JP2000160265A - Hydrogen storage alloy and its manufacture - Google Patents

Hydrogen storage alloy and its manufacture

Info

Publication number
JP2000160265A
JP2000160265A JP10324970A JP32497098A JP2000160265A JP 2000160265 A JP2000160265 A JP 2000160265A JP 10324970 A JP10324970 A JP 10324970A JP 32497098 A JP32497098 A JP 32497098A JP 2000160265 A JP2000160265 A JP 2000160265A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
hydrogen
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10324970A
Other languages
Japanese (ja)
Inventor
Yoshiki Sakaguchi
善樹 坂口
Daisuke Mukai
大輔 向井
Shingo Kikukawa
真吾 菊川
Kiyotaka Yasuda
清隆 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP10324970A priority Critical patent/JP2000160265A/en
Publication of JP2000160265A publication Critical patent/JP2000160265A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Continuous Casting (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a service life characteristic of a hydrogen storage alloy without deteriorating electrode capacity and discharge rate characteristic when used as a nickel - hydrogen secondary battery cathode active material by heating and melting a raw material for Mm-Ni-Mn-Al-Co hydrogen storage alloy, rapidly solidifying the resultant molten alloy by a single drum method or a twin drum method at specific rapid solidification rate, and omitting subsequent heat treatment. SOLUTION: A Mm-Ni-Mn-Al-Co alloy is an AB5-type hydrogen storage alloy having CaCu5-type crystal structure and represented by a formula (where Mm is misch metal; X is vanadium or titanium; the symbols (a) to (e) are molar numbers based on one mole of Mm and satisfy 4.00<=a<=4.30, 0.30<=b<=0.50, 0.20<=c<=0.45, 0.20<=d<=0.60, 0<=e<=0.05, and 5.00<=a+b+c+d+e<=5.35, respectively; and (f) is 19-21 wt.%). Mm is a misch metal of rare earths such as La, Ce, Pr, Nd, and Sm, and lanthanum content in the hydrogen storage alloy is 19-21 wt.%. Rapid solidification rate is >=10 k3/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金及び
その製造方法に関し、詳しくはニッケル−水素蓄電池の
負極活物質として用いた時に、電極容量、放電率特性を
低下させることなく、寿命特性(サイクル特性)を向上
させた水素吸蔵合金及びその安価、かつ生産性に優れた
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a method for producing the same. The present invention relates to a hydrogen storage alloy having improved cycle characteristics) and a method of manufacturing the same at low cost and with excellent productivity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ニッケル−カドミウム二次電池に代わる高容量アルカリ
二次電池として、水素吸蔵合金を負極に用いたニッケル
−水素二次電池が注目されている。この水素吸蔵合金
は、現在では希土類系の混合物であるMm(ミッシュメ
タル)とNi、Al、Mn、Coとの5元素の水素吸蔵
合金が汎用されている。
2. Description of the Related Art In recent years,
As a high-capacity alkaline secondary battery replacing the nickel-cadmium secondary battery, a nickel-hydrogen secondary battery using a hydrogen storage alloy for a negative electrode has been receiving attention. At present, as the hydrogen storage alloy, a five-element hydrogen storage alloy of Mm (mish metal), which is a rare earth-based mixture, and Ni, Al, Mn, and Co is widely used.

【0003】このMm−Ni−Mn−Al−Co合金
は、La系のそれに比べて比較的安価な材料で負極を構
成でき、サイクル寿命が長く、過充電時の発生ガスによ
る内圧上昇が少ない密閉形ニッケル水素二次電池を得る
ことができることから、電極材料として広く用いられて
いる。
[0003] This Mm-Ni-Mn-Al-Co alloy can form a negative electrode with a relatively inexpensive material as compared with a La-based alloy, has a long cycle life, and has a small internal pressure rise due to gas generated during overcharge. Since a nickel-metal hydride secondary battery can be obtained, it is widely used as an electrode material.

【0004】現在用いられているMm−Ni−Mn−A
l−Co合金の製造方法としては、所定割合の水素吸蔵
合金原料を加熱溶解し、これを鋳造した後、不活性ガス
雰囲気中で熱処理するか、あるいは所定割合の水素吸蔵
合金原料を加熱溶解し、これを急冷冷却速度で超急冷凝
固させた後、不活性ガス雰囲気中で熱処理する方法が挙
げられる。
[0004] Currently used Mm-Ni-Mn-A
As a method for producing the l-Co alloy, a predetermined ratio of a hydrogen storage alloy material is heated and melted, and then cast, and then heat-treated in an inert gas atmosphere, or a predetermined ratio of a hydrogen storage alloy material is heated and melted. A method of ultra-quick solidification at a rapid cooling rate, followed by heat treatment in an inert gas atmosphere.

【0005】しかしながら、これらの方法は、鋳造又は
超急冷凝固、熱処理という工程を必須とするため、高コ
ストになり、生産性に劣るといった問題があった。ま
た、これら水素吸蔵合金をニッケル−水素二次電池の負
極活物質とした時に、さらなる電池特性の向上が望まれ
ていた。
[0005] However, these methods involve the steps of casting or ultra-quick solidification and heat treatment, so that they have a problem of high cost and poor productivity. Further, when these hydrogen storage alloys are used as a negative electrode active material of a nickel-hydrogen secondary battery, further improvement in battery characteristics has been desired.

【0006】従って、本発明の目的は、ニッケル−水素
二次電池の負極活物質として用いた時に、電極容量、放
電率特性を低下させることなく、寿命特性(サイクル特
性)を向上させた水素吸蔵合金及びその安価、かつ生産
性に優れた製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a hydrogen storage device which, when used as a negative electrode active material of a nickel-hydrogen secondary battery, has improved life characteristics (cycle characteristics) without lowering electrode capacity and discharge rate characteristics. An object of the present invention is to provide an alloy and a method of manufacturing the alloy at low cost and excellent in productivity.

【0007】[0007]

【課題を解決するための手段】本発明者等は種々の研究
を重ねた結果、特定組成の水素吸蔵合金においては、超
急冷凝固した後に、熱処理を施さなくても均質化が図
れ、ニッケル−水素二次電池の負極活物質として用いた
時に、良好な電池特性が得られることを知見した。
As a result of various studies, the present inventors have found that a hydrogen storage alloy having a specific composition can be homogenized without heat treatment after ultra-rapid solidification, and nickel-containing alloy can be obtained. It has been found that good battery characteristics can be obtained when used as a negative electrode active material of a hydrogen secondary battery.

【0008】本発明は、上記知見に基づきなされたもの
で、水素吸蔵合金原料を加熱溶解し、単ロール法又は双
ロール法を用い、10K3 /sec以上の超急冷速度で
超急冷凝固し、その後熱処理を行わないことを特徴とす
る、下記一般式で表されるCaCu5 型の結晶構造を有
するAB5 型水素吸蔵合金の製造方法を提供するもので
ある。 一般式 Mm(Laf )Nia Mnb Alc Cod e (式中、Mmはミッシュメタル、Xはバナジウム又はチ
タン、4.00≦a≦4.30、0.30≦b≦0.5
0、0.20≦c≦0.45、0.20≦d≦0.6
0、0≦e≦0.05、5.00≦a+b+c+d+e
≦5.35、但し、a〜eはいずれもMm1モルに対す
るモル数、fは19〜21重量%)
The present invention has been made on the basis of the above findings, and heat-melts a hydrogen-absorbing alloy raw material and ultra-quench solidifies at a super-quenching speed of 10 K 3 / sec or more using a single roll method or a twin roll method, characterized in that subsequently not performed heat treatment, there is provided a method of manufacturing the AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula. Formula Mm (La f) Ni a Mn b Al c Co d X e ( wherein, Mm is the mischmetal, X is vanadium or titanium, 4.00 ≦ a ≦ 4.30,0.30 ≦ b ≦ 0. 5
0, 0.20 ≦ c ≦ 0.45, 0.20 ≦ d ≦ 0.6
0, 0 ≦ e ≦ 0.05, 5.00 ≦ a + b + c + d + e
≦ 5.35, wherein a to e are moles per mole of Mm, and f is 19 to 21% by weight.

【0009】また、本発明は、下記一般式 Mm(Laf )Nia Mnb Alc Cod e (式中、Mmはミッシュメタル、Xはバナジウム又はチ
タン、4.00≦a≦4.30、0.30≦b≦0.5
0、0.20≦c≦0.45、0.20≦d≦0.6
0、0≦e≦0.05、5.00≦a+b+c+d+e
≦5.35、但し、a〜eはいずれもMm1モルに対す
るモル数、fは19〜21重量%)で表されるCaCu
5 型の結晶構造を有し、LaNi5 を1060℃、3時
間熱処理したものを標準試料とした時に、X線回折にお
いて、該標準試料に対して、20°≦2θ≦70°の範
囲で回折線半値巾の値が相対比1.10以上のものを少
なくとも2つ以上有することを特徴とするAB5 型水素
吸蔵合金を提供するものである。
Further, the present invention is represented by the following general formula Mm (La f) Ni a Mn b Al c Co d X e ( wherein, Mm is the mischmetal, X is vanadium or titanium, 4.00 ≦ a ≦ 4. 30, 0.30 ≦ b ≦ 0.5
0, 0.20 ≦ c ≦ 0.45, 0.20 ≦ d ≦ 0.6
0, 0 ≦ e ≦ 0.05, 5.00 ≦ a + b + c + d + e
≦ 5.35, wherein a to e are moles per mole of Mm, and f is 19 to 21% by weight.
When a standard sample is obtained by heat treating LaNi 5 at 1060 ° C. for 3 hours and having a 5- type crystal structure, the X-ray diffraction diffracts the standard sample in the range of 20 ° ≦ 2θ ≦ 70 °. the value of the line half width is intended to provide a AB 5 -type hydrogen absorbing alloy, characterized in that it comprises at least two more than a relative ratio 1.10.

【0010】[0010]

【発明の実施の形態】以下、本発明の製造方法を詳細に
説明する。本発明の製造方法では、下記に示したような
合金組成となるように、水素吸蔵合金原料を秤量、混合
して得られた金属溶湯を、単ロール法又は双ロール法を
用い、103 K/sec以上、好ましくは103 〜10
5 K/sec程度の急冷速度で超急冷凝固させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method of the present invention will be described below in detail. In the production method of the present invention, the molten metal obtained by weighing and mixing the hydrogen-absorbing alloy raw materials so as to have the following alloy composition is subjected to a single-roll method or a twin-roll method to obtain 10 3 K / Sec or more, preferably 10 3 to 10
Ultra-quick solidification at a rapid cooling rate of about 5 K / sec.

【0011】このようにして得られた水素吸蔵合金は、
既に均質化しているので、不活性ガス雰囲気中、例えば
アルゴンガス中で熱処理することなしに、そのままニッ
ケル−水素二次電池の負極活物質として用いる。このよ
うに水素吸蔵合金に熱処理を施さないことによって、コ
ストが大幅に低減され、生産性に優れたものとなる。
[0011] The hydrogen storage alloy thus obtained is
Since it has already been homogenized, it is used as a negative electrode active material of a nickel-hydrogen secondary battery without heat treatment in an inert gas atmosphere, for example, in an argon gas. By not performing the heat treatment on the hydrogen storage alloy in this way, the cost is greatly reduced and the productivity is improved.

【0012】本発明の製造方法における水素吸蔵合金
は、一般式 Mm(Laf )Nia Mnb Alc Cod e (式中、Mmはミッシュメタル、Xはバナジウム又はチ
タン、4.00≦a≦4.30、0.30≦b≦0.5
0、0.20≦c≦0.45、0.20≦d≦0.6
0、0≦e≦0.05、5.00≦a+b+c+d+e
≦5.35、但し、a〜eはいずれもMm1モルに対す
るモル数、fは19〜21重量%)で表されるCaCu
5 型の結晶構造を有するAB5 型水素吸蔵合金である。
[0012] hydrogen-absorbing alloy in the manufacturing method of the present invention have the general formula Mm (La f) Ni a Mn b Al c Co d X e ( wherein, Mm is the mischmetal, X is vanadium or titanium, 4.00 ≦ a ≦ 4.30, 0.30 ≦ b ≦ 0.5
0, 0.20 ≦ c ≦ 0.45, 0.20 ≦ d ≦ 0.6
0, 0 ≦ e ≦ 0.05, 5.00 ≦ a + b + c + d + e
≦ 5.35, wherein a to e are moles per mole of Mm, and f is 19 to 21% by weight.
AB 5 type hydrogen storage alloy having a 5 type crystal structure.

【0013】ここで、MmはLa、Ce、Pr、Nd、
Sm等の希土類系の混合物であるミッシュメタルであ
る。このミッシュメタル中に含まれるランタンの含有率
は、水素吸蔵合金中に19〜21重量%である。また、
Xはバナジウム又はチタンである。そして、この水素吸
蔵合金は、CaCu5 型の結晶構造を有するAB5 型水
素吸蔵合金で、AB5.005.35のBサイトリッチの非化
学量論組成である。
Here, Mm is La, Ce, Pr, Nd,
It is a misch metal that is a rare earth-based mixture such as Sm. The content of lanthanum contained in the misch metal is 19 to 21% by weight in the hydrogen storage alloy. Also,
X is vanadium or titanium. Then, the hydrogen storage alloy in AB 5 type hydrogen storage alloy having a crystal structure type 5 CaCu, a non-stoichiometric composition of B-site rich AB 5.00 ~ 5.35.

【0014】この水素吸蔵合金において、Nia Mnb
Alc Cod e の組成割合(Mm1モルに対するモル
数)は、下記の関係を有するものである。すなわち、N
iの割合は4.00≦a≦4.30であり、Mnの割合
は0.30≦b≦0.50であり、Alの割合は0.2
0≦c≦0.45であり、Coの割合は0.20≦d≦
0.60であり、X(V又はTi)の割合は0≦e≦
0.05であり、かつa+b+c+d+eが5.00〜
5.35の範囲にある。
In this hydrogen storage alloy, Ni a Mn b
Al c Co d X (number of moles Mm1 mol) composition ratio of e is one having the following relationship. That is, N
The ratio of i is 4.00 ≦ a ≦ 4.30, the ratio of Mn is 0.30 ≦ b ≦ 0.50, and the ratio of Al is 0.2
0 ≦ c ≦ 0.45, and the proportion of Co is 0.20 ≦ d ≦
0.60, and the ratio of X (V or Ti) is 0 ≦ e ≦
0.05, and a + b + c + d + e is 5.00 to
It is in the range of 5.35.

【0015】このような水素吸蔵合金組成において、上
記のように、単ロール法又は双ロール法を用い、超急冷
凝固した後、熱処理を施すことなく、そのままニッケル
−水素二次電池の負極活物質として用いてもサイクル特
性等の良好な電池特性が得られる。次に、各元素の組成
割合について言及する。
In such a hydrogen-absorbing alloy composition, as described above, using the single-roll method or the twin-roll method, ultra-rapid solidification is performed, and then, without heat treatment, the negative electrode active material of the nickel-hydrogen secondary battery is directly used. Good battery characteristics such as cycle characteristics can be obtained. Next, the composition ratio of each element will be described.

【0016】上記のように、Niの割合aは4.00〜
4.30、好ましくは4.0〜4.2であり、aが4.
00未満では水素吸蔵量が損なわれ、4.30を超える
と微粉化や寿命特性劣化が認められ、またプラトー圧が
上昇する。
As described above, the ratio a of Ni is 4.00 to 4.0.
4.30, preferably 4.0 to 4.2, and a is 4.
If it is less than 00, the hydrogen storage capacity is impaired, and if it exceeds 4.30, pulverization and deterioration of life characteristics are recognized, and the plateau pressure increases.

【0017】Mnの割合bは0.30〜0.50、好ま
しくは0.35〜0.4であり、bが0.30未満では
プラトー圧力が高くなり、かつ水素吸蔵量が損なわれ、
0.50を超えると合金の腐食が激しくなり、合金の早
期劣化が認められる。
The ratio b of Mn is 0.30 to 0.50, preferably 0.35 to 0.4. If b is less than 0.30, the plateau pressure increases and the hydrogen storage capacity is impaired.
When it exceeds 0.50, corrosion of the alloy becomes severe, and early deterioration of the alloy is recognized.

【0018】Alの割合cは0.20〜0.45であ
り、cが0.20未満では水素吸蔵合金放出圧力である
プラトー圧力が高くなり、充放電のエネルギー効率が悪
くなり、0.45を超えると水素吸蔵量が少なくなる。
The ratio c of Al is 0.20 to 0.45. If c is less than 0.20, the plateau pressure, which is the pressure at which the hydrogen storage alloy is released, increases, and the energy efficiency of charging and discharging deteriorates. If it exceeds, the amount of hydrogen storage decreases.

【0019】Coの割合dは0.20〜0.60、好ま
しくは0.4〜0.60であり、dが0.20未満では
サイクル寿命が悪くなり、0.6を超えるとCoの割合
が多くなり、コストの低減が図れない。
The ratio d of Co is 0.20 to 0.60, preferably 0.4 to 0.60. If d is less than 0.20, the cycle life becomes poor. And the cost cannot be reduced.

【0020】V又はTiの割合eは0〜0.05であ
り、eが0.05を超えると微粉化特性が損なわれる。
The proportion e of V or Ti is 0 to 0.05, and when e exceeds 0.05, the pulverization characteristics are impaired.

【0021】a+b+c+d+e(以下、場合によって
xと総称する)は5.00〜5.35であり、xが5.
00未満では電池寿命や微粉化特性が損なわれ、5.3
5を超えた場合には、水素吸蔵特性が損なわれる。
A + b + c + d + e (hereinafter sometimes collectively referred to as x) is 5.00 to 5.35, and x is 5.
If it is less than 00, the battery life and pulverization characteristics are impaired, and 5.3
If it exceeds 5, the hydrogen storage properties will be impaired.

【0022】次に、本発明の水素吸蔵合金について説明
する。本発明の水素吸蔵合金は、上記化学式で表される
CaCu5 型の結晶構造を有し、LaNi5 を1060
℃、3時間熱処理したものを標準試料とした時に、X線
回折において、該標準試料に対して、20°≦2θ≦7
0°の範囲で回折線半値巾の値が相対比1.10以上の
ものを少なくとも2つ以上有するAB5 型水素吸蔵合金
である。
Next, the hydrogen storage alloy of the present invention will be described. The hydrogen storage alloy of the present invention has a CaCu 5 type crystal structure represented by the above chemical formula, and has a LaNi 5 of 1060
When the sample heat-treated at 3 ° C. for 3 hours was used as a standard sample, in the X-ray diffraction, 20 ° ≦ 2θ ≦ 7
0 The value of the diffraction line half width in the range of ° is AB 5 type hydrogen storage alloy having at least two more than a relative ratio 1.10.

【0023】このように、上記合金組成を有し、かつ上
記標準試料に対して、20°≦2θ≦70°の範囲で回
折線半値巾の値が相対比1.10以上のものを少なくと
も2つ以上有するAB5 型水素吸蔵合金は、ニッケル−
水素二次電池の負極活物質として用いた時に、電極容
量、放電率特性を低下させることなく、寿命特性(サイ
クル特性)を向上させることができる。
As described above, at least two samples having the above alloy composition and having a half value width of diffraction line of 1.10 or more in the range of 20 ° ≦ 2θ ≦ 70 ° with respect to the above-mentioned standard sample, AB 5 type hydrogen storage alloy having at least one
When used as a negative electrode active material of a hydrogen secondary battery, the life characteristics (cycle characteristics) can be improved without lowering the electrode capacity and discharge rate characteristics.

【0024】この水素吸蔵合金は、粗粉砕、微粉砕後、
ニッケル−水素二次電池の負極活物質として用いられ、
上記したような良好な電池特性を有する。
This hydrogen storage alloy is subjected to coarse pulverization and fine pulverization.
Used as a negative electrode active material of a nickel-hydrogen secondary battery,
It has good battery characteristics as described above.

【0025】[0025]

【実施例】以下、本発明を実施例等に基づき具体的に説
明する。なお、表1中の%は重量基準である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments and the like. The percentages in Table 1 are based on weight.

【0026】[比較例1]Mm、Ni、Mn、Al、C
o及びCuを合金組成でMm(La19重量%)Ni
3.95Mn0.45Al0.30Co0.40Cu0.10(x=5.2
0)になるように、各水素吸蔵合金原料を秤量、混合
し、その混合物をルツボに入れて高周波溶解炉に固定
し、10-2〜10-4Torrまで真空状態にした後、ア
ルゴンガス雰囲気中で加熱溶解した後、水冷式銅鋳型に
流し込み、1430℃で鋳造を行い、合金を得た。更
に、この合金をアルゴンガス雰囲気中で、1060℃、
3時間熱処理を行い、水素吸蔵合金を得て、ニッケル−
水素二次電池の負極活物質として使用した。
Comparative Example 1 Mm, Ni, Mn, Al, C
o and Cu in alloy composition of Mm (La 19% by weight) Ni
3.95 Mn 0.45 Al 0.30 Co 0.40 Cu 0.10 (x = 5.2
0), each hydrogen-absorbing alloy raw material is weighed and mixed, the mixture is put in a crucible, fixed in a high-frequency melting furnace, evacuated to 10 -2 to 10 -4 Torr, and then an argon gas atmosphere. After being heated and melted in the flask, it was poured into a water-cooled copper mold and cast at 1430 ° C. to obtain an alloy. Further, this alloy was heated at 1060 ° C. in an argon gas atmosphere.
Heat treatment for 3 hours to obtain hydrogen storage alloy, nickel-
It was used as a negative electrode active material of a hydrogen secondary battery.

【0027】[比較例2]Mm、Ni、Mn、Al、C
o及びCuを合金組成でMm(La19重量%)Ni
3.95Mn0.45Al0.30Co0.40Cu0.10(x=5.2
0)になるように、各水素吸蔵合金原料を秤量、混合
し、その混合物をルツボに入れて高周波溶解炉に固定
し、10-3Torrまで真空状態にした後、アルゴンガ
ス雰囲気中で加熱溶解した後、103 〜105 K/se
c程度の冷却速度で単ロール法により超急冷凝固させ水
素吸蔵合金を得た。この合金を熱処理せずに、ニッケル
−水素二次電池の負極活物質として使用した。
Comparative Example 2 Mm, Ni, Mn, Al, C
o and Cu in alloy composition of Mm (La 19% by weight) Ni
3.95 Mn 0.45 Al 0.30 Co 0.40 Cu 0.10 (x = 5.2
0), each hydrogen storage alloy raw material is weighed and mixed, the mixture is put in a crucible, fixed in a high-frequency melting furnace, evacuated to 10 -3 Torr, and then heated and melted in an argon gas atmosphere. And then 10 3 to 10 5 K / se
Ultra-rapid solidification was performed by a single roll method at a cooling rate of about c to obtain a hydrogen storage alloy. This alloy was used as a negative electrode active material of a nickel-hydrogen secondary battery without heat treatment.

【0028】[比較例3]Mm、Ni、Mn、Al、C
o及びVを合金組成でMmNi4.12Mn0.35Al 0.32
0.400.01(x=5.20)になるように、各水素吸
蔵合金原料を秤量、混合し、その混合物をルツボに入れ
て高周波溶解炉に固定し、10-2〜10-4Torrまで
真空状態にした後、アルゴンガス雰囲気中で加熱溶解し
た後、水冷式銅鋳型に流し込み、1430℃で鋳造を行
い、水素吸蔵合金を得た。この合金を熱処理せずに、ニ
ッケル−水素二次電池の負極活物質として使用した。
Comparative Example 3 Mm, Ni, Mn, Al, C
o and V are alloyed with MmNi4.12Mn0.35Al 0.32C
o0.40V0.01(X = 5.20)
Weigh and mix the storage alloy materials and place the mixture in a crucible.
And fix it in a high-frequency melting furnace.-2-10-FourUp to Torr
After vacuuming, heat and dissolve in an argon gas atmosphere.
After that, it is poured into a water-cooled copper mold and cast at 1430 ° C.
Thus, a hydrogen storage alloy was obtained. Without heat treating this alloy,
It was used as a negative electrode active material for a nickel-hydrogen secondary battery.

【0029】[実施例1〜9]合金組成が表1となるよ
うに各水素吸蔵合金原料を用いた以外は、比較例2と同
様にして水素吸蔵合金を得た。この合金を熱処理せず
に、ニッケル−水素二次電池の負極活物質として使用し
た。
Examples 1 to 9 Hydrogen storage alloys were obtained in the same manner as in Comparative Example 2 except that each hydrogen storage alloy raw material was used so that the alloy composition was as shown in Table 1. This alloy was used without heat treatment as a negative electrode active material of a nickel-hydrogen secondary battery.

【0030】[特性評価]実施例1〜9及び比較例1〜
3で得られた水素吸蔵合金について、下記に示す方法に
よって、PCT容量、微粉化残存率、アルミニウム溶出
率及び0℃、1C電極容量を測定した。その結果を表2
に示す。
[Characteristic evaluation] Examples 1 to 9 and Comparative Examples 1 to
With respect to the hydrogen storage alloy obtained in 3, the PCT capacity, the pulverized residual rate, the aluminum elution rate, and the 1C electrode capacity at 0 ° C. were measured by the following methods. Table 2 shows the results.
Shown in

【0031】<PCT容量>水素吸蔵合金を粉砕し、粒
度22〜53ミクロンに分級し、所定量採取して、PC
Tホルダーに充填した。PCTホルダーを10-3Tor
r以下に真空吸引した後、水素ガス30atmをそこに
導入し、250℃に加熱して10分保持した。その後、
放冷して水素ガスを水素吸蔵合金粉末に吸蔵させた。こ
れを2回行い、活性化処理とした。活性化処理を行った
後、真空吸引し、自動PCT装置にて、水素ガス圧30
atmまでのPCT容量の測定を行った。
<PCT capacity> The hydrogen storage alloy is pulverized, classified to a particle size of 22 to 53 microns, and a predetermined amount is collected.
Filled into T holder. PCT holder 10 -3 Torr
After vacuum suction at r or lower, 30 atm of hydrogen gas was introduced therein, heated to 250 ° C. and maintained for 10 minutes. afterwards,
After cooling, hydrogen gas was absorbed in the hydrogen-absorbing alloy powder. This was performed twice, and an activation process was performed. After performing the activation treatment, vacuum suction is performed, and the hydrogen gas pressure is set to 30 by an automatic PCT device.
The PCT capacity up to atm was measured.

【0032】<微粉化残存率>PCT装置で、30ba
rの水素ガスを粒度22〜53ミクロンに分級した水素
吸蔵合金粉末に導入し、その後脱蔵排気する処理を10
回繰り返した後の値を、比較例1の値を100とした指
数で表示した。
<Remaining ratio of pulverization> 30 ba
r hydrogen gas is introduced into the hydrogen-absorbing alloy powder classified to a particle size of 22 to 53 microns, and then evacuated and exhausted.
The value after the repetition was indicated by an index with the value of Comparative Example 1 being 100.

【0033】<アルミニウム溶出率>アルミニウム溶出
試験を行い、試験片を30重量%KOH水溶液(75
℃)中に48時間放置し、アルミニウム量をICP分析
にて定量し、比較例1の値を100とした指数で表示し
た。
<Aluminum dissolution rate> An aluminum dissolution test was performed.
C.) for 48 hours, the amount of aluminum was quantified by ICP analysis, and indicated by an index with the value of Comparative Example 1 being 100.

【0034】<0℃、1C電極容量> (電極セルの作製)粒度22〜53ミクロンに分級した
水素吸蔵合金粉末、ニッケル粉末、ポリエチレン粉末を
1:3:0.12(重量比)の割合で混合し、得られた
混合粉を所定量採取し、プレスにてφ18mmのペレッ
トを作製し、負極とした。
<0 ° C., 1 C electrode capacity> (Preparation of electrode cell) Hydrogen storage alloy powder, nickel powder and polyethylene powder classified to a particle size of 22 to 53 μm in a ratio of 1: 3: 0.12 (weight ratio). After mixing, a predetermined amount of the obtained mixed powder was sampled, and a pellet having a diameter of 18 mm was prepared by a press to prepare a negative electrode.

【0035】正極(焼結式水酸化ニッケル)と負極の間
にセパレーターを挟み、クリップにて密着させた。この
ものをコップ状容器に入れ、電解液(KOH)31重量
%水溶液を正極、負極の全てに浸るまで注入し、電極セ
ルを作製した。この電極セルを充放電装置に接続した。
A separator was sandwiched between the positive electrode (sintered nickel hydroxide) and the negative electrode, and closely attached with clips. This was put in a cup-shaped container, and a 31% by weight aqueous solution of an electrolytic solution (KOH) was injected until it was immersed in all of the positive electrode and the negative electrode, thereby producing an electrode cell. This electrode cell was connected to a charging / discharging device.

【0036】(充放電装置条件の設定)この電極セルを
用いた充放電装置条件の設定は、次の通りである。 1)初期活性化 ・充電:0.2C、130% ・放電:0.2C、0.7Vカット ・サイクル:15サイクル ・温度:20℃
(Setting of charging / discharging device conditions) Setting of charging / discharging device conditions using this electrode cell is as follows. 1) Initial activation ・ Charge: 0.2C, 130% ・ Discharge: 0.2C, 0.7V cut ・ Cycle: 15 cycles ・ Temperature: 20 ° C

【0037】2)0℃、1Cでの電極容量測定 上記初期活性化終了後、下記条件により0℃、1Cでの
電極容量を測定した。 ・充電:0.2C、130% ・放電:1C、0.7Vカット ・サイクル:1サイクル ・温度:0℃ この0℃、1Cでの電極容量の値(mAh/g)によ
り、低温ハイレート特性を評価した。
2) Measurement of electrode capacity at 0 ° C. and 1C After the completion of the initial activation, the electrode capacity was measured at 0 ° C. and 1C under the following conditions.・ Charge: 0.2 C, 130% ・ Discharge: 1 C, 0.7 V cut ・ Cycle: 1 cycle ・ Temperature: 0 ° C. The electrode capacity value (mAh / g) at 0 ° C. and 1 C gives low-temperature high-rate characteristics. evaluated.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】表2に示されるように、実施例1〜9は、
比較例1と対比すると、PCT容量及び微粉化残存率に
おいて同等であり、アルミニウム溶出率及び電極容量
(低温ハイレート特性)において優れている。また、こ
の実施例1〜9は、比較例2と対比すると、PCT容
量、電極容量(低温ハイレート特性)において優れてい
る。なお、比較例1は、上記のように鋳造、熱処理を行
うために、製造コストが高いものとなった。
As shown in Table 2, Examples 1 to 9
Compared with Comparative Example 1, the PCT capacity and the pulverized residual rate are equivalent, and the aluminum elution rate and the electrode capacity (low-temperature high-rate characteristics) are excellent. Examples 1 to 9 are superior to Comparative Example 2 in PCT capacity and electrode capacity (low-temperature high-rate characteristics). In Comparative Example 1, since the casting and the heat treatment were performed as described above, the production cost was high.

【0041】また、比較例3は、熱処理していないの
で、コスト安となるが、製造方法が鋳造のため、偏折相
が多数認められ、出力特性は良好なものの、それが原因
で、サイクル寿命特性を示す微粉か残存率、Al溶出率
が極めて悪く、ニッケル−水素二次電池用負極活物質と
して使用は不可能である。
In Comparative Example 3, since the heat treatment was not performed, the cost was low. However, since the manufacturing method was casting, a large number of deviated phases were observed, and the output characteristics were good. The fine powder exhibiting life characteristics is extremely poor in residual ratio and Al elution ratio, and cannot be used as a negative electrode active material for nickel-hydrogen secondary batteries.

【0042】[X線回折評価]実施例1〜9及び比較例
1〜3で得られた水素吸蔵合金のX線回折を行い、La
Ni5 を1060℃、3時間熱処理したものを標準試料
とした時に、この標準試料に対して、20°≦2θ≦7
0°の範囲で回折線半値巾の値の相対比を求めた。結果
を表3に示す。また、標準試料(LaNi5 )のX線回
折図を図1に、比較例1〜2及び実施例1の水素吸蔵合
金のX線回折図を図2〜4にそれぞれ示す。
[Evaluation of X-ray Diffraction] The hydrogen storage alloys obtained in Examples 1 to 9 and Comparative Examples 1 to 3 were subjected to X-ray diffraction to obtain La.
Ni 5 to 1060 ° C., when a standard sample which was heat treated 3 hours, against the standard sample, 20 ° ≦ 2θ ≦ 7
The relative ratio of the values of the half width of the diffraction line in the range of 0 ° was obtained. Table 3 shows the results. FIG. 1 shows an X-ray diffraction pattern of the standard sample (LaNi 5 ), and FIGS.

【0043】[0043]

【表3】 [Table 3]

【0044】表3及び図1〜4に示されるように、実施
例1〜9は、標準試料(LaNi5)に対して、20°
≦2θ≦70°の範囲で回折線半値巾の値が相対比1.
10以上のものを2つ以上有している。これに対して、
比較例1は、熱処理しているために回折線半値巾が狭
い。また、比較例2は、標準試料に対して、回折線半値
巾の値が相対比1.10以上のものを2つ以上有してい
るが、合金組成が本発明で規定する範囲を外れているた
め、上記の表2に示されるようにPCT容量、電極容量
に劣る。さらに、比較例3は、標準試料に対して、回折
線半値巾の値が相対比1.10以上のものを2つ以上有
しているが、製造方法が鋳造のため、上記の表2に示さ
れるようにサイクル寿命特性を示す微粉化残存率、Al
溶出率が極めて悪い。
As shown in Table 3 and FIGS. 1 to 4, Examples 1 to 9 were 20 ° with respect to the standard sample (LaNi 5 ).
In the range of ≦ 2θ ≦ 70 °, the value of the half width of the diffraction line is relative ratio 1.
It has two or more of 10 or more. On the contrary,
In Comparative Example 1, the half-width of the diffraction line was narrow because of the heat treatment. Further, Comparative Example 2 has two or more diffraction line half-width values with respect to the standard sample having a relative ratio of 1.10 or more, but the alloy composition is out of the range specified in the present invention. Therefore, as shown in Table 2 above, the PCT capacity and the electrode capacity are inferior. Furthermore, Comparative Example 3 has two or more diffraction line half-width values with respect to the standard sample whose relative ratio is 1.10 or more. As shown, the pulverized residual ratio showing cycle life characteristics, Al
Very poor dissolution rate.

【0045】[0045]

【発明の効果】以上説明したように、本発明の製造方法
によって、特定の合金組成を有する水素吸蔵合金が、安
価、かつ良好な生産性をもって得られる。そして、この
特定の合金組成を有する水素吸蔵合金は、ニッケル−水
素二次電池の負極活物質として用いた時に、電極容量、
放電率特性を低下させることなく、寿命特性(サイクル
特性)を向上させることができる。
As described above, according to the production method of the present invention, a hydrogen storage alloy having a specific alloy composition can be obtained at low cost and with good productivity. Then, when the hydrogen storage alloy having this specific alloy composition is used as a negative electrode active material of a nickel-hydrogen secondary battery, the electrode capacity,
The life characteristics (cycle characteristics) can be improved without lowering the discharge rate characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】標準試料(LaNi5 )のX線回折図。FIG. 1 is an X-ray diffraction diagram of a standard sample (LaNi 5 ).

【図2】比較例1の水素吸蔵合金のX線回折図。FIG. 2 is an X-ray diffraction diagram of a hydrogen storage alloy of Comparative Example 1.

【図3】比較例2の水素吸蔵合金のX線回折図。FIG. 3 is an X-ray diffraction diagram of a hydrogen storage alloy of Comparative Example 2.

【図4】実施例1の水素吸蔵合金のX線回折図。FIG. 4 is an X-ray diffraction diagram of the hydrogen storage alloy of Example 1.

フロントページの続き (72)発明者 菊川 真吾 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 (72)発明者 安田 清隆 広島県竹原市塩町1丁目5番1号 三井金 属鉱業株式会社電池材料研究所内 Fターム(参考) 4E004 DB01 DB02 DB03 TA06 5H003 AA04 BB02 BC06 BD00 BD01 BD03 BD04 BD05 Continued on the front page (72) Shingo Kikukawa, Inventor 1-5-1, Shiomachi, Takehara-shi, Hiroshima Prefecture Battery Materials Research Laboratory, Mitsui Kinzoku Mining Co., Ltd. (72) Kiyotaka Yasuda 1-5-1, Shiomachi, Takehara-shi, Hiroshima Prefecture Mitsui Kinzoku Mining Co., Ltd. Battery Materials Research Laboratory F-term (reference) 4E004 DB01 DB02 DB03 TA06 5H003 AA04 BB02 BC06 BD00 BD01 BD03 BD04 BD05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金原料を加熱溶解し、単ロー
ル法又は双ロール法を用い、10K3 /sec以上の超
急冷速度で超急冷凝固し、その後熱処理を行わないこと
を特徴とする、下記一般式で表されるCaCu5 型の結
晶構造を有するAB5 型水素吸蔵合金の製造方法。 一般式 Mm(Laf )Nia Mnb Alc Cod e (式中、Mmはミッシュメタル、Xはバナジウム又はチ
タン、4.00≦a≦4.30、0.30≦b≦0.5
0、0.20≦c≦0.45、0.20≦d≦0.6
0、0≦e≦0.05、5.00≦a+b+c+d+e
≦5.35、但し、a〜eはいずれもMm1モルに対す
るモル数、fは19〜21重量%)
1. A method of heating and dissolving a hydrogen storage alloy raw material, and using a single roll method or a twin roll method, performing ultra-quench solidification at an ultra-rapid cooling rate of 10 K 3 / sec or more, and thereafter performing no heat treatment. manufacturing method of AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following formula. Formula Mm (La f) Ni a Mn b Al c Co d X e ( wherein, Mm is the mischmetal, X is vanadium or titanium, 4.00 ≦ a ≦ 4.30,0.30 ≦ b ≦ 0. 5
0, 0.20 ≦ c ≦ 0.45, 0.20 ≦ d ≦ 0.6
0, 0 ≦ e ≦ 0.05, 5.00 ≦ a + b + c + d + e
≦ 5.35, wherein a to e are moles per mole of Mm, and f is 19 to 21% by weight.
【請求項2】 下記一般式 Mm(Laf )Nia Mnb Alc Cod e (式中、Mmはミッシュメタル、Xはバナジウム又はチ
タン、4.00≦a≦4.30、0.30≦b≦0.5
0、0.20≦c≦0.45、0.20≦d≦0.6
0、0≦e≦0.05、5.00≦a+b+c+d+e
≦5.35、但し、a〜eはいずれもMm1モルに対す
るモル数、fは19〜21重量%)で表されるCaCu
5 型の結晶構造を有し、LaNi5 を1060℃、3時
間熱処理したものを標準試料とした時に、X線回折にお
いて、該標準試料に対して、20°≦2θ≦70°の範
囲で回折線半値巾の値が相対比1.10以上のものを少
なくとも2つ以上有することを特徴とするAB5 型水素
吸蔵合金。
Wherein the following formula Mm (La f) Ni a Mn b Al c Co d X e ( wherein, Mm is the mischmetal, X is vanadium or titanium, 4.00 ≦ a ≦ 4.30,0. 30 ≦ b ≦ 0.5
0, 0.20 ≦ c ≦ 0.45, 0.20 ≦ d ≦ 0.6
0, 0 ≦ e ≦ 0.05, 5.00 ≦ a + b + c + d + e
≦ 5.35, wherein a to e are moles per mole of Mm, and f is 19 to 21% by weight.
When a standard sample is obtained by heat treating LaNi 5 at 1060 ° C. for 3 hours and having a 5- type crystal structure, the X-ray diffraction diffracts the standard sample in the range of 20 ° ≦ 2θ ≦ 70 °. AB 5 type hydrogen storage alloy, characterized in that it has at least two of the line half-width values having a relative ratio of 1.10 or more.
【請求項3】 請求項1に記載の製造方法により得られ
た水素吸蔵合金を負極活物質に用いたニッケル−水素二
次電池。
3. A nickel-hydrogen secondary battery using the hydrogen storage alloy obtained by the production method according to claim 1 as a negative electrode active material.
【請求項4】 請求項2に記載の水素吸蔵合金を負極活
物質に用いたニッケル−水素二次電池。
4. A nickel-hydrogen secondary battery using the hydrogen storage alloy according to claim 2 as a negative electrode active material.
JP10324970A 1998-09-24 1998-11-16 Hydrogen storage alloy and its manufacture Pending JP2000160265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10324970A JP2000160265A (en) 1998-09-24 1998-11-16 Hydrogen storage alloy and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27011498 1998-09-24
JP10-270114 1998-09-24
JP10324970A JP2000160265A (en) 1998-09-24 1998-11-16 Hydrogen storage alloy and its manufacture

Publications (1)

Publication Number Publication Date
JP2000160265A true JP2000160265A (en) 2000-06-13

Family

ID=26549073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10324970A Pending JP2000160265A (en) 1998-09-24 1998-11-16 Hydrogen storage alloy and its manufacture

Country Status (1)

Country Link
JP (1) JP2000160265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324407A1 (en) * 2001-12-17 2003-07-02 Mitsui Mining & Smelting Co., Ltd Hydrogen storage material
CN102828069A (en) * 2012-09-26 2012-12-19 鞍山鑫普电池材料有限公司 Praseodymium-neodymium-free low-cost superlong life type hydrogen storage alloy and preparation method thereof
CN109087766A (en) * 2018-07-10 2018-12-25 北京航空航天大学 A kind of permanent-magnet alloy and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1324407A1 (en) * 2001-12-17 2003-07-02 Mitsui Mining & Smelting Co., Ltd Hydrogen storage material
CN102828069A (en) * 2012-09-26 2012-12-19 鞍山鑫普电池材料有限公司 Praseodymium-neodymium-free low-cost superlong life type hydrogen storage alloy and preparation method thereof
CN109087766A (en) * 2018-07-10 2018-12-25 北京航空航天大学 A kind of permanent-magnet alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Electrode and method of storage hidrogine
US9219277B2 (en) Low Co hydrogen storage alloy
US11094932B2 (en) Hydrogen storage alloy
JP6608558B1 (en) Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment
JP3965209B2 (en) Low Co hydrogen storage alloy
JP4828714B2 (en) Hydrogen storage alloy, method for producing the same, and negative electrode for nickel metal hydride secondary battery
JPWO2011162385A1 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
JP2002105563A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
US7514178B2 (en) Hydrogen-absorbing alloy for alkaline storage battery, method of manufacturing the same, and alkaline storage battery
JP2001040442A (en) Hydrogen storage alloy
JP4659936B2 (en) Hydrogen storage alloy, method for producing the same, secondary battery using the same, and electric vehicle
JP3834329B2 (en) AB5 type hydrogen storage alloy with excellent life characteristics
JP2001348636A (en) Hydrogen storage alloy and its production method
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP2000160265A (en) Hydrogen storage alloy and its manufacture
JP3944237B2 (en) Low Co hydrogen storage alloy
WO2002101855A1 (en) Method for fabricating negative electrode for secondary cell
JPH0641663A (en) Hydrogen storage alloy and its manufacture, and hydrogen storage alloy electrode
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
JP2000144277A (en) Hydrogen occlusion alloy and its production
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP4573421B2 (en) Hydrogen storage alloy
JP2001181763A (en) Hydrogen storage alloy
JPH11152533A (en) Hydrogen storage alloy and its production