己放電することがわかる。自然冷却により
作製した合金は、1050℃で6時間処理を施しても、組織
写真やX線回折の結果より、水素の吸蔵・放出に無効な
不均質相が存在することがわかった。この不均質相はM
n,Co,Al,Niや希土類元素から成り、これらの金属は、ア
ルカリ電解液中で充放電を繰り返した場合や、45℃の雰
囲気下で保存すると、電解液中に溶解し、金属イオンと
して存在する。したがって、これらのイオンが、自己放
電反応に関与し、自己放電速度を増大する。しかしなが
ら、本発明の電極(A)は、液体急冷法により薄片を作
成し、1050℃で6時間熱処理を施しているため、組織写
真等による観察結果から非常に均質なCaCu5型の結晶構
造となっている。したがって、充放電の繰り返しや45℃
の雰囲気下で放置しても、Mn,Al,Co,Niや希土類元素は
ほとんど溶解せず、45℃で14日間放置しても容量維持率
は75%と、電極(C)を用いた場合に比べて自己放電速
度は約1/6に減少する。本発明の製造法で作製した電極
(A)を用いた電池は、非常に優れた自己放電特性を示
す。また、液体急冷法で作製した合金に熱処理を施さな
い電極(B)を用いた場合、容量維持率は14日で50%で
あり、電極(A)より劣ることがわかる。これは、熱処
理を施さない場合は、若干不均質な相が存在する結果、
前述したように自己放電速度が増大する。熱処理温度
は、1200℃以上の温度になると合金が溶解し、800℃以
下の温度では効果がない。したがって、熱処理は800〜1
200℃の温度範囲で施すことが好ましい。
FIG. 2 shows the results of examining the self-discharge characteristics of the battery using the same electrodes (A), (B), and (C) as described above. Regarding self-discharge characteristics, after charging 150% at 0.1 cmA to the nominal capacity at 20 ° C, it was left in an atmosphere at 45 ° C. As is clear from FIG. 2, the self-discharge of the battery using the electrode (C) made of the alloy powder prepared by natural cooling in the high frequency melting furnace is 14 days.
It can be seen that when left in an atmosphere of 45 ° C, the capacity retention rate becomes 12.5% and self-discharge is 87.5%. Even if the alloy produced by natural cooling was treated at 1050 ° C. for 6 hours, it was found from the results of the microstructure photograph and the X-ray diffraction that a heterogeneous phase that is ineffective in hydrogen absorption and desorption was present. This heterogeneous phase is M
Consisting of n, Co, Al, Ni and rare earth elements, these metals dissolve in the electrolytic solution when they are repeatedly charged and discharged in an alkaline electrolytic solution or when stored in an atmosphere of 45 ° C, and as metal ions. Exists. Therefore, these ions participate in the self-discharge reaction and increase the self-discharge rate. However, since the electrode (A) of the present invention is formed into a thin piece by the liquid quenching method and heat-treated at 1050 ° C. for 6 hours, the observation result by the microstructure photograph shows that it has a very homogeneous CaCu 5 type crystal structure. Has become. Therefore, repeated charge / discharge and 45 ° C
Mn, Al, Co, Ni and rare earth elements are hardly dissolved even if left in the atmosphere of, and the capacity retention rate is 75% even when left at 45 ° C for 14 days. Compared with, the self-discharge rate is reduced to about 1/6. The battery using the electrode (A) produced by the production method of the present invention exhibits very good self-discharge characteristics. Further, when the electrode (B) which is not heat-treated is used for the alloy produced by the liquid quenching method, the capacity retention rate is 50% after 14 days, which is inferior to the electrode (A). This is due to the presence of a slightly inhomogeneous phase without heat treatment.
As described above, the self-discharge rate increases. Regarding the heat treatment temperature, the alloy melts at a temperature of 1200 ° C or higher, and there is no effect at a temperature of 800 ° C or lower. Therefore, heat treatment is 800-1
It is preferable to apply in the temperature range of 200 ° C.

なお本実施例ではMmNi5にMn,Al,Coを置換した合金を用
いたが、LaNi5系合金,Ti系合金等の水素吸蔵合金なら同
様な効果が得られる。また、薄片の製造には、スパッタ
や蒸着等の装置を用いても同様な方位配列した合金が得
られ、高率放電特性や自己放電が改善され、上記と同様
な効果が得られる。
Note the MmNi 5 in this embodiment Mn, Al, was used substituted alloys Co, LaNi 5 alloy, the same effect if the hydrogen storage alloy such as Ti-based alloy is obtained. Further, in the production of the flakes, even if an apparatus such as sputtering or vapor deposition is used, an alloy with the same orientation is obtained, high rate discharge characteristics and self-discharge are improved, and the same effects as above are obtained.

発明の効果 以上のように本発明によれば、水素吸蔵合金を液体急冷
法で冷却した後、薄片もしくは薄帯を作製する工程と、
不活性ガス中もしくは真空中で熱処理する工程と、微粉
砕する工程と、粉末と結着剤の混練物を電極支持体に塗
着もしくは充填した後、乾燥する工程と、前記電極に加
圧操作を施し、所望の厚さにする工程を有する製造法と
することにより、高率放電特性が良好で、自己放電の少
ない、優れた電池を提供できるという効果が得られる。
As described above, according to the present invention, after the hydrogen storage alloy is cooled by the liquid quenching method, a step of producing flakes or ribbons,
A step of heat-treating in an inert gas or vacuum, a step of finely pulverizing, a step of applying or kneading the kneaded material of the powder and the binder to the electrode support, and then drying, and a pressing operation on the electrode. By providing the manufacturing method including the step of subjecting to a desired thickness, a high-rate discharge characteristic is excellent, and an excellent battery with less self-discharge can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例で示した電池における放電率と
容量比率の関係を示す図、第2図は実施例で示した電池
における保存期間と容量維持率の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the discharge rate and the capacity ratio in the battery shown in the example of the present invention, and FIG. 2 is a diagram showing the relationship between the storage period and the capacity retention rate in the battery shown in the example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】可逆的に水素を吸蔵・放出する水素吸蔵合
金の溶湯を液体急冷法で冷却し、薄片もしくは薄帯を作
製する工程と、これを不活性ガス中もしくは真空中で熱
処理する工程と、前記薄片もしくは薄帯を微粉砕する工
程と、粉砕した粉末と結着剤との混練物を電極支持体に
塗着もしくは充填した後乾燥する工程と、前記電極に加
圧操作を施し、所望の厚さとする工程を有することを特
徴とする水素吸蔵電極の製造法。
1. A step of cooling a molten metal of a hydrogen storage alloy capable of reversibly storing and releasing hydrogen by a liquid quenching method to produce flakes or strips, and a step of heat-treating this in an inert gas or in a vacuum. A step of finely pulverizing the flakes or strips, a step of applying or kneading a kneaded product of the pulverized powder and a binder to an electrode support and then drying, and applying a pressure operation to the electrode, A method of manufacturing a hydrogen storage electrode, comprising a step of setting a desired thickness.
【請求項2】前記薄片もしくは薄帯の厚さが40μm以下
であることを特徴とする特許請求の範囲第1項記載の水
素吸蔵電極の製造法。
2. The method for producing a hydrogen storage electrode according to claim 1, wherein the thickness of the thin piece or the thin strip is 40 μm or less.
【請求項3】前記熱処理温度が800〜1200℃の範囲であ
ることを特徴とする特許請求の範囲第1項記載の水素吸
蔵電極の製造法。
3. The method for producing a hydrogen storage electrode according to claim 1, wherein the heat treatment temperature is in the range of 800 to 1200 ° C.
JP62126252A 1987-05-22 1987-05-22 Manufacturing method of hydrogen storage electrode Expired - Lifetime JPH0763007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62126252A JPH0763007B2 (en) 1987-05-22 1987-05-22 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62126252A JPH0763007B2 (en) 1987-05-22 1987-05-22 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63291363A JPS63291363A (en) 1988-11-29
JPH0763007B2 true JPH0763007B2 (en) 1995-07-05

Family

ID=14930570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62126252A Expired - Lifetime JPH0763007B2 (en) 1987-05-22 1987-05-22 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0763007B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441826A (en) * 1993-04-28 1995-08-15 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode
US5629000A (en) 1994-11-25 1997-05-13 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same
US6110304A (en) * 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries
EP0872903B1 (en) * 1997-01-27 2001-10-04 Shin-Etsu Chemical Co., Ltd. Method for making hydrogen storage alloy powder and electrode comprising the alloy powder
CN1187852C (en) 1997-12-26 2005-02-02 丰田自动车株式会社 Hydrogen-absorbing alloy and its preparing process, hydrogne-absorbing alloy electrode and its preparing process, and battery

Also Published As

Publication number Publication date
JPS63291363A (en) 1988-11-29

Similar Documents

Publication Publication Date Title
EP3712991B1 (en) High-capacity long-life la-mg-ni negative electrode hydrogen storage material for use in secondary rechargeable nickel-metal hydride battery, and preparation method therefor
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JP3054477B2 (en) Hydrogen storage alloy electrode
JPH02220356A (en) Hydrogen storage alloy electrode for alkaline battery and manufacture thereof
US20010007638A1 (en) Hydrogen occluding alloy for battery cathode
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JP4027038B2 (en) AB5 type rare earth-transition intermetallic compound for secondary battery negative electrode
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JPH06145851A (en) Hydrogen storage alloy and its production
JP2000144278A (en) Hydrogen occlusion alloy and its production
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP7146710B2 (en) Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JP3198896B2 (en) Nickel-metal hydride battery
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2000169903A (en) Manufacture of hydrogen storage alloy powder
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2000160265A (en) Hydrogen storage alloy and its manufacture
JPH09245782A (en) Metal hydride storage battery
JPH04328252A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term