JP6608558B1 - Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment - Google Patents

Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment Download PDF

Info

Publication number
JP6608558B1
JP6608558B1 JP2019112967A JP2019112967A JP6608558B1 JP 6608558 B1 JP6608558 B1 JP 6608558B1 JP 2019112967 A JP2019112967 A JP 2019112967A JP 2019112967 A JP2019112967 A JP 2019112967A JP 6608558 B1 JP6608558 B1 JP 6608558B1
Authority
JP
Japan
Prior art keywords
secondary battery
nickel
hydrogen storage
negative electrode
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019112967A
Other languages
Japanese (ja)
Other versions
JP2020205192A (en
Inventor
亮 大塚
亮 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2019112967A priority Critical patent/JP6608558B1/en
Application granted granted Critical
Publication of JP6608558B1 publication Critical patent/JP6608558B1/en
Publication of JP2020205192A publication Critical patent/JP2020205192A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】表面処理を施さなくても水素の吸蔵放出が容易である水素吸蔵合金粉末からなるニッケル水素二次電池負極活物質及びニッケル水素二次電池を提供する。【解決手段】一般式:MmNiaMnbAlcCod(式中、Mmはミッシュメタルであり、LaおよびCeが、Mm全質量に対して90質量%以上であり、かつ、4.30≦a≦4.70、0.20≦b≦0.45、0.35≦c≦0.45、0≦d≦0.06、5.25≦a+b+c+d≦5.50)で表される水素吸蔵合金粉末であって、抗酸化性にすぐれ、好ましくは、水素吸蔵量(H/M)が0.80以上1.00以下、微粉化難度が0.48以上、0.60以下、平衡(水素)圧が0.04〜0.06MPa、a軸長が503pm以上である水素吸蔵合金粉末からなる表面処理を施さないニッケル水素二次電池負極活物質及びニッケル水素二次電池。【選択図】なしDisclosed are a nickel-metal hydride secondary battery negative electrode active material and a nickel-metal hydride secondary battery made of a hydrogen storage alloy powder that can easily store and release hydrogen without any surface treatment. A general formula: MmNiaMnbAlcCod (wherein Mm is a misch metal, La and Ce are 90% by mass or more based on the total mass of Mm, and 4.30 ≦ a ≦ 4.70, 0) 20 ≦ b ≦ 0.45, 0.35 ≦ c ≦ 0.45, 0 ≦ d ≦ 0.06, 5.25 ≦ a + b + c + d ≦ 5.50), It has excellent oxidizability, preferably, the hydrogen storage amount (H / M) is 0.80 or more and 1.00 or less, the pulverization difficulty is 0.48 or more and 0.60 or less, and the equilibrium (hydrogen) pressure is 0.04 to A nickel hydride secondary battery negative electrode active material and a nickel hydride secondary battery that are not subjected to a surface treatment made of a hydrogen storage alloy powder of 0.06 MPa and an a-axis length of 503 pm or more. [Selection figure] None

Description

本発明は、ニッケルを主成分とする水素吸蔵合金に関し、特にニッケル水素二次電池負極活物質として使用された時、表面処理を必要とせずに、出力特性を高めることが出来るニッケル水素二次電池負極活物質、及びニッケル水素二次電池に関するものである。   The present invention relates to a hydrogen storage alloy containing nickel as a main component, and particularly when used as a negative electrode active material for a nickel metal hydride secondary battery, a nickel metal hydride secondary battery capable of improving output characteristics without requiring surface treatment. The present invention relates to a negative electrode active material and a nickel metal hydride secondary battery.

火災、爆発の可能性のあるリチウムイオン二次電池と比較して安全性が高いニッケル水素二次電池はハイブリッド自動車を中心に広く使用されている。ニッケル水素二次電池は一般的に正極活物質にニッケル酸化物であるオキシ水酸化ニッケル、負極活物質に金属水素化物(MH)が使用されており電解液は水酸化カリウムを主体とするアルカリ水溶液が用いられている。この電池のセパレータには、通常、親水性を付与したポリプロピレン不織布が用いられる。なお、金属水素化物(MH)とは水素吸蔵合金が水素を吸蔵したものでありLaNiがその代表例であり、実用化されている電池ではコストや性能の点からLaの代わりにMm(ミッシュメタル)を用い、Niの一部をMn、Al、Coなどで置換した多成分系合金が一般に使用されている。 Nickel metal hydride rechargeable batteries, which are safer than lithium ion rechargeable batteries with a possibility of fire and explosion, are widely used mainly in hybrid vehicles. Nickel metal hydride secondary batteries generally use nickel oxyhydroxide, which is nickel oxide as the positive electrode active material, and metal hydride (MH) as the negative electrode active material. The electrolyte is an alkaline aqueous solution mainly composed of potassium hydroxide. Is used. For the battery separator, a polypropylene nonwoven fabric imparted with hydrophilicity is usually used. Metal hydride (MH) is a hydrogen storage alloy that stores hydrogen, and LaNi 5 H 6 is a typical example. In practical batteries, Mm is substituted for La in terms of cost and performance. A multi-component alloy in which a part of Ni is substituted with Mn, Al, Co or the like using (Mish metal) is generally used.

ニッケル水素二次電池がハイブリッド自動車に使用される場合、減速時に回生ブレーキによる運動エネルギーを電気エネルギーに変換する形での充電、加速時に溜めた電気エネルギーを電気モーター駆動に使用する形での放電を走行中加減速のたびに繰り返すため特に短時間で充放電を繰り返す必要が有る。 When nickel-metal hydride secondary batteries are used in hybrid vehicles, charging is performed by converting the kinetic energy generated by regenerative braking into electric energy during deceleration, and discharging is performed using electric energy stored during acceleration for driving an electric motor. It is necessary to repeat charging and discharging particularly in a short time because it is repeated every time acceleration / deceleration is performed.

ニッケル水素電池において充放電を短時間で行うための律速は負極活物質である金属水素化物の水素吸放出速度となっており、特に金属水素化物粒子表面に形成された金属状Ni濃縮層によって、電極反応のための触媒機能、電子の流路となる集電機能、腐食の進行の抑制機能など水素吸蔵合金電極としての必要な機能が付与されていると言われている。 The rate-limiting for performing charging and discharging in a nickel hydride battery in a short time is the hydrogen absorption / desorption rate of the metal hydride that is the negative electrode active material, and in particular, by the metallic Ni concentrated layer formed on the surface of the metal hydride particles, It is said that necessary functions as a hydrogen storage alloy electrode such as a catalytic function for electrode reaction, a current collecting function as an electron flow path, and a function of suppressing the progress of corrosion are given.

このため、水素吸蔵合金表面を充放電反応に適したように整え、放電特性や寿命を改善するために種々の表面処理が行われている。 For this reason, various surface treatments are performed in order to prepare the surface of the hydrogen storage alloy so as to be suitable for a charge / discharge reaction and to improve discharge characteristics and life.

特許文献1には水素吸蔵合金の反応性を高めることを目的として水素吸蔵合金粉末を強アルカリ中で撹拌するまたはフッ化水素水、酢酸など酸性溶液中で撹拌して水素吸蔵合金表面粉末の酸化被膜を含む表面層を除去する方法が提案されている。 In Patent Document 1, the hydrogen storage alloy powder is agitated in a strong alkali or in an acidic solution such as hydrogen fluoride water or acetic acid for the purpose of enhancing the reactivity of the hydrogen storage alloy. A method for removing a surface layer including a coating has been proposed.

特許文献2には自己放電が抑制され、高温保存特性が良好な二次電池を製造することを目的として素吸蔵合金粉末を水酸化リチウムを含むアルカリ水溶液中で撹拌して水素吸蔵合金粉末表面に偏析したMn、CoおよびFeを除去する方法が提案されている。 Patent Document 2 discloses that a hydrogen storage alloy powder surface is stirred by stirring an elemental storage alloy powder in an alkaline aqueous solution containing lithium hydroxide for the purpose of manufacturing a secondary battery in which self-discharge is suppressed and excellent in high-temperature storage characteristics. A method for removing segregated Mn, Co and Fe has been proposed.

特許文献3では高サイクル寿命性能の優れたニッケル水素蓄電池を製造することを目的として素吸蔵合金粉末を9mol/l以上且つ110℃以上、又は10mol/l以上且つ80℃以上のアルカリ性水溶液に接触させ水素吸蔵合金粉末表面層において粒子表面との界面から10nm離れた部分のニッケル濃度を該粒子のニッケル濃度と実質的に同じとなり、水素の吸蔵・放出の際に生じる粒子と表面層との間の歪みを抑制させる方法が提案されている。   In Patent Document 3, for the purpose of producing a nickel-metal hydride storage battery with excellent high cycle life performance, the element storage alloy powder is brought into contact with an alkaline aqueous solution of 9 mol / l or more and 110 ° C. or more, or 10 mol / l or more and 80 ° C. or more. In the surface layer of the hydrogen storage alloy powder, the nickel concentration at a portion 10 nm away from the interface with the particle surface is substantially the same as the nickel concentration of the particle, and between the particles and the surface layer generated during storage and release of hydrogen. A method for suppressing distortion has been proposed.

特許文献4では高サイクル寿命特性の優れたニッケル水素蓄電池を製造することを目的として水素吸蔵合金粉末粒子表面に耐久性ニッケル被覆膜を無電解ニッケルメッキ法によって形成することにより水素吸蔵合金からの構成成分の溶出を抑制させる方法が提案されている。   In Patent Document 4, for the purpose of producing a nickel-metal hydride storage battery having excellent high cycle life characteristics, a durable nickel coating film is formed on the surface of the hydrogen storage alloy powder particles by an electroless nickel plating method. A method for suppressing elution of constituent components has been proposed.

特開2018−14244号公報JP-A-2018-14244 特開2010−262763号公報JP 2010-262663 A 特開2010−50011号公報JP 2010-50011 A 特開2006−286345号公報JP 2006-286345 A

上述のように金属水素化物原料としてのLaNi系水素吸蔵合金粉末は、ニッケル水素二次電池負極活物質材料においてその潜在能力を発揮するために粉末表面の処理が必要とされこの表面処理方法の開発が行われてきたが表面処理を必要としない水素吸蔵合金粉末はいまだ開発されていないのが実情である。 As described above, the LaNi 5- based hydrogen storage alloy powder as the metal hydride raw material needs to be treated on the surface of the powder in order to exhibit its potential in the negative electrode active material of the nickel hydride secondary battery. In fact, hydrogen storage alloy powders that have been developed but do not require surface treatment have not yet been developed.

そこで本発明の目的は、上記実情に鑑み、特別な表面処理工程を必要とせず高い出力特性の得られるニッケル水素二次電池負極活物質及びニッケル水素二次電池を提供する事にある。   In view of the above circumstances, an object of the present invention is to provide a nickel-hydrogen secondary battery negative electrode active material and a nickel-hydrogen secondary battery that can obtain high output characteristics without requiring a special surface treatment step.

本発明者らは、上記課題を解決すべく鋭意研究し、一般式MmNiaMnbAlcCod(左式中、Mmはミッシュメタルを示し、4.30≦a≦4.70、0.20≦b≦0.45、0.35≦c≦0.45、0≦d≦0.06、5.25≦a+b+c+d≦5.50)で表されるものは表面処理を行わなくても水素の吸蔵放出が容易となる事、特にニッケル水素二次電池負極として使用した場合、表面処理工程を設けなくても高い出力特性が得られることを見出し、本発明を完成するに至った。 The inventors of the present invention have intensively studied to solve the above-mentioned problems. The general formula MmNiaMnbAlcCod (where Mm represents Misch metal in the left formula, 4.30 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.45). , 0.35 ≦ c ≦ 0.45, 0 ≦ d ≦ 0.06, 5.25 ≦ a + b + c + d ≦ 5.50), it is easy to occlude and release hydrogen without surface treatment. In particular, when used as a negative electrode for a nickel metal hydride secondary battery, it was found that high output characteristics can be obtained without providing a surface treatment step, and the present invention has been completed.

すなわち、本発明の要旨は、以下のとおりである。   That is, the gist of the present invention is as follows.

(1)LaNi系水素吸蔵合金粉末からなるニッケル水素電池負極活物質であって、前記水素吸蔵合金粉末は、一般式MmNiaMnbAlcCod(左式中、Mmはミッシュメタルを示し、かつ、Mm全体の90質量%以上をLaおよびCeが占め、4.30≦a≦4.70、0.20≦b≦0.45、0.35≦c≦0.45、0≦d≦0.06、5.25≦a+b+c+d≦5.50を満足する)で表される成分組成を有し、空気中250℃、50分間の熱処理を行った場合の酸素増量が0.8質量%以下の抗酸化性にすぐれた水素吸蔵合金粉末であることを特徴とする表面処理を施さないニッケル水素二次電池負極活物質。 (1) A nickel-metal hydride battery negative electrode active material made of LaNi 5 series hydrogen storage alloy powder, wherein the hydrogen storage alloy powder has a general formula MmNiaMnbAlcCod (in the left formula, Mm represents Misch metal and 90% of the total Mm La and Ce occupy mass% or more, 4.30 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.45, 0.35 ≦ c ≦ 0.45, 0 ≦ d ≦ 0.06. 25 ≦ a + b + c + d ≦ 5.50) and has an excellent oxygen resistance when oxygen is increased by a heat treatment at 250 ° C. for 50 minutes in air for 0.8 mass% or less. A negative electrode active material for a nickel-metal hydride secondary battery, which is a hydrogen storage alloy powder and is not subjected to surface treatment.

(2)前記水素吸蔵合金粉末は、水素吸蔵量(H/M)が0.80以上1.00以下の範囲内であり、且つ、微粉化難度が0.48以上、0.60以下の範囲内(望ましくは、0.50〜0.58)であることを特徴とする前記(1)に記載のニッケル水素二次電池負極活物質。   (2) The hydrogen storage alloy powder has a hydrogen storage amount (H / M) in a range of 0.80 or more and 1.00 or less, and a pulverization difficulty in a range of 0.48 or more and 0.60 or less. The nickel-hydrogen secondary battery negative electrode active material according to (1), wherein the negative electrode active material is within the range (preferably 0.50 to 0.58).

(3)前記水素吸蔵合金粉末は、粉末X回折測定結果から得られるa軸長が503pm以上であることを特徴とする前記(1)または(2)に記載のニッケル水素二次電池負極活物質。   (3) The negative electrode active material for a nickel-metal hydride secondary battery according to (1) or (2), wherein the hydrogen storage alloy powder has an a-axis length of 503 pm or more obtained from the powder X diffraction measurement result .

(4)前記水素吸蔵合金粉末は、平衡(水素)圧が0.04〜0.06MPaであることを特徴とする前記(1)〜(3)のいずれかに記載のニッケル水素二次電池負極活物質。   (4) The nickel-hydrogen secondary battery negative electrode according to any one of (1) to (3), wherein the hydrogen storage alloy powder has an equilibrium (hydrogen) pressure of 0.04 to 0.06 MPa. Active material.

(5)前記(1)〜(4)のいずれか一項に記載のニッケル水素二次電池負極活物質と導電助剤、結着剤を混練後、集電体に塗布することを特徴とするニッケル水素二次電池用負極の製造方法。   (5) The nickel hydride secondary battery negative electrode active material according to any one of (1) to (4), a conductive additive, and a binder are kneaded and then applied to a current collector. The manufacturing method of the negative electrode for nickel hydride secondary batteries.

(6)前記(1)〜(4)のいずれか一項に記載のニッケル水素二次電池負極活物質を使用することを特徴とするニッケル水素二次電池。   (6) A nickel metal hydride secondary battery using the nickel metal hydride secondary battery negative electrode active material according to any one of (1) to (4).

(7)前記(6)に記載のニッケル水素二次電池によりモーター駆動させることを特徴とするハイブリッド型自動車。   (7) A hybrid vehicle characterized in that the motor is driven by the nickel metal hydride secondary battery according to (6).

以上のように、本発明のLaNi系水素吸蔵合金粉末を特にニッケル水素二次電池負極として使用した場合、表面処理工程を設けなくても、表面処理を施した場合と同程度の高い出力特性が得られるため、安価で性能の高い特にハイブリッド自動車用に好適なニッケル水素二次電池を提供することが出来る。 As described above, when the LaNi 5- based hydrogen storage alloy powder of the present invention is used particularly as a negative electrode for a nickel-metal hydride secondary battery, high output characteristics comparable to those obtained when surface treatment is performed without providing a surface treatment step. Therefore, it is possible to provide a nickel-hydrogen secondary battery that is inexpensive and has high performance, particularly suitable for a hybrid vehicle.

本発明の表面処理工程を必要としないLaNi系水素吸蔵合金粉末をニッケル水素二次電池負極活物質として使用すれば、表面処理を施した場合と同程度の出力特性に優れたニッケル水素二次電池を提供することが出来る。 If the LaNi 5- based hydrogen storage alloy powder that does not require the surface treatment step of the present invention is used as a negative electrode active material for a nickel metal hydride secondary battery, the nickel metal hydride secondary having excellent output characteristics similar to those when the surface treatment is performed. A battery can be provided.

本発明のニッケルを主成分とする水素吸蔵合金とは、空気中250℃、50分間の熱処理を行い、抗酸化特性を調べた場合に酸素濃度増量が0.8質量%以下であることを特徴として、一般式MmNiaMnbAlcCod(左式中、Mmはミッシュメタルを示し、4.30≦a≦4.70、0.20≦b≦0.45、0.35≦c≦0.45、0≦d≦0.06、5.25≦a+b+c+d≦5.50)で表され、Mm全体の90質量%以上をLaおよびCeが占める。
このような組成にすると表面処理を行わずとも出力特性にすぐれたニッケル水素二次電池が製造できる原因については完全に解明されていないが、ニッケル配合を高めることで整合析出する金属間化合物NiAlに拡散性の低いMnがAlサイトに置換固溶するため粒子の電気伝導性が高まり、またニッケル化合物の高い抗酸化性により製造時の合金粉砕、微粉化工程で粒子表面の酸化が進行しないためと推定している。
また、上記のような組成を取るLaNi系水素吸蔵合金粉末をニッケル水素二次電池負極として使用した場合、出力特性にすぐれる電池が得られる。
これは表面処理を行う場合、ニッケル濃縮層を人為的に作り出すために不可避的にLa、その他遷移金属不動態被膜を処理液に溶解させる必要が有る。ニッケル濃縮層は元々の水素吸蔵合金骨格が破壊されており水素イオンが電解液に放出されにくくなる。これに対して本発明の表面処理工程を必要としない水素吸蔵合金粉末では電解液と直接接触する粒子表面まで水素吸蔵合金骨格が維持されており、表面処理を行ったものよりも水素イオンの移動が容易で、ニッケル水素二次電池負極活物質として使用した場合、出力特性に優れた電池の製造を行うことが出来る。
The hydrogen-absorbing alloy containing nickel as a main component of the present invention is characterized in that the oxygen concentration increase is 0.8% by mass or less when heat resistance is performed in air at 250 ° C. for 50 minutes and the antioxidant property is examined. General formula MmNiaMnbAlcCod (where Mm represents Misch metal in the left formula, 4.30 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.45, 0.35 ≦ c ≦ 0.45, 0 ≦ d) ≦ 0.06, 5.25 ≦ a + b + c + d ≦ 5.50), and La and Ce occupy 90% by mass or more of the entire Mm.
Although it is not completely elucidated why the nickel hydride secondary battery having excellent output characteristics can be manufactured without performing the surface treatment with such a composition, the intermetallic compound Ni 3 that undergoes consistent precipitation by increasing the nickel content Mn, which has low diffusibility in Al, is substituted and dissolved in the Al site to increase the electrical conductivity of the particles. Also, due to the high antioxidant property of the nickel compound, the oxidation of the particles does not proceed during the alloy pulverization and pulverization processes. For the reason.
In addition, when the LaNi 5- based hydrogen storage alloy powder having the above composition is used as a nickel-hydrogen secondary battery negative electrode, a battery having excellent output characteristics can be obtained.
In the surface treatment, in order to artificially create a nickel enriched layer, it is unavoidable to dissolve La and other transition metal passivation films in the treatment liquid. In the nickel concentrated layer, the original hydrogen storage alloy skeleton is destroyed, and hydrogen ions are not easily released into the electrolyte. On the other hand, in the hydrogen storage alloy powder that does not require the surface treatment process of the present invention, the hydrogen storage alloy skeleton is maintained up to the particle surface that is in direct contact with the electrolyte, and the movement of hydrogen ions is higher than that of the surface treatment. Therefore, when used as a negative electrode active material for a nickel metal hydride secondary battery, a battery having excellent output characteristics can be produced.

なお、一般式MmNiaMnbAlcCodで表される水素吸蔵合金で、aを4.30未満とした場合は抗酸化性が低下し表面処理工程が必要となる。また、aが4.70を超える場合は合金中にNiが単独で析出するいわゆる相分離が起こり、電池の性能が低下する。
同様にbを0.20未満とした場合は平衡(水素)圧が高くなり0.06MPaを超え、bが0.45を超えると平衡圧が小さくなり0.04MPa未満となる。
同様にcが0.45を超えると格子の歪みによって水素吸蔵量が低下し、水素吸蔵量(H/M)が0.80未満と成り、cが0.35未満となると微粉化難度が0.60を超える。
dを0以上とすることにより合金のビッカース硬度が小さく、すなわち合金が粘り強くなることにより微粉化難度を上げる効果が有るが高価な金属であるため微粉化度の調整用として0.06を超えないように添加する。
In the case of a hydrogen storage alloy represented by the general formula MmNiaMnbAlcCod, when a is less than 4.30, the antioxidant property is lowered and a surface treatment step is required. On the other hand, when a exceeds 4.70, so-called phase separation in which Ni precipitates alone in the alloy occurs, and the battery performance deteriorates.
Similarly, when b is less than 0.20, the equilibrium (hydrogen) pressure increases and exceeds 0.06 MPa, and when b exceeds 0.45, the equilibrium pressure decreases and becomes less than 0.04 MPa.
Similarly, when c exceeds 0.45, the hydrogen storage amount decreases due to lattice distortion, the hydrogen storage amount (H / M) becomes less than 0.80, and when c becomes less than 0.35, the degree of difficulty in pulverization is 0. Over 60.
By setting d to 0 or more, the Vickers hardness of the alloy is small, that is, there is an effect of increasing the difficulty of pulverization by making the alloy tenacious, but since it is an expensive metal, it does not exceed 0.06 for adjusting the pulverization degree. Add as follows.

本発明の一般式MmNiaMnbAlcCodで表される水素吸蔵合金は、空気中250℃で50分間の熱処理を行った場合に、酸素濃度増量が0.8質量%以下となる抗酸化性能を有する範囲でa、b、c、dを自由に取ることが出来るが、ニッケル水素二次電池の性能を向上させるための微量成分を添加することもできる。たとえばMg、Sr、Caなどのアルカリ土類元素、V、Cr、Fe、Cuなどの遷移元素を添加することができる。
酸素濃度増量が0.8質量%を超えると抗酸化性が低下しニッケル水素二次電池負極を製造する際に表面処理が必要となる。
The hydrogen storage alloy represented by the general formula MmNiaMnbAlcCod of the present invention has an antioxidant performance within a range where the oxygen concentration increase is 0.8 mass% or less when heat treatment is performed in air at 250 ° C. for 50 minutes. , B, c and d can be freely taken, but a trace component for improving the performance of the nickel-hydrogen secondary battery can be added. For example, alkaline earth elements such as Mg, Sr, and Ca, and transition elements such as V, Cr, Fe, and Cu can be added.
When the oxygen concentration increase exceeds 0.8% by mass, the antioxidant property is lowered, and a surface treatment is required when producing a nickel-hydrogen secondary battery negative electrode.

(水素吸蔵合金粉末の製造方法)
本発明の水素吸蔵合金粉末は、秤量工程、混合工程、鋳造工程、熱処理工程、冷却工程および粉砕工程を経て製造される。秤量工程では、所望の合金組成となるように水素吸蔵合金の各原料が秤量される。混合工程では、秤量された複数種類の原料が混合される。
鋳造工程において、高周波加熱溶解炉に混合原料を投入し、混合原料を溶解させて溶湯となし、この溶湯を例えば鋳型に流し込んで1150℃〜1550℃の範囲の温度(鋳造温度=鋳造開始時の坩堝内溶湯温度)で鋳造する。ここで鋳造温度は、1200℃〜1450℃の範囲が好ましく、1300℃〜1400℃がより好ましく、1340℃〜1360℃の範囲であることが更に好ましい。
また、鋳型による冷却においては、溶融金属が方向性凝固して柱状の結晶が成長しやすい条件とすることで、合金内部の組成の均一化と格子歪みの極小化が起こりニッケル水素二次電池のサイクル寿命が向上する。偏析相の生成を抑制するように行うことが望ましい。方向性凝固となる条件は液体及び固体における温度勾配が正となることでありこの場合、凝固で発生した潜熱が固体を通して消散するため方向性凝固となり、凝固組織は柱状晶となる。逆に結晶の周りを過冷液体が囲んでいると固体−液体面では液体中に負の温度勾配が生ずる。この場合には凝固潜熱は液体を通して消散し、凝固組織は等軸晶となる。方向性凝固を起こさせるためには、20℃における熱伝導率が43W/(m・℃)以上の鋳型を用いることが好ましい。更に好ましくは、20℃における熱伝導率が52W/(m・℃)以上の鋳型を用いることである。
鋳造後の合金は、熱処理工程において非酸化雰囲気下で950℃〜1200℃の温度で熱処理される。本実施の形態にかかる水素吸蔵合金において、熱処理温度は1000℃〜1150℃が好ましい。また熱処理時間は、鋳造後のインゴット(水素吸蔵合金片)の大きさにもよるが、数時間から十数時間が好適であり、インゴットの中心部まで所定温度になるように時間設定すれば良い。
冷却工程では熱処理された鋳造物が冷却される。冷却方法は、放冷でも空冷であっても良い。冷却速度も特に問わない。鋳造工程で方向性凝固された水素吸蔵合金は熱処理後も柱状の結晶を維持する。柱状晶は等軸晶よりも結晶界面が少なく結晶内が均一であると言う特徴を持つ。結晶粒界は原子配列が乱れた状態となっており酸化、破壊の起点となると言われている。
粉砕工程では、このようにして得られたインゴットが、粗粉砕、微粉砕により必要な粒度の水素吸蔵合金粉末にする。例えばインゴットを20μmの篩目を通過するサイズまで粉砕して水素吸蔵合金粉末とすることができる。
(Method for producing hydrogen storage alloy powder)
The hydrogen storage alloy powder of the present invention is manufactured through a weighing process, a mixing process, a casting process, a heat treatment process, a cooling process, and a pulverizing process. In the weighing step, each raw material of the hydrogen storage alloy is weighed so as to have a desired alloy composition. In the mixing step, a plurality of kinds of weighed raw materials are mixed.
In the casting process, the mixed raw material is put into a high-frequency heating melting furnace, the mixed raw material is melted to form a molten metal, and this molten metal is poured into a mold, for example, at a temperature in the range of 1150 ° C to 1550 ° C (casting temperature = at the start of casting) Cast at the temperature of the molten metal in the crucible). Here, the casting temperature is preferably in the range of 1200 ° C to 1450 ° C, more preferably 1300 ° C to 1400 ° C, and further preferably in the range of 1340 ° C to 1360 ° C.
In addition, in the cooling by the mold, the molten metal is directionally solidified so that columnar crystals are likely to grow, so that the composition inside the alloy becomes uniform and the lattice distortion is minimized, so that the nickel-hydrogen secondary battery Cycle life is improved. It is desirable to carry out so as to suppress the generation of segregation phase. The condition for directional solidification is that the temperature gradient in the liquid and solid is positive. In this case, the latent heat generated in the solidification is dissipated through the solid, so that directional solidification occurs, and the solidified structure becomes columnar crystals. Conversely, if a supercooled liquid surrounds the crystal, a negative temperature gradient is generated in the liquid at the solid-liquid surface. In this case, the latent heat of solidification is dissipated through the liquid and the solidified structure becomes equiaxed crystals. In order to cause directional solidification, it is preferable to use a mold having a thermal conductivity of 43 W / (m · ° C.) or higher at 20 ° C. More preferably, a mold having a thermal conductivity of 52 W / (m · ° C.) or higher at 20 ° C. is used.
The alloy after casting is heat-treated at a temperature of 950 ° C. to 1200 ° C. in a non-oxidizing atmosphere in a heat treatment step. In the hydrogen storage alloy according to the present embodiment, the heat treatment temperature is preferably 1000 ° C. to 1150 ° C. The heat treatment time depends on the size of the ingot (hydrogen storage alloy piece) after casting, but is preferably several hours to several tens of hours, and may be set so that the temperature reaches a predetermined temperature up to the center of the ingot. .
In the cooling step, the heat-treated casting is cooled. The cooling method may be air cooling or air cooling. The cooling rate is not particularly limited. The hydrogen storage alloy directionally solidified in the casting process maintains columnar crystals even after heat treatment. A columnar crystal has a feature that it has fewer crystal interfaces and is uniform in the crystal than an equiaxed crystal. The crystal grain boundary is in a state where the atomic arrangement is disordered, and is said to be the starting point of oxidation and destruction.
In the pulverization step, the ingot thus obtained is made into a hydrogen storage alloy powder having a required particle size by coarse pulverization and fine pulverization. For example, the hydrogen storage alloy powder can be obtained by grinding an ingot to a size that passes through a 20 μm sieve.

このようにして得られた水素吸蔵合金粉末を負極活物質として使用することでニッケル水素電池を製造することが出来、製造した電池はハイブリッド型自動車に使用することが出来る。 A nickel metal hydride battery can be manufactured by using the hydrogen storage alloy powder thus obtained as a negative electrode active material, and the manufactured battery can be used in a hybrid vehicle.

本発明でいう酸素濃度増量は以下のように測定される。
例えば、通常使用される方法で水素吸蔵合金を粉砕し、篩分けにより20μm以下とする。粉砕装置としてたとえば粗割りにはジョークラッシャー、中割にはハンマーミル、カッティングミル、最終粉砕には振動ミルを使用することが出来る。この際、中割以降は水素吸蔵合金の無用な酸化を防ぐため窒素ガス、アルゴンガスなどにより不活性雰囲気で粉砕を行う。この粉砕された水素吸蔵合金を約1g測りとりセラミックス製ルツボに投入後、電熱線ヒーターで加熱される炉で、1.25時間で250℃まで昇温後、50分保持し、1時間で50℃まで降温後、自然冷却した時の合金粉末の重量増加量を酸素濃度に換算して酸素濃度増量を算出する。
The oxygen concentration increase referred to in the present invention is measured as follows.
For example, the hydrogen storage alloy is pulverized by a commonly used method and is reduced to 20 μm or less by sieving. For example, a jaw crusher can be used for roughing, a hammer mill or cutting mill can be used for middle cutting, and a vibration mill can be used for final grinding. At this time, after the middle split, pulverization is performed in an inert atmosphere with nitrogen gas, argon gas or the like in order to prevent unnecessary oxidation of the hydrogen storage alloy. About 1 g of this pulverized hydrogen storage alloy was weighed, put into a ceramic crucible, heated in a furnace heated by a heating wire heater, heated to 250 ° C. in 1.25 hours, held for 50 minutes, and 50 in 1 hour. After the temperature is lowered to ° C., the increase in weight of the alloy powder when naturally cooled is converted into the oxygen concentration to calculate the increase in oxygen concentration.

また、水素吸蔵量(H/M)および平衡(水素)圧は、JISH7201「水素吸蔵合金の圧力-等温線(PCT線)の測定法」に準じた市販のPCT(水素圧-組成-等温線図)特性評価装置を用いることで測定することが出来る。 Further, the hydrogen storage amount (H / M) and the equilibrium (hydrogen) pressure were measured using commercially available PCT (hydrogen pressure-composition-isothermal line) according to JISH7201 “Method for Measuring Pressure-Isotherm (PCT Line) of Hydrogen Storage Alloy”. Fig.) It can be measured by using a characteristic evaluation device.

さらに、微粉化難度は以下のように測定される。
PCT(水素圧-組成-等温線図)特性評価装置を用いて、「保持温度45℃および水素圧力調整1.82MPaの環境下における水素の吸蔵放出サイクル10回後の水素吸蔵合金粉末の粒度」を「水素吸蔵合金粉末の初期粒度」で除した値を、微粉化難度として指標化した。すなわち、微粉化難度は、1に近いほど水素吸蔵合金粉末が微粉化しにくいことを示し、0に近いほど水素吸蔵合金粉末が微粉化しやすいことを示す。
微粉化難度を求めるに当たり、「水素吸蔵合金粉末の初期粒度」とは、リーズアンドノースラップ社製の粒度分布測定装置7997SRAを用いて測定した平均粒径D50のことである。「保持温度45℃および水素圧力調整1.82MPaの環境下における水素の吸蔵放出サイクル10回後の水素吸蔵合金粉末の粒度」とは、株式会社鈴木商館製の全自動PCT測定装置(1/2インチ直管サンプルセル,試料量3g)を用いて保持温度45℃および水素圧力調整1.82MPaの環境下で水素の吸蔵放出サイクルを10回行った後に、リーズアンドノースラップ社製の粒度分布測定装置7997SRAを用いて測定した平均粒径D50のことである。
なお、全自動PCT測定装置における水素吸蔵合金粉末の活性化処理は、活性化温度80℃および水素圧力1.82MPaの環境下で行ない、同装置における水素吸蔵合金粉末の水素吸蔵放出サイクルは、保持温度45℃、水素吸蔵圧力1.82MPaおよび水素放出圧力0MPaの環境下で行った。
Further, the degree of difficulty in pulverization is measured as follows.
Using a PCT (Hydrogen Pressure-Composition-Isotherm) Characteristic Evaluation Device, “Particle size of hydrogen storage alloy powder after 10 cycles of hydrogen storage / release under a holding temperature of 45 ° C. and a hydrogen pressure adjustment of 1.82 MPa” Was divided by “initial particle size of hydrogen storage alloy powder” and indexed as the degree of difficulty in pulverization. That is, as the degree of difficulty in pulverization is closer to 1, it indicates that the hydrogen storage alloy powder is less likely to be pulverized, and as it is closer to 0, the hydrogen storage alloy powder is more likely to be pulverized.
In determining the degree of difficulty in pulverization, the “initial particle size of the hydrogen storage alloy powder” is an average particle size D50 measured using a particle size distribution measuring device 7997 SRA manufactured by Leeds and Northrup. “The particle size of the hydrogen storage alloy powder after 10 storage and release cycles of hydrogen in an environment where the holding temperature is 45 ° C. and the hydrogen pressure is adjusted to 1.82 MPa” is a fully automatic PCT measuring device (1/2 Inch straight tube sample cell, sample amount 3g), hydrogen storage / release cycle was performed 10 times in an environment of holding temperature 45 ° C and hydrogen pressure adjustment 1.82MPa, then particle size distribution measurement made by Leeds and Northrup It is the average particle diameter D50 measured using the apparatus 7997 SRA.
In addition, the activation process of the hydrogen storage alloy powder in the fully automatic PCT measurement apparatus is performed in an environment with an activation temperature of 80 ° C. and a hydrogen pressure of 1.82 MPa, and the hydrogen storage alloy release cycle of the hydrogen storage alloy powder in the apparatus is maintained. The test was carried out in an environment of a temperature of 45 ° C., a hydrogen storage pressure of 1.82 MPa, and a hydrogen release pressure of 0 MPa.

a軸長はX線回析装置を用いてX線回析測定を行うことにより測定できる。具体的には、20μm以下に粉砕された水素吸蔵合金を、粉末X線回析装置(リガク社製、SmartLab)を用い、ゴニオ半径300mm、X線源CuKα線、管電圧45kV、管電流200mAで測定した。
尚、回析角は、2θ=15.0〜85.0°の範囲とし、スキャンスピードは4.000°/min.、スキャンステップは0.020°とした。
得られたX線回析結果に基づいてリートベルト法(解析ソフト SmartLaStudioII、PowderXRDプラグイン)により結晶構造の解析を行った。
The a-axis length can be measured by performing X-ray diffraction measurement using an X-ray diffraction apparatus. Specifically, a hydrogen storage alloy pulverized to 20 μm or less is used with a powder X-ray diffraction apparatus (manufactured by Rigaku Corporation, SmartLab) at a gonio radius of 300 mm, an X-ray source CuKα ray, a tube voltage of 45 kV, and a tube current of 200 mA. It was measured.
The diffraction angle is in the range of 2θ = 15.0 to 85.0 °, and the scan speed is 4.000 ° / min. The scan step was 0.020 °.
Based on the obtained X-ray diffraction results, the crystal structure was analyzed by the Rietveld method (analysis software SmartLaStudioII, PowderXRD plug-in).

前記のそれぞれの測定値は、本発明の水素吸蔵合金をニッケル水素二次電池の負極として使用した場合に、次の電池特性を表す指標である。
水素吸蔵量(H/M)は電池容量と関係し、高くすることで容量が大きくなる。
また、微粉化難度は、繰り返し充放電時の寿命に関係する特性で高くすることで寿命が長くなる。
a軸長は合金をニッケル水素電池負極として使用した時の電池サイクル特性に関係する指標で503pm以上である時に実用的な寿命を示す。
平衡(水素)圧は電荷のキャリアと成る水素の出し入れのしやすさに関係する特性で、高いとニッケル水素電池負極として使用した時に充電電圧が高くなる。
Each of the above measured values is an index representing the following battery characteristics when the hydrogen storage alloy of the present invention is used as the negative electrode of a nickel metal hydride secondary battery.
The hydrogen storage amount (H / M) is related to the battery capacity, and the capacity increases as it increases.
Moreover, the life becomes longer by increasing the difficulty of pulverization with characteristics related to the life during repeated charge and discharge.
The a-axis length is an index related to battery cycle characteristics when the alloy is used as a nickel-metal hydride battery negative electrode, and shows a practical life when it is 503 pm or more.
Equilibrium (hydrogen) pressure is a characteristic related to the ease of taking in and out of hydrogen as a charge carrier, and if it is high, the charge voltage becomes high when used as a nickel metal hydride battery negative electrode.

これらのようにニッケル水素二次電池の負極にはその特性を示す色々な指標が存在するが、一般式MmNiaMnbAlcCod(左式中、Mmはミッシュメタルを示し、4.30≦a≦4.70、0.20≦b≦0.45、0.35≦c≦0.45、0≦d≦0.06、5.25≦a+b+c+d≦5.50)に調整する事によりハイブリッド型自動車に使用可能なニッケル水素二次電池用の水素吸蔵合金を製造することが出来る。 As described above, there are various indexes indicating the characteristics of the negative electrode of the nickel-metal hydride secondary battery, but the general formula MmNiaMnbAlcCod (in the left formula, Mm represents Misch metal, 4.30 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.45, 0.35 ≦ c ≦ 0.45, 0 ≦ d ≦ 0.06, 5.25 ≦ a + b + c + d ≦ 5.50). A hydrogen storage alloy for a nickel hydrogen secondary battery can be manufactured.

以下に実施例(発明例)、比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples (invention examples) and comparative examples, but the present invention is not limited thereto.

(実施例1)
Ni、Mn、Al、Co、及びMmとしてLaとCeの各金属原料を、表1に示した合金組成となるように秤量した。それらの原料を溶解炉内のルツボに入れて真空排気した後、アルゴンガス雰囲気とした。次いで高周波加熱装置で加熱溶解し、溶湯を20℃における熱伝導率52W/(m・℃)の鋳型に流し込んで鋳造を行い、不活性雰囲気下で1100℃×12時間の熱処理を行って合金インゴットを得た。
得られた合金インゴットは、不活性雰囲気下でクラッシャーにより粗粉砕し、続いて、不活性雰囲気下でフリュッチュ社製カッティングミルを用いて粉砕し、続いて篩目500μmを通過する粒子サイズ(500μm以下)とした。
さらに吉田製作所製サイクロミルを用いて微粉砕を行い篩目20μmを通過する粒子サイズの水素吸蔵合金粉末とした。
Example 1
Each metal raw material of La and Ce as Ni, Mn, Al, Co, and Mm was weighed so as to have the alloy composition shown in Table 1. These raw materials were put in a crucible in a melting furnace and evacuated, and then an argon gas atmosphere was set. Next, it is melted by heating with a high-frequency heating device, casted by pouring the molten metal into a mold having a thermal conductivity of 52 W / (m · ° C.) at 20 ° C., and subjected to heat treatment in an inert atmosphere at 1100 ° C. × 12 hours for alloy ingot Got.
The obtained alloy ingot was coarsely pulverized by a crusher under an inert atmosphere, followed by pulverization using a cutting mill manufactured by Frucsch under an inert atmosphere, followed by a particle size (500 μm or less) passing through a sieve mesh of 500 μm. ).
Further, the powder was finely pulverized using a cyclomill manufactured by Yoshida Seisakusho to obtain a hydrogen storage alloy powder having a particle size passing through a sieve mesh of 20 μm.

(酸素濃度の測定)
得られた水素吸蔵合金粉末について、空気中、250℃で50分保持後の重量増加量を酸素濃度換算して酸素濃度増量を算出した。
その結果を、表2に示す。
(Measurement of oxygen concentration)
About the obtained hydrogen storage alloy powder, the oxygen concentration increase was calculated by converting the weight increase after being held in air at 250 ° C. for 50 minutes in terms of oxygen concentration.
The results are shown in Table 2.

(PCT特性の測定)
得られた水素吸蔵合金粉末について、PCT特性評価装置により、水素吸蔵量(H/M)、平衡圧力を測定した。
その結果を、表2に示す。
(Measurement of PCT characteristics)
About the obtained hydrogen storage alloy powder, the hydrogen storage amount (H / M) and the equilibrium pressure were measured by a PCT characteristic evaluation apparatus.
The results are shown in Table 2.

(微粉化難度の測定)
粒度分布測定装置及びPCT特性評価装置を用いて、微粉化難度を測定した。
その結果を、表2に示す。
(Measurement of pulverization difficulty)
The degree of difficulty in pulverization was measured using a particle size distribution measuring device and a PCT characteristic evaluation device.
The results are shown in Table 2.

(a軸長の測定)
粉末X線回折装置を用いてa軸長を測定した。
その結果を、表2に示す。
(Measurement of a-axis length)
The a-axis length was measured using a powder X-ray diffractometer.
The results are shown in Table 2.

(出力特性の測定)
前記で作製した本発明の水素吸蔵合金粉末をニッケル水素電池負極として使用する場合の出力特性測定用モデル電池を、以下の手順で作成し、出力特性として放電容量を測定した。
まず、何らの表面処理も施していない前記で作製した粒子サイズ20μm以下の水素吸蔵合金粉末0.5gと、富士フイルム和光純薬(株)製、ポリテトラフルオロエチレン(平均分子量5000~20000)0.1g、富士フイルム和光純薬(株)製アセチレンカーボンブラック(50% compressed)0.05g、蒸留水0.6gを混練して活物質ペーストとした。
集電体(30mm×40mm、t=1.6mm)である住友電工製の発泡ニッケル(セルメット♯7、多孔率=96%)に前記活物質ペーストを均一に充填し、乾燥のため80℃の恒温槽に30分間保持後、100MPaで加圧成型して負極(容量=約180mAh)とした。
正極には3元(ニッケル、コバルト、亜鉛)系の水酸化ニッケル極(容量=約600mAh)を使用する。
2枚の正極間にセパレーターを介して負極をはさみ、さらに両側面からアクリル板で圧迫して負極容量規制のモデル電池とした。
負極電位計測用の参照電極は酸化水銀電極(Hg/HgO)を使用し、電解液には5Mの水酸化カリウム溶液を使用した。
(Measurement of output characteristics)
A model battery for measuring output characteristics when the hydrogen storage alloy powder of the present invention produced as described above was used as a nickel metal hydride battery negative electrode was prepared by the following procedure, and the discharge capacity was measured as the output characteristics.
First, 0.5 g of a hydrogen storage alloy powder having a particle size of 20 μm or less prepared as described above without any surface treatment, and polytetrafluoroethylene (average molecular weight 5000-20000) 0 manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd. 0.1 g, 0.05 g of acetylene carbon black (50% compressed) manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. and 0.6 g of distilled water were kneaded to obtain an active material paste.
The active material paste is uniformly filled into foamed nickel (Celmet # 7, porosity = 96%) manufactured by Sumitomo Electric, which is a current collector (30 mm × 40 mm, t = 1.6 mm), and dried at 80 ° C. After holding in a thermostat for 30 minutes, it was pressure-molded at 100 MPa to form a negative electrode (capacity = about 180 mAh).
A ternary (nickel, cobalt, zinc) nickel hydroxide electrode (capacity = about 600 mAh) is used for the positive electrode.
A negative electrode was sandwiched between two positive electrodes through a separator, and further pressed from both sides with an acrylic plate to obtain a negative electrode capacity-regulated model battery.
A mercury oxide electrode (Hg / HgO) was used as the reference electrode for measuring the negative electrode potential, and a 5M potassium hydroxide solution was used as the electrolyte.

なお、参考のために、水素吸蔵合金に対して表面処理を施した負極活物質ペーストを用いて負極を作製し、前記と同様にして電池を作製した。
この場合は、活物質ペーストを作製する前に、水素吸蔵合金粉末を31wt%の水酸化カリウム溶液に投入し、90℃、2時間撹拌(50r.p.m)後、水洗する表面処理を行った。
For reference, a negative electrode was produced using a negative electrode active material paste obtained by subjecting a hydrogen storage alloy to surface treatment, and a battery was produced in the same manner as described above.
In this case, before preparing the active material paste, the hydrogen storage alloy powder is put into a 31 wt% potassium hydroxide solution, stirred at 50 ° C. for 2 hours (50 rpm), and then subjected to a surface treatment that is washed with water. It was.

出力特性の測定では、充放電試験は0.2C(1C:電池の全容量を1時間で充電もしくは放電する電流値)で6時間充電、30分の休止後、0.2Cで正極/負極間の電圧が0.8Vとなるまで放電させ放電容量とし、これを測定した。
その結果を、表2に示す。
In the measurement of output characteristics, the charge / discharge test is performed at 0.2C (1C: current value for charging or discharging the entire capacity of the battery in 1 hour) for 6 hours, after 30 minutes of rest, between positive electrode and negative electrode at 0.2C It was discharged until the voltage of 0.8V became 0.8 V to obtain a discharge capacity, and this was measured.
The results are shown in Table 2.

(実施例2〜3および比較例1〜3)
実施例2〜3および比較例1〜3においては、実施例1と同様に、表1に記載の所定の各成分比率となるように合金を調整、不活性雰囲気下で1100℃×12時間の熱処理、粉砕を行い、各特性を測定した。その測定結果を表2に示した。
なお、表2における「Yes/表面処理あり」とは、活物質ペーストを作製するにあたり、水素吸蔵合金粉末を31wt%の水酸化カリウム溶液に投入し、90℃、2時間撹拌(50r.p.m)後、水洗するという表面処理を行ったことを示す。
(Examples 2-3 and Comparative Examples 1-3)
In Examples 2 to 3 and Comparative Examples 1 to 3, as in Example 1, the alloys were adjusted so that the respective component ratios shown in Table 1 were obtained, and 1100 ° C. × 12 hours in an inert atmosphere. Heat treatment and pulverization were performed to measure each characteristic. The measurement results are shown in Table 2.
In Table 2, “Yes / with surface treatment” means that in preparing the active material paste, the hydrogen storage alloy powder was put into a 31 wt% potassium hydroxide solution and stirred at 90 ° C. for 2 hours (50 rpm). m) After that, the surface treatment of washing with water was performed.




表2から明らかなように、実施例1〜3で得られた水素吸蔵合金を使用したニッケル水素二次電池は、「No」のケース(本発明に相当)と「Yes」のケースでほぼ同等の放電容量を示すことから、表面処理を行わずとも出力特性に優れたものとなった。 As is clear from Table 2, the nickel-metal hydride secondary batteries using the hydrogen storage alloys obtained in Examples 1 to 3 are almost equivalent in the “No” case (corresponding to the present invention) and the “Yes” case. As a result, the output characteristics were excellent even without surface treatment.

以上の通り、本発明の水素吸蔵合金を、ハイブリッド自動車用ニッケル水素二次電池負極材料として使用した場合、優れた出力特性が得られることが確認できた。   As described above, it was confirmed that excellent output characteristics can be obtained when the hydrogen storage alloy of the present invention is used as a negative electrode material for a nickel metal hydride secondary battery for hybrid vehicles.

本発明の表面処理を必要としないニッケル水素二次電池負極用水素吸蔵合金をハイブリッド自動車用ニッケル水素二次電池負極材料として使用すれば安価で出力特性にすぐれた二次電池を製造することが出来、ハイブリッド自動車のコスト低減と性能向上が図れる。

By using the hydrogen storage alloy for a negative electrode of a nickel metal hydride secondary battery that does not require surface treatment of the present invention as a negative electrode material for a nickel metal hydride secondary battery for a hybrid vehicle, a secondary battery having excellent output characteristics can be manufactured at low cost. The cost and performance of hybrid vehicles can be reduced.

Claims (7)

LaNi系水素吸蔵合金粉末からなるニッケル水素電池負極活物質であって、前記水素吸蔵合金粉末は、一般式MmNiaMnbAlcCod(左式中、Mmはミッシュメタルを示し、かつ、Mm全体の90質量%以上をLaおよびCeが占め、4.30≦a≦4.70、0.20≦b≦0.45、0.35≦c≦0.45、0≦d≦0.06、5.25≦a+b+c+d≦5.50を満足する)で表される成分組成を有し、空気中250℃で50分間熱処理した場合の酸素濃度増量が0.8質量%以下の抗酸化性にすぐれた水素吸蔵合金粉末であることを特徴とする表面処理を施さないニッケル水素二次電池負極活物質。 A nickel-metal hydride battery negative electrode active material comprising a LaNi 5- based hydrogen storage alloy powder, wherein the hydrogen storage alloy powder has a general formula MmNiaMnbAlcCod (where Mm represents a misch metal and 90% by mass or more of the entire Mm) La and Ce occupy 4.30 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.45, 0.35 ≦ c ≦ 0.45, 0 ≦ d ≦ 0.06, 5.25 ≦ a + b + c + d ≦ 5.50), and a hydrogen storage alloy powder excellent in antioxidation property with an oxygen concentration increase of 0.8% by mass or less when heat-treated in air at 250 ° C. for 50 minutes. A negative electrode active material for a nickel metal hydride secondary battery that is not subjected to a surface treatment. 前記水素吸蔵合金粉末は、水素吸蔵量(H/M)が0.80以上1.00以下の範囲内であり、且つ、微粉化難度が0.48以上、0.60以下の範囲内であることを特徴とする請求項1に記載のニッケル水素二次電池負極活物質。   The hydrogen storage alloy powder has a hydrogen storage amount (H / M) in the range of 0.80 or more and 1.00 or less, and the pulverization difficulty is in the range of 0.48 or more and 0.60 or less. The negative electrode active material of a nickel metal hydride secondary battery according to claim 1. 前記水素吸蔵合金粉末は、粉末X回折測定結果から得られるa軸長が503pm以上であることを特徴とする請求項1または2に記載のニッケル水素二次電池負極活物質。   The nickel-hydrogen secondary battery negative electrode active material according to claim 1 or 2, wherein the hydrogen storage alloy powder has an a-axis length of 503 pm or more obtained from a powder X diffraction measurement result. 前記水素吸蔵合金粉末は、平衡(水素)圧が0.04〜0.06MPaであることを特徴とする請求項1〜3のいずれか一項に記載のニッケル水素二次電池負極活物質。   The nickel-hydrogen secondary battery negative electrode active material according to any one of claims 1 to 3, wherein the hydrogen storage alloy powder has an equilibrium (hydrogen) pressure of 0.04 to 0.06 MPa. 請求項1〜4のいずれか一項に記載のニッケル水素二次電池負極活物質と導電助剤、結着剤を混練後、集電体に塗布することを特徴とするニッケル水素二次電池用負極の製造方法。   The nickel-metal hydride secondary battery negative electrode active material according to any one of claims 1 to 4, a conductive additive, and a binder are kneaded and then applied to a current collector. Manufacturing method of negative electrode. 請求項1〜4のいずれか一項に記載のニッケル水素二次電池負極活物質を使用することを特徴とするニッケル水素二次電池。   A nickel metal hydride secondary battery using the nickel metal hydride secondary battery negative electrode active material according to any one of claims 1 to 4. 請求項6に記載のニッケル水素二次電池によりモーター駆動させることを特徴とするハイブリッド型自動車。
A hybrid vehicle, wherein the motor is driven by the nickel metal hydride secondary battery according to claim 6.
JP2019112967A 2019-06-18 2019-06-18 Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment Active JP6608558B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019112967A JP6608558B1 (en) 2019-06-18 2019-06-18 Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019112967A JP6608558B1 (en) 2019-06-18 2019-06-18 Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment

Publications (2)

Publication Number Publication Date
JP6608558B1 true JP6608558B1 (en) 2019-11-20
JP2020205192A JP2020205192A (en) 2020-12-24

Family

ID=68611060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112967A Active JP6608558B1 (en) 2019-06-18 2019-06-18 Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment

Country Status (1)

Country Link
JP (1) JP6608558B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220824A1 (en) * 2020-04-28 2021-11-04 三井金属鉱業株式会社 Hydrogen storage alloy
JP2022020892A (en) * 2020-07-21 2022-02-02 新日本電工株式会社 HYDROGEN STORAGE ALLOY POWDER OF LOW Co CONTENT
JP7158550B1 (en) 2021-10-11 2022-10-21 新日本電工株式会社 Hydrogen storage alloy powder, negative electrode for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery using the same
JP7175372B1 (en) 2021-12-02 2022-11-18 新日本電工株式会社 Low Co hydrogen storage alloy
JP2023027792A (en) * 2021-08-18 2023-03-03 新日本電工株式会社 Hydrogen storage alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250203B2 (en) * 2006-12-27 2013-07-31 プライムアースEvエナジー株式会社 Nickel metal hydride storage battery
WO2015145884A1 (en) * 2014-03-26 2015-10-01 三井金属鉱業株式会社 Hydrogen storage alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220824A1 (en) * 2020-04-28 2021-11-04 三井金属鉱業株式会社 Hydrogen storage alloy
JP7014937B1 (en) * 2020-04-28 2022-02-01 三井金属鉱業株式会社 Hydrogen storage alloy
JP2022020892A (en) * 2020-07-21 2022-02-02 新日本電工株式会社 HYDROGEN STORAGE ALLOY POWDER OF LOW Co CONTENT
JP2023027792A (en) * 2021-08-18 2023-03-03 新日本電工株式会社 Hydrogen storage alloy
JP7158550B1 (en) 2021-10-11 2022-10-21 新日本電工株式会社 Hydrogen storage alloy powder, negative electrode for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery using the same
JP2023057356A (en) * 2021-10-11 2023-04-21 新日本電工株式会社 Hydrogen storage alloy powder, negative electrode for nickel-hydrogen secondary cell employing the same, and nickel-hydrogen secondary cell
JP7175372B1 (en) 2021-12-02 2022-11-18 新日本電工株式会社 Low Co hydrogen storage alloy
JP2023082634A (en) * 2021-12-02 2023-06-14 新日本電工株式会社 LOW-Co HYDROGEN STORAGE ALLOYS

Also Published As

Publication number Publication date
JP2020205192A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP6608558B1 (en) Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment
US9219277B2 (en) Low Co hydrogen storage alloy
JP3965209B2 (en) Low Co hydrogen storage alloy
JP5856056B2 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
JP4097127B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
US9738952B2 (en) Hydrogen storing alloy
JP5367296B2 (en) Hydrogen storage alloy
JP3992289B2 (en) Low Co hydrogen storage alloy
JP5342669B2 (en) Hydrogen storage alloy
JP6934097B1 (en) Hydrogen storage alloy
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP2009138241A (en) Hydrogen-storage alloy
JP3944237B2 (en) Low Co hydrogen storage alloy
CN114946051A (en) Hydrogen-absorbing alloy for alkaline storage battery
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP2014198907A (en) Hydrogen storage alloy
JP5342499B2 (en) Hydrogen storage alloy
JP5617094B2 (en) Hydrogen storage alloy
JP5137994B2 (en) Method for producing hydrogen storage alloy
JP2016126837A (en) Hydrogen-absorbable alloy, negative electrode, and battery
JP2000160265A (en) Hydrogen storage alloy and its manufacture
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2000144277A (en) Hydrogen occlusion alloy and its production
JP2016125068A (en) Hydrogen storage alloy, and anode and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190625

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190625

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191023

R150 Certificate of patent or registration of utility model

Ref document number: 6608558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250