JP2022020892A - HYDROGEN STORAGE ALLOY POWDER OF LOW Co CONTENT - Google Patents

HYDROGEN STORAGE ALLOY POWDER OF LOW Co CONTENT Download PDF

Info

Publication number
JP2022020892A
JP2022020892A JP2020124133A JP2020124133A JP2022020892A JP 2022020892 A JP2022020892 A JP 2022020892A JP 2020124133 A JP2020124133 A JP 2020124133A JP 2020124133 A JP2020124133 A JP 2020124133A JP 2022020892 A JP2022020892 A JP 2022020892A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
hydrogen
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020124133A
Other languages
Japanese (ja)
Other versions
JP6948441B1 (en
Inventor
公史 山戸
Koji Yamato
亮 大塚
Akira Otsuka
紘貴 富田
Hirotaka Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Denko Co Ltd
Original Assignee
Shin Nihon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=78001319&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2022020892(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Nihon Denko Co Ltd filed Critical Shin Nihon Denko Co Ltd
Priority to JP2020124133A priority Critical patent/JP6948441B1/en
Application granted granted Critical
Publication of JP6948441B1 publication Critical patent/JP6948441B1/en
Publication of JP2022020892A publication Critical patent/JP2022020892A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To save a raw material cost by reducing a Co content or adding no Co, and to keep life properties of a negative pole by suppressing particle size reduction of an alloy caused by repeated storage and discharge of hydrogen in a CaCu5 type hydrogen storage alloy used for a negative pole of a nickel hydrogen battery.SOLUTION: A hydrogen storage alloy has a CaCu5 type crystal structure and a component composition represented by general formula MmNiaMnbAlcCod (where Mm is misch metal, 4.30≤a≤4.70, 0.25≤b≤0.45, 0.35≤c≤0.45, 0≤d≤0.14 (preferably, 0.02≤d≤0.14), 5.20≤a+b+c+d≤5.50). The hydrogen storage alloy has a Young's modulus of 120 GPa or more and 127 GPa or less, which is obtained by measuring a single crystal phase of a particle cross section with a nanoindenter.SELECTED DRAWING: Figure 2

Description

本発明は、ニッケル水素電池の負極として用いられるCaCu5型の結晶構造を有するCo含有量の少ない水素吸蔵合金に関する。更に本発明は、この水素吸蔵合金を負極として使用した電池に関する。 The present invention relates to a hydrogen storage alloy having a CaCu5 type crystal structure used as a negative electrode of a nickel hydrogen battery and having a low Co content. Further, the present invention relates to a battery using this hydrogen storage alloy as a negative electrode.

負極に水素吸蔵合金を用いたニッケル水素電池は、1990年代前半に商品化され、その後、広く普及している。 Nickel-metal hydride batteries using a hydrogen storage alloy for the negative electrode were commercialized in the early 1990s and have been widely used since then.

ニッケル水素電池は、商品化当初は携帯電話やノートパソコンの電源として活躍していたが、その後は、徐々に小型で軽量なリチウムイオン電池へと置き換えられ、現在では、低廉さと安全性の高さ、及び、体積当りのエネルギー密度とのバランスの良さなどから、玩具、デジタルカメラ、電動アシスト自転車、電動工具、更にはハイブリッド自動車などに用いられている。 Nickel-metal hydride batteries were used as a power source for mobile phones and laptop computers when they were first commercialized, but after that, they were gradually replaced by smaller and lighter lithium-ion batteries, and now they are inexpensive and highly safe. And, because of its good balance with the energy density per volume, it is used in toys, digital cameras, electrically power assisted bicycles, power tools, and even hybrid vehicles.

このようなニッケル水素電池に用いられる水素吸蔵合金は、水素と反応して金属水素化物となる合金である。この水素吸蔵合金は、室温付近で多量の水素を可逆的に吸蔵・放出することができる。 The hydrogen storage alloy used in such a nickel-metal hydride battery is an alloy that reacts with hydrogen to form a metal hydride. This hydrogen storage alloy can reversibly store and release a large amount of hydrogen near room temperature.

水素吸蔵合金としては、LaNi5に代表されるAB5型合金、ZrV0.4Ni1.5に代表されるAB2型合金のほか、AB型、A2B型、AB3型などの様々なタイプの合金が知られている。これらの合金は、水素との親和性が高く水素吸蔵量を高める役割を果たす元素グループ(希土類元素,Ca,Mg,Ti,Zr,V,Nb,Pt,Pd等)と、水素との親和性が比較的低く吸蔵量は少ないが、水素化反応が促進して反応温度を低くする役割を果たす元素グループ(Ni,Mn,Co,Al等)との組合せで構成されている。 As hydrogen storage alloys, AB5 type alloys typified by LaNi5, AB2 type alloys typified by ZrV 0.4 Ni 1.5 , and various types of alloys such as AB type, A2B type, and AB3 type are known. Has been done. These alloys have an affinity for hydrogen with element groups (rare earth elements, Ca, Mg, Ti, Zr, V, Nb, Pt, Pd, etc.) that have a high affinity for hydrogen and play a role in increasing hydrogen occlusion. Although it is relatively low and has a small occlusion, it is composed of a combination with an element group (Ni, Mn, Co, Al, etc.) that plays a role in promoting the hydrogenation reaction and lowering the reaction temperature.

これらの中で、CaCu5型結晶構造を有するAB5型水素吸蔵合金、例えば、Aサイトに希土類系の混合物であるミッシュメタル(以下「Mm」という。)を用い、BサイトにNi,Mn,Co,Al等の元素を用いた合金は、他の組成の合金に比べて、比較的安価な材料で負極を形成することができる。 Among these, an AB5 type hydrogen storage alloy having a CaCu5 type crystal structure, for example, mischmetal (hereinafter referred to as “Mm”), which is a rare earth-based mixture, is used for the A site, and Ni, Mn, Co, for the B site. An alloy using an element such as Al can form a negative electrode with a material that is relatively inexpensive as compared with alloys having other compositions.

AB5型水素吸蔵合金では、Aサイト原子量に対するBサイト原子量の割合(AB比)、及びNiの一部をCo、Mn、Al等の置換量を調整することにより、それを用いた負極の充放電容量、入出力特性、サイクル寿命などの様々な特性を調整することができる。そのような特徴をもつAB5型水素吸蔵合金は、様々な用途に応じたニッケル水素蓄電池を造り分けすることを可能としている。 In the AB5 type hydrogen storage alloy, the ratio of the B site atomic weight to the A site atomic weight (AB ratio) and the substitution amount of Co, Mn, Al, etc. for a part of Ni are adjusted to charge and discharge the negative electrode. Various characteristics such as capacity, input / output characteristics, and cycle life can be adjusted. The AB5 type hydrogen storage alloy having such characteristics makes it possible to manufacture nickel-metal hydride storage batteries according to various uses.

ハイブリッド自動車を普及拡大させるためには、ニッケル水素電池の製造コストを低く抑え、負極の寿命特性および入出力特性をさらに向上させる必要がある。この目的を達成するために、AB5型水素吸蔵合金の研究開発が活発に行なわれている。特に高価なレアメタルであるCoの使用量を可能な限り低減したAB5型水素吸蔵合金にて、寿命特性の維持向上を目的として、合金の硬さに注目した検討が行われている。 In order to popularize and expand hybrid vehicles, it is necessary to keep the manufacturing cost of nickel-metal hydride batteries low and further improve the life characteristics and input / output characteristics of the negative electrode. In order to achieve this purpose, research and development of AB5 type hydrogen storage alloy is being actively carried out. In particular, in the AB5 type hydrogen storage alloy in which the amount of Co used, which is an expensive rare metal, is reduced as much as possible, studies are being conducted focusing on the hardness of the alloy for the purpose of maintaining and improving the life characteristics.

例えば、特許文献1において、二次電池用水素吸蔵合金として、(R)・(NiCoMnAl(ただしRはLaを75%≧含有する希土類混合金属、MはTi、Zr、Hfから選ばれる何れか1種の金属、x+y=1、0.002≦y<0.01、3.5<a<4.5、0.6≦b<1.0、c≦0.2、0.2≦d≦0.4、5.1≦z<5.3)で表される二次電池用水素吸蔵合金であり、この水素吸蔵合金のマイクロビッカース硬度が、400以上であることが提案されている For example, in Patent Document 1, as a hydrogen storage alloy for a secondary battery, (R x My) · (Ni a Co b Mn c Al d ) z ( where R is a rare earth mixed metal containing 75% ≧ La, M. Is any one metal selected from Ti, Zr, and Hf, x + y = 1, 0.002 ≦ y <0.01, 3.5 <a <4.5, 0.6 ≦ b <1.0, It is a hydrogen storage alloy for a secondary battery represented by c ≦ 0.2, 0.2 ≦ d ≦ 0.4, 5.1 ≦ z <5.3), and the micro Vickers hardness of this hydrogen storage alloy is determined. It is proposed to be over 400

また特許文献2において、一般式が(R)・(NiCoMnAl)(ただしRはLaを75%≧含有する希土類混合金属、MはTi、Zr、Hfから選ばれる何れか1種の金属、x+y=1、0.002≦y<0.01、3.5<a<4.5、0.6≦b<1.0、c≦0.2、0.2≦d≦0.4、5.1≦(a+b+c+d+)で表される二次電池用水素吸蔵合金であり、この水素吸蔵合金のマイクロビッカース硬度が、400以上であることが提案されている Further, in Patent Document 2, the general formulas are (R x My) and (Ni a Cob Mn c Al d ) (where R is a rare earth mixed metal containing 75% La ≧, and M is selected from Ti, Zr, and Hf. Any one of the metals, x + y = 1, 0.002≤y <0.01, 3.5 <a <4.5, 0.6≤b <1.0, c≤0.2, 0. It is a hydrogen storage alloy for a secondary battery represented by 2 ≦ d ≦ 0.4 and 5.1 ≦ (a + b + c + d +), and it is proposed that the micro Vickers hardness of this hydrogen storage alloy is 400 or more.

また特許文献3において、A1-x(MNi1-y(式中、AはY、Gd、Tb、Dy又はこれらの混合物、RはLa、Ce、Pr、Nd又はこれらの混合物、MはCo、Al、Mn、Fe、Cu、Zr、Ti、Mo、W、B又はこれらの混合元素を示す。x、y及びnは、それぞれ0.01≦x≦0.1、0.01≦y≦0.5、4.9≦n≦5.4である)で表される合金であって、該合金のビッカース硬度(Hv)が900kg/mm以上であることが提案されている。 Further, in Patent Document 3, A x R 1-x (My Ni 1-y ) n (in the formula, A is Y, Gd, Tb, Dy or a mixture thereof, R is La, Ce, Pr, Nd or these. , M represents Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, W, B or a mixture of these elements; x, y and n are 0.01 ≦ x ≦ 0.1, respectively. 0.01 ≦ y ≦ 0.5, 4.9 ≦ n ≦ 5.4), and it is proposed that the Vickers hardness (Hv) of the alloy is 900 kg / mm 2 or more. Has been done.

また、特許文献4には、短絡の原因となる不純物を除去することができる水素吸蔵合金粉末の製造方法が提案されており、この製造方法は、水素吸蔵合金原料を溶解して溶湯とし、これを冷却して得られた水素吸蔵合金インゴットを粉砕した後、磁石を用いて磁着物を排除する磁選を行うことからなる。より具体的にいえば、例えば、一般式MmNiMnAlCoで(ただし、4.0≦a≦4.7、0.3≦b≦0.7、0.20≦c00.50、0<d≦0.80)で表される水素吸蔵合金について、合金原料を溶解して溶湯とし、この溶湯を、例えば水冷型の鋳型に流し込んで、例えば1350~1550℃の鋳湯温度で鋳造し、所定の冷却速度で冷却する。次いで、必要に応じて、不活性ガス雰囲気中で、例えば1000~1200℃、3~6時間熱処理する。次いで、水素吸蔵合金インゴットを粗砕し、その後の磁選工程において、短絡の原因となる不純物を除去することが提案されている(段落0017、0025~0030参照)。 Further, Patent Document 4 proposes a method for producing a hydrogen storage alloy powder capable of removing impurities that cause a short circuit. In this production method, a raw material for a hydrogen storage alloy is melted to form a molten metal. The hydrogen storage alloy ingot obtained by cooling the hydrogen storage alloy ingot is crushed, and then magnetic separation is performed using a magnet to remove magnetic deposits. More specifically, for example, in the general formula MmNi a Mn b Al c Cod (however, 4.0 ≦ a ≦ 4.7, 0.3 ≦ b ≦ 0.7, 0.20 ≦ c00.50). , 0 <d ≦ 0.80), the alloy raw material is melted to form a molten metal, and this molten metal is poured into, for example, a water-cooled mold at a casting temperature of, for example, 1350 to 1550 ° C. Cast and cool at a given cooling rate. Then, if necessary, heat treatment is performed in an inert gas atmosphere at, for example, 1000 to 1200 ° C. for 3 to 6 hours. Next, it has been proposed to coarsely crush the hydrogen storage alloy ingot and remove impurities causing a short circuit in the subsequent magnetic separation step (see paragraphs 0017, 0025 to 0030).

特開平10-261413号公報Japanese Unexamined Patent Publication No. 10-261413 特開2008-210809号公報Japanese Unexamined Patent Publication No. 2008-21809 特開2001-266864号公報Japanese Unexamined Patent Publication No. 2001-266864 特開2010-255104号公報Japanese Unexamined Patent Publication No. 2010-255104

上記の通り、これまでにも検討がなされてきているが、近年レアメタルであるCoの取引価格が高騰するなか、Coを含有するAB5型水素吸蔵合金の原料コストを維持あるいは低減するためには、Coの含有率を可能な限り低減する必要がある。しかし、AB5型水素吸蔵合金のCo含有率を低減すると、水素の吸蔵放出が繰り返されることによる合金の微粉化が促進し、負極の寿命特性が低下する傾向がある。Co含有量の低減と、負極の寿命特性を両立させるための有効な課題解決策は見つかっていない。 As mentioned above, studies have been made so far, but in recent years the transaction price of Co, which is a rare metal, has soared, and in order to maintain or reduce the raw material cost of AB5 type hydrogen storage alloy containing Co, it is necessary to maintain or reduce it. It is necessary to reduce the Co content as much as possible. However, when the Co content of the AB5 type hydrogen storage alloy is reduced, the alloy is promoted to be micronized due to repeated storage and release of hydrogen, and the life characteristic of the negative electrode tends to be deteriorated. No effective solution to the problem has been found to achieve both the reduction of Co content and the life characteristics of the negative electrode.

特許文献1には、二次電池用水素吸蔵合金として、(R)・(NiCoMnAlでLaを75%以上含有する希土類混合金属、元素Mの添加量を0.02以上0.01未満としており、元素Mの添加量の理由としてこの範囲でないと合金のマイクロビッカース硬度を400以上とすることができず、そのため水素吸蔵・放出時、すなわち、充放電時に合金が割れやすくなり、サイクル寿命の低下につながるとしている。しかし、この水素吸蔵合金のCo量は0.6~1.0としており、実施例での0.6~0.9の場合だが、Coが多すぎる課題がある。また、特許文献1には、水素吸蔵合金を負極活物質に用いた際の寿命特性の向上を図るという観点から、水素吸蔵合金の微粉化抑制という課題及びこれを解決するための具体的手段に関する記載はない。 In Patent Document 1, as a hydrogen storage alloy for a secondary battery, an amount of a rare earth mixed metal containing 75% or more of La at (R x My) and (Ni a Cob Mn c Al d ) z and an element M are added. Is 0.02 or more and less than 0.01, and the micro Vickers hardness of the alloy cannot be set to 400 or more unless it is within this range as the reason for the addition amount of the element M. Therefore, at the time of hydrogen storage / release, that is, charge / discharge. It is said that sometimes the alloy becomes fragile, leading to a decrease in cycle life. However, the amount of Co in this hydrogen storage alloy is set to 0.6 to 1.0, which is 0.6 to 0.9 in the examples, but there is a problem that the amount of Co is too large. Further, Patent Document 1 relates to the problem of suppressing pulverization of the hydrogen storage alloy and specific means for solving the problem from the viewpoint of improving the life characteristics when the hydrogen storage alloy is used as the negative electrode active material. There is no description.

特許文献2では、二次電池用水素吸蔵合金として、(R)・(NiCoMnAl)で希土類金属に占めるLaを75%以上とし、Laサイトに添加する元素Mの添加量を0.02以上0.01未満としており、元素Mの添加量の理由としてこの範囲でないと合金のマイクロビッカース硬度を400以上とすることができず、そのため水素吸蔵・放出時、すなわち、充放電時に合金が割れやすくなり、サイクル寿命を長くするために必要としている。しかし、この水素吸蔵合金のCo量は0.6~1.0としており、実施例での0.6~0.9の場合だが、Coが多すぎる課題がある。この特許文献についても、水素吸蔵合金を負極活物質に用いた際の寿命特性の向上を図るという観点から、水素吸蔵合金の微粉化抑制という課題及びこれを解決するための具体的手段に関する記載はない。 In Patent Document 2, as a hydrogen storage alloy for a secondary battery, La (R x My) and ( Nia Cob Mn c Al d ) in rare earth metals is 75% or more, and the element M added to the La site. The addition amount of the alloy is 0.02 or more and less than 0.01, and the micro Vickers hardness of the alloy cannot be 400 or more unless it is in this range as the reason for the addition amount of the element M. Therefore, at the time of hydrogen storage / release, that is, It is necessary to prolong the cycle life because the alloy is easily cracked during charging and discharging. However, the amount of Co in this hydrogen storage alloy is set to 0.6 to 1.0, which is 0.6 to 0.9 in the examples, but there is a problem that the amount of Co is too large. Also in this patent document, from the viewpoint of improving the life characteristics when the hydrogen storage alloy is used as the negative electrode active material, the problem of suppressing the pulverization of the hydrogen storage alloy and the specific means for solving the problem are described. not.

特許文献3には、A1-x(MNi1-y(式中、AはY、Gd、Tb、Dy又はこれらの混合物、RはLa、Ce、Pr、Nd又はこれらの混合物、MはCo、Al、Mn、Fe、Cu、Zr、Ti、Mo、W、B又はこれらの混合元素を示す。xは好ましくは0.03~0.05、yが0.01~0.5、nは4.9以上5.4以下でHv900kg/mmの水素吸蔵合金が得られるとしている。しかし、この水素吸蔵合金のCo量は実施例によるCo量は0.50から0.75モル%となり、やはりCoが多すぎる課題がある。また、この特許文献にも、水素吸蔵合金を負極活物質に用いた際の寿命特性の向上を図るという観点から、水素吸蔵合金の微粉化抑制という課題及びこれを解決するための具体的手段に関する記載はない。 In Patent Document 3, A x R 1-x (My Ni 1-y ) n (in the formula, A is Y, Gd, Tb, Dy or a mixture thereof, R is La, Ce, Pr, Nd or these. In the mixture of, M represents Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, W, B or a mixed element thereof. X is preferably 0.03 to 0.05, y is 0.01 to 0.01. It is said that a hydrogen storage alloy having an Hv of 900 kg / mm 2 can be obtained when 0.5 and n are 4.9 or more and 5.4 or less. However, the Co amount of this hydrogen storage alloy is 0.50 to 0 according to the examples. It is .75 mol%, which also has a problem that the amount of Co is too large. Also, from the viewpoint of improving the life characteristics when the hydrogen storage alloy is used as the negative electrode active material, the fine powder of the hydrogen storage alloy is also present in this patent document. There is no description about the problem of suppression of conversion and specific means for solving it.

特許文献4には、水素吸蔵合金の製造工程において、磁選工程を設けて不純物除去を行うことで、短絡の原因となる不純物(鉄及びCr)を効果的に除去できることが開示されているが、水素吸蔵合金を負極活物質に用いた際の寿命特性の向上を図るという観点から、水素吸蔵合金の微粉化抑制という課題及びこれを解決するための具体的手段に関する記載はない。 Patent Document 4 discloses that impurities (iron and Cr) that cause a short circuit can be effectively removed by providing a magnetic selection step in the hydrogen storage alloy manufacturing process to remove impurities. From the viewpoint of improving the life characteristics when the hydrogen storage alloy is used as the negative electrode active material, there is no description about the problem of suppressing the pulverization of the hydrogen storage alloy and the specific means for solving the problem.

本発明は、上記問題点に鑑みてなされたものであり、Coを含有するAB5型水素吸蔵合金について、Co含有量の低減により原料コストを抑制したうえで、水素の繰返し吸蔵放出による合金の微粉化を抑制することで、負極活物質に用いたときの寿命特性を維持することを課題としている。 The present invention has been made in view of the above problems, and for a Co-containing AB5 type hydrogen storage alloy, the raw material cost is suppressed by reducing the Co content, and then the fine powder of the alloy is repeatedly stored and released. The problem is to maintain the life characteristics when used as a negative electrode active material by suppressing the formation.

本発明者は、上記課題を解決すべく、鋭意研究し、所定の組成のCoを含有するAB5型水素吸蔵合金において、Co含有量の低減あるいはCo無添加により原料コストを抑制したうえで、粉砕で得られた合金粒子断面の単結晶相の機械的性質と電池特性の関係を詳細に調べた結果、水素吸蔵合金の粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率と電池特性に強い相関があることを見出し、前記ヤング率を120GPa以上127GPa以下にコントロールすることで、水素吸蔵量の低下がなく、水素の繰返し吸蔵放出による合金の微粉化を抑制でき、負極活物質に用いたときの寿命特性が維持されるAB5型水素吸蔵合金とすることができることを見出し、本発明を完成させた。 In order to solve the above problems, the present inventor has studied diligently, and in the AB5 type hydrogen storage alloy containing Co having a predetermined composition, the raw material cost is suppressed by reducing the Co content or adding no Co, and then pulverizing. As a result of investigating in detail the relationship between the mechanical properties of the single crystal phase of the alloy particle cross section obtained in 1 and the battery characteristics, the Young's ratio obtained when the single crystal phase of the particle cross section of the hydrogen storage alloy was measured with a nanoindenter. By controlling the young rate to 120 GPa or more and 127 GPa or less, it is possible to suppress the reduction of hydrogen storage capacity and to suppress the atomization of the alloy due to repeated storage and release of hydrogen, and the negative electrode activity. We have found that it is possible to obtain an AB5 type hydrogen storage alloy that maintains the life characteristics when used as a material, and completed the present invention.

本発明の要旨は、次の通りである。 The gist of the present invention is as follows.

(1)一般式MmNiaMnbAlcCod(式中、Mmはミッシュメタルであり、4.30≦a≦4.70、0.25≦b≦0.45、0.35≦c≦0.45、0≦d≦0.14、5.20≦a+b+c+d≦5.50)で表され、CaCu5型結晶構造を有する水素吸蔵合金であって、
前記Mmは、LaおよびCeの合計が、Mm全質量に対して90質量%以上100質量%以下の範囲内であり、熱処理後の前記水素吸蔵合金の粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が120GPa以上127GPa以下であることを特徴とする水素吸蔵合金。
(2)前記dが、0.02≦d≦0.14であることを特徴とする前記(1)に記載の水素吸蔵合金粉末。
(3)水素吸蔵量(H/M)が0.85以上1.00以下、かつ、微粉化難度が0.50以上0.60以下であり、平衡圧力が0.040MPa以上0.070MPa以下であることを特徴とする前記(1)又は(2)に記載の水素吸蔵合金粉末。
(4)前記(1)~(3)のいずれかに記載の水素吸蔵合金を負極活物質としたことを特徴とする負極。
(5)前記(4)に記載の負極を用いたことを特徴とする電池。
(1) General formula MmNiaMnbAlcCod (In the formula, Mm is a misch metal, 4.30 ≦ a ≦ 4.70, 0.25 ≦ b ≦ 0.45, 0.35 ≦ c ≦ 0.45, 0 ≦ d ≤0.14, 5.20≤a + b + c + d≤5.50), which is a hydrogen storage alloy having a CaCu5 type crystal structure.
In Mm, the total of La and Ce is in the range of 90% by mass or more and 100% by mass or less with respect to the total mass of Mm, and the single crystal phase of the particle cross section of the hydrogen storage alloy after heat treatment is subjected to nanoindenter. A hydrogen storage alloy characterized in that the young ratio obtained when measured is 120 GPa or more and 127 GPa or less.
(2) The hydrogen storage alloy powder according to (1) above, wherein d is 0.02 ≦ d ≦ 0.14.
(3) When the hydrogen storage amount (H / M) is 0.85 or more and 1.00 or less, the difficulty of pulverization is 0.50 or more and 0.60 or less, and the equilibrium pressure is 0.040 MPa or more and 0.070 MPa or less. The hydrogen storage alloy powder according to (1) or (2) above, which is characterized by being present.
(4) A negative electrode characterized in that the hydrogen storage alloy according to any one of (1) to (3) above is used as a negative electrode active material.
(5) A battery using the negative electrode according to (4) above.

本発明により、Co含有量の低減により原料コストを抑制したうえで、水素の繰返し吸蔵放出による合金の微粉化を抑制したAB5型水素吸蔵合金を得ることができ、初期特性に優れ、微粉化難度に優れ、寿命特性に優れ、ニッケル水素電池用負極に好適なAB5型水素吸蔵合金を得ることができるという顕著な効果を奏する。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain an AB5 type hydrogen storage alloy in which the raw material cost is suppressed by reducing the Co content and the atomization of the alloy due to repeated storage and release of hydrogen is suppressed. It has a remarkable effect of being able to obtain an AB5 type hydrogen storage alloy suitable for a negative electrode for a nickel-metal hydride battery because of its excellent life characteristics.

水素吸蔵合金の粉砕粉を樹脂包埋後、研磨して得られた粒子断面についての二次電子像(a)及びEBSDによる方位解析像(b)を示す。なお、EBSDによる方位解析像(b)において、左側の粒子(単結晶相1)、中央上部の粒子(単結晶相2)及右側の粒子(単結晶相3)は、EBSDによる方位解析により、それぞれの粒子の断面が同じ色となっていることから、それぞれの粒子が一つの方位を有すること、すなわち単結晶相からなることを示す。また、粒子の中心部分付近を測定点とすることで単結晶相のヤング率を測定することになる。The secondary electron image (a) and the orientation analysis image (b) by EBSD about the particle cross section obtained by embedding the crushed powder of a hydrogen storage alloy with a resin and then polishing are shown. In the orientation analysis image (b) by EBSD, the particles on the left side (single crystal phase 1), the particles on the upper center (single crystal phase 2) and the particles on the right side (single crystal phase 3) are obtained by orientation analysis by EBSD. Since the cross section of each particle has the same color, it indicates that each particle has one orientation, that is, it consists of a single crystal phase. Further, the Young's modulus of the single crystal phase is measured by setting the vicinity of the central portion of the particles as the measurement point. 実施例1~4および比較例1~3における微粉化難度とナノインデンターから得られたヤング率の関係を示すグラフである。3 is a graph showing the relationship between the degree of difficulty in micronization and the Young's modulus obtained from the nanoindenter in Examples 1 to 4 and Comparative Examples 1 to 3.

以下に本発明を詳細に説明する。 The present invention will be described in detail below.

本発明者は、Co含有量の少ないAB5型水素吸蔵合金の機械的性質に着目し、水素吸蔵合金の粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が大きくなるほど微粉化難度に優れることを見出した。前記ヤング率は合金結晶の剛直さを示すものであり、合金結晶の剛直さによって水素吸蔵しても合金結晶が割れ難くなっていると解釈できる。よって、微粉化難度を良好にして、ニッケル水素電池用負極として優れた寿命特性を得るには、前記ヤング率の大きな合金結晶を用いることである。
具体的には、水素吸蔵合金の粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が120GPa以上であると、ニッケル水素電池用負極として優れた合金となる。120GPa未満では、水素吸蔵放出を繰り返すと合金結晶の割れが進行し易くなり、即ち、微粉化難度が低下してニッケル水素電池用負極として十分な特性が得られない。前記ヤング率が大きくなれば、より良好な微粉化難度となるが、前記ヤング率が大きくなり過ぎると合金の加工性が悪くなってニッケル水素電池用負極とできる合金粉砕に時間がかかり過ぎる。よって、前記ヤング率の上限は、127GPaとした。
The present inventor paid attention to the mechanical properties of the AB5 type hydrogen storage alloy having a low Co content, and the larger the young ratio obtained when the single crystal phase of the particle cross section of the hydrogen storage alloy was measured with a nanoindenter, the finer the powder. It was found to be excellent in the difficulty of conversion. The Young's modulus indicates the rigidity of the alloy crystal, and it can be interpreted that the rigidity of the alloy crystal makes it difficult for the alloy crystal to crack even if hydrogen is stored. Therefore, in order to improve the difficulty of micronization and obtain excellent life characteristics as a negative electrode for a nickel-metal hydride battery, it is necessary to use the alloy crystal having a large Young's modulus.
Specifically, when the Young's modulus obtained when the single crystal phase of the particle cross section of the hydrogen storage alloy is measured by a nanoindenter is 120 GPa or more, the alloy is excellent as a negative electrode for a nickel hydrogen battery. If it is less than 120 GPa, cracking of the alloy crystal tends to proceed when hydrogen storage and release are repeated, that is, the difficulty of micronization decreases and sufficient characteristics cannot be obtained as a negative electrode for a nickel hydrogen battery. If the Young's modulus becomes large, the difficulty of pulverization becomes better, but if the Young's modulus becomes too large, the processability of the alloy deteriorates and it takes too much time to pulverize the alloy that can be used as the negative electrode for nickel-metal hydride batteries. Therefore, the upper limit of the Young's modulus was 127 GPa.

本発明におけるAB5型水素吸蔵合金は、CaCu5型結晶構造を有し、一般式MmNiaMnbAlcCod(Mmはミッシュメタルであり、4.30≦a≦4.70、0.25≦b≦0.45、0.35≦c≦0.45、0≦d≦0.14、5.20≦a+b+c+d≦5.50)で表され、Coのモル比dは、原料コスト低減のため、なるべく少ない方が好ましく、0≦d≦0.14としている。ただ、Co含有量が0.02未満では、前記ヤング率を大きくしても微粉化難度が維持できない場合があるので、好ましくは、0.02≦d≦0.14である。 The AB5 type hydrogen storage alloy in the present invention has a CaCu5 type crystal structure and has a general formula MmNiaMnbAlcCod (Mm is a misch metal, 4.30 ≦ a ≦ 4.70, 0.25 ≦ b ≦ 0.45, 0. It is represented by .35 ≦ c ≦ 0.45, 0 ≦ d ≦ 0.14, 5.20 ≦ a + b + c + d ≦ 5.50), and the molar ratio d of Co is preferably as small as possible in order to reduce the raw material cost. 0 ≦ d ≦ 0.14. However, if the Co content is less than 0.02, the difficulty of micronization may not be maintained even if the Young's modulus is increased, so 0.02 ≦ d ≦ 0.14 is preferable.

AB5型水素吸蔵合金において、Aサイトを構成する金属について説明する。
本発明では、Aサイトを構成する金属として、LaまたはLaの一部もしくは全部が希土類金属混合物であるミッシュメタル(Mm)を用いる。Mmでは、LaおよびCeが、Mm全質量に対して90質量%以上100質量%以下の範囲内の割合を占めていることが好ましく、より好ましくは、Laが70~96質量%、Ceが4~30質量%の範囲であり、更に好ましくは、Laが74~94質量%、Ceが6~26質量%の範囲である。
In the AB5 type hydrogen storage alloy, the metal constituting the A site will be described.
In the present invention, as the metal constituting the A site, mischmetal (Mm) in which La or a part or all of La is a rare earth metal mixture is used. In Mm, it is preferable that La and Ce occupy a ratio within the range of 90% by mass or more and 100% by mass or less with respect to the total mass of Mm, and more preferably, La is 70 to 96% by mass and Ce is 4. It is in the range of about 30% by mass, more preferably in the range of 74 to 94% by mass for La and 6 to 26% by mass for Ce.

次にBサイトを構成する金属について説明する。本発明では、Bサイトを構成する金属として、Ni、Mn、Al、及びCoを用いる。これら金属のモル比は以下の条件を満たすことが好ましい。
Niモル比(a) 4.30≦ a ≦4.70
Mnモル比(b) 0.25≦ b ≦0.45
Alモル比(c) 0.35≦ c ≦0.45
Coモル比(d) 0≦ d ≦0.14
AB比 5.20≦(a+ b + c + d ) ≦5.50
更に好ましい条件は、次の通りである。
Niモル比(a) 4.40≦ a ≦4.70
Mnモル比(b) 0.25≦ b ≦0.41
Alモル比(c) 0.38≦ c ≦0.42
Coモル比(d) 0.02≦ d ≦0.11
AB比 5.25≦(a+ b + c + d ) ≦5.46
Next, the metals constituting the B site will be described. In the present invention, Ni, Mn, Al, and Co are used as the metals constituting the B site. The molar ratio of these metals preferably satisfies the following conditions.
Ni molar ratio (a) 4.30 ≤ a ≤ 4.70
Mn molar ratio (b) 0.25 ≤ b ≤ 0.45
Al molar ratio (c) 0.35 ≤ c ≤ 0.45
Co molar ratio (d) 0 ≤ d ≤ 0.14
AB ratio 5.20 ≤ (a + b + c + d) ≤ 5.50
More preferable conditions are as follows.
Ni molar ratio (a) 4.40 ≤ a ≤ 4.70
Mn molar ratio (b) 0.25 ≤ b ≤ 0.41
Al molar ratio (c) 0.38 ≤ c ≤ 0.42
Co molar ratio (d) 0.02 ≤ d ≤ 0.11
AB ratio 5.25 ≤ (a + b + c + d) ≤ 5.46

MmのLa、Ceの比率、Ni、Mn、Alのモル比を前記の通りに設定した理由としては、AB5型水素吸蔵合金の水素吸蔵量(H/M)が、0.85~1.00とすることにより充放電容量を確保すること、平衡圧力を0.040~0.070MPaとして初期活性化しやすくすること、PCT曲線におけるプラトー域をなるべく広くすることを考慮したためである。 The reason why the ratio of La and Ce of Mm and the molar ratio of Ni, Mn and Al are set as described above is that the hydrogen storage amount (H / M) of the AB5 type hydrogen storage alloy is 0.85 to 1.00. This is because consideration is given to ensuring the charge / discharge capacity, facilitating the initial activation by setting the equilibrium pressure to 0.040 to 0.070 MPa, and widening the plateau range in the PCT curve as much as possible.

前記、水素吸蔵合金において、粉砕で得られた100μmの合金粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が120GPa以上127GPa以下であることが好ましい。
また、水素吸蔵合金は鋳込み時、結晶成長するが、その合金断面のEBSD観察によるグレインサイズをみると、自由面に対して比較的グレインサイズが小さくなる冷却面であっても平均134μmとなる。水素吸蔵合金の機械的粉砕により得られた粒子は粒界から優先して割れるため、得られた100μm程度の粒子であればほぼ単結晶となっている。この粒子を樹脂包埋し、研磨により得られた100μmの粒子断面の中心部であれば、単結晶相を選択していることになるので、ナノインデンテーションによるヤング率測定はこの部分で測定を行う。
In the hydrogen storage alloy, the Young's modulus obtained when the single crystal phase of the 100 μm alloy particle cross section obtained by pulverization is measured by a nanoindenter is preferably 120 GPa or more and 127 GPa or less.
Further, the hydrogen storage alloy undergoes crystal growth during casting, but the grain size of the alloy cross section observed by EBSD shows an average of 134 μm even on a cooling surface where the grain size is relatively small with respect to the free surface. Since the particles obtained by mechanically pulverizing the hydrogen storage alloy crack preferentially from the grain boundaries, the obtained particles having a size of about 100 μm are almost single crystals. If the particles are embedded in resin and polished to the center of the 100 μm particle cross section, the single crystal phase is selected. Therefore, the Young's modulus measurement by nanoindentation should be performed at this part. conduct.

前記、水素吸蔵合金において、水素吸蔵量(H/M)が0.85~1.00であり、かつ微粉化難度が0.50~0.60、平衡圧力が0.040~0.070MPaである。
ここで、微粉化難度とは、「保持温度45℃および水素圧力調整1.82MPaの環境下における水素の吸蔵放出サイクル10回後の水素吸蔵合金粉末の粒度(D50)」を「水素吸蔵合金粉末の初期粒度(D50)」で除した値である。また、平衡圧力は、測定温度45℃水素放出側のH/M=0.5における平衡水素圧力(MPa)のことである。
In the hydrogen storage alloy, the hydrogen storage amount (H / M) is 0.85 to 1.00, the pulverization difficulty is 0.50 to 0.60, and the equilibrium pressure is 0.040 to 0.070 MPa. be.
Here, the difficulty of pulverization is defined as "the particle size (D 50 ) of the hydrogen storage alloy powder after 10 hydrogen storage and release cycles in an environment of holding temperature 45 ° C. and hydrogen pressure adjustment 1.82 MPa" as "hydrogen storage alloy". It is a value divided by "initial particle size of powder (D 50 )". The equilibrium pressure is the equilibrium hydrogen pressure (MPa) at a measurement temperature of 45 ° C. on the hydrogen release side at H / M = 0.5.

微粉化難度を0.50~0.60とした理由は、高すぎると初期活性化し難く、反対に低すぎると、電池の寿命特性が確保されないためである。微粉化難度は水素吸蔵量(H/M)と相間があり、H/Mが多いほど微粉化難度は低め、H/Mが少ないほど微粉化難度は高めになる傾向がある。またH/Mを0.85~1.00とした理由は、ニッケル水素電池用負極を作製したときに、目標の充放電容量を確保するためである。 The reason why the degree of difficulty in micronization is set to 0.50 to 0.60 is that if it is too high, it is difficult to perform initial activation, and if it is too low, the life characteristics of the battery cannot be ensured. The difficulty of micronization tends to be in phase with the hydrogen storage amount (H / M), and the difficulty of micronization tends to be lower as the H / M is larger, and the difficulty of micronization tends to be higher as the H / M is smaller. The reason why the H / M is set to 0.85 to 1.00 is to secure the target charge / discharge capacity when the negative electrode for the nickel-metal hydride battery is manufactured.

本発明の水素吸蔵合金粉末は、上述のCaCu5型結晶構造を有する水素吸蔵合金であって、前記合金粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が120GPa以上127GPa以下とすることができる製造方法であれば、どのような方法でもよく、例えば、真空溶融炉や大気溶融炉による溶解法、気相合成法、アーク溶融法、プラズマ溶解法、等で製造できる。前記製造した合金を熱処理したり、粉砕したりしてもよい。
前記製造方法の1例として、秤量工程、混合工程、鋳造工程、熱処理工程、冷却工程および粉砕工程を経て製造する場合を説明する。秤量工程では、所望の合金組成となるように水素吸蔵合金の各原料を秤量する。混合工程では、秤量された複数種類の原料を混合する。鋳造工程において、高周波加熱溶解炉に混合原料を投入し、混合原料を溶解させて溶湯とし所定時間保持した後、この溶湯を鋳型に流し込んで鋳造する。鋳造時の溶湯温度は合金組成にもよるが、例えば、1150℃~1550℃の範囲の温度(鋳造温度=鋳造開始時の坩堝内溶湯温度)である。この工程は複数種類の原料を完全に混合することを目的にしているが合金が固化するときの体積収縮による内部歪が発生する。この内部歪を極力減らすために合金の鋳込み厚さは35mm以上とし、500℃以下まで冷却される時間を10分以上とすると良い。この鋳込み厚さとすることで合金がゆっくり固まり、内部歪を減らすことが出来る。この時、鋳込んだ合金のヤング率は50GPa以上、110GPa以下となる。
鋳造後の合金は、前述した内部歪を取り去るため熱処理を行う。必要であれば、熱処理工程において非酸化雰囲気下で熱処理してもよい。熱処理温度は、完全に歪を取り除く目的で合金組成に合わせて決められるが、例えば、1060℃~1150℃とすればよい。
熱処理温度は融点より若干低い温度が好ましいが、低すぎても熱処理時に組織が均質化されず、また、高すぎる温度の場合には偏析相が出現するため、局部的な組成ずれが起こる。結晶組織の均質化や局部的な組成ずれは合金の強直性に影響し、これがヤング率の低下に影響する。これを防ぐため今回の組成範囲では1060℃~1150℃が好ましい。
また、熱処理時間は、鋳造後のインゴット(水素吸蔵合金片)の大きさにもよるが、例えば、8時間から13時間である。熱処理は組織の均質性に影響する工程であり、この時間が短いと十分な結晶組織の均質性が得られず、このその局部的な均質性の低下が合金の強直性に影響し、ヤング率の低下につながる。
冷却工程では、熱処理された鋳造物が冷却される。冷却方法は、放冷でも強制冷却することもできる。
冷却速度は、合金組成に合わせて必要な合金特性を得るために適宜設定する方がよい。
この工程によりヤング率は120GPa以上127GPa以下となる。
次工程である粉砕工程では、鋳造した合金又は更に熱処理した合金塊を、粗粉砕、微粉砕等により必要な粒度の水素吸蔵合金粉末にする。例えば、500μmの篩目を通過するサイズまで粉砕して水素吸蔵合金粉末とする。
以上のような製造方法では、合金のヤング率は、合金組成、溶湯保持温度・時間、鋳造温度、鋳造した合金の熱処理温度・時間・冷却速度、等を適宜調整することができる。例えば、合金組成においての一例としては、CaCu5型の結晶構造における[Cu]/[Ca]比(ABxのx値)を増加するとヤング率を大きくすることができる。
The hydrogen-storing alloy powder of the present invention is a hydrogen-storing alloy having the above-mentioned CaCu5 type crystal structure, and the young ratio obtained when the single crystal phase of the alloy particle cross section is measured by a nanoindenter is 120 GPa or more and 127 GPa or less. Any manufacturing method can be used as long as it can be used, and for example, it can be manufactured by a melting method using a vacuum melting furnace or an atmospheric melting furnace, a gas phase synthesis method, an arc melting method, a plasma melting method, or the like. The produced alloy may be heat-treated or pulverized.
As an example of the manufacturing method, a case of manufacturing through a weighing step, a mixing step, a casting step, a heat treatment step, a cooling step, and a crushing step will be described. In the weighing step, each raw material of the hydrogen storage alloy is weighed so as to have a desired alloy composition. In the mixing step, a plurality of weighed raw materials are mixed. In the casting step, the mixed raw material is put into a high-frequency heating and melting furnace, the mixed raw material is melted to form a molten metal, and the molten metal is held for a predetermined time, and then the molten metal is poured into a mold for casting. The molten metal temperature at the time of casting depends on the alloy composition, but is, for example, a temperature in the range of 1150 ° C. to 1550 ° C. (casting temperature = molten metal temperature in the crucible at the start of casting). This step aims to completely mix a plurality of types of raw materials, but internal strain occurs due to volume shrinkage when the alloy solidifies. In order to reduce this internal strain as much as possible, the casting thickness of the alloy should be 35 mm or more, and the cooling time to 500 ° C. or less should be 10 minutes or more. By setting this casting thickness, the alloy is slowly solidified and internal strain can be reduced. At this time, the Young's modulus of the cast alloy is 50 GPa or more and 110 GPa or less.
The alloy after casting is heat-treated to remove the above-mentioned internal strain. If necessary, the heat treatment may be performed in a non-oxidizing atmosphere in the heat treatment step. The heat treatment temperature is determined according to the alloy composition for the purpose of completely removing strain, and may be, for example, 1060 ° C to 1150 ° C.
The heat treatment temperature is preferably slightly lower than the melting point, but if it is too low, the structure will not be homogenized during the heat treatment, and if the temperature is too high, a segregated phase will appear, resulting in local composition deviation. Homogenization of the crystal structure and local composition deviation affect the toughness of the alloy, which affects the decrease in Young's modulus. In order to prevent this, 1060 ° C to 1150 ° C is preferable in the current composition range.
The heat treatment time is, for example, 8 to 13 hours, although it depends on the size of the ingot (hydrogen storage alloy piece) after casting. Heat treatment is a process that affects the homogeneity of the structure, and if this time is short, sufficient homogeneity of the crystal structure cannot be obtained, and this local decrease in homogeneity affects the toughness of the alloy, and Young's modulus. Leads to a decline in.
In the cooling step, the heat-treated casting is cooled. The cooling method can be either free cooling or forced cooling.
The cooling rate should be appropriately set in order to obtain the required alloy properties according to the alloy composition.
By this step, Young's modulus becomes 120 GPa or more and 127 GPa or less.
In the crushing step, which is the next step, the cast alloy or the further heat-treated alloy ingot is coarsely pulverized, finely pulverized, or the like to obtain hydrogen storage alloy powder having a required particle size. For example, it is pulverized to a size that passes through a sieve of 500 μm to obtain a hydrogen storage alloy powder.
In the above-mentioned manufacturing method, the young ratio of the alloy can be appropriately adjusted such as the alloy composition, the molten metal holding temperature / time, the casting temperature, the heat treatment temperature / time / cooling rate of the cast alloy, and the like. For example, as an example in the alloy composition, Young's modulus can be increased by increasing the [Cu] / [Ca] ratio (x value of ABx) in the CaCu5 type crystal structure.

このようにして得られた水素吸蔵合金粉末は、PCT(水素圧-組成-等温線図)特性評価装置によって、水素吸蔵量(H/M)、平衡圧力を測定する。 The hydrogen storage alloy powder thus obtained measures the hydrogen storage amount (H / M) and the equilibrium pressure by a PCT (hydrogen pressure-composition-isothermal diagram) characteristic evaluation device.

本発明におけるナノインデンターによるヤング率測定について説明する。
水素吸蔵合金の直径40から200μmの粉砕粉をナノインデンター観察用に、樹脂に包埋、鏡面研磨し、直径31から32mm、高さ34mm以下となるように調整する。樹脂包埋、研磨の方法であるが、例えば、丸本ストリアス株式会社製の樹脂(#105)80mLと硬化剤(M剤)1.2mLを包埋用の樹脂として用いる。また、樹脂包埋用に用いる容器はStrier製のSeriFormの直径30mm品を用いる。自動研磨装置としてリファインテック株式会社製リファイン・ポリッシャーHVにAMO-210を組み込んだ装置を使用した。条件として樹脂の表面状態に合わせて耐水ペーパー600番から800、1000、2000番まで200N、300rpmでそれぞれ3分程度研磨する。その後、アルミナ1μmとアルミナ0.05μmを100N、200rpmでそれぞれ2分程度研磨し、仕上げとしてバフのみで100N、200rpm、30秒程度仕上げの研磨を行う。この後、国際規格ISO14577に則った方法、具体的には、Nanomechanics社製iMicoro型ナノインデンターに、InForce50ヘッドを装着し、連続剛性測定法(CSM/CSR)により、測点点数として粒子当たり5点、押し込み試験5点、最大押し込み荷重50mN、ヤング率算出深さ30~40nmでヤング率を測定する。この時、巣や欠落箇所の無い平坦な面を選択して観察することが望ましい。
水素吸蔵合金は鋳込み時、結晶成長するが、その合金断面のEBSD観察によるグレインサイズをみると、自由面に対して比較的グレインサイズが小さくなる冷却面であっても平均134μmとなる。水素吸蔵合金の機械的粉砕により得られた粒子は粒界から優先して割れるため、得られた100μm程度の粒子であればほぼ単結晶となっている。この粒子を樹脂包埋し、研磨により得られた100μmの粒子断面の中心部であれば、単結晶相を選択していることになるので、ナノインデンテーションによるヤング率測定はこの部分で測定を行う(図1(b)参照)。
The Young's modulus measurement by the nano indenter in the present invention will be described.
The pulverized powder having a diameter of 40 to 200 μm of the hydrogen storage alloy is embedded in a resin and mirror-polished for nanoindenter observation, and adjusted so that the diameter is 31 to 32 mm and the height is 34 mm or less. As a method of resin embedding and polishing, for example, 80 mL of a resin (# 105) manufactured by Marumoto Strias Co., Ltd. and 1.2 mL of a curing agent (M agent) are used as the resin for embedding. As the container used for resin embedding, a SeriForm product having a diameter of 30 mm manufactured by Streeter is used. As an automatic polishing device, a device in which AMO-210 was incorporated in a refine polisher HV manufactured by Refine Tech Co., Ltd. was used. As a condition, the water resistant papers 600 to 800, 1000 and 2000 are polished at 200 N and 300 rpm for about 3 minutes according to the surface condition of the resin. After that, 1 μm of alumina and 0.05 μm of alumina are polished at 100 N and 200 rpm for about 2 minutes, respectively, and the finish is polished with only the buff for about 100 N, 200 rpm and about 30 seconds. After that, a method according to the international standard ISO14577, specifically, an InForce50 head is attached to an iMicroro type nanoindenter manufactured by Nanomechanics, and the continuous rigidity measurement method (CSM / CSR) is used to measure 5 points per particle. Young's modulus is measured at 5 points, a maximum pushing load of 50 mN, and a Young's modulus calculation depth of 30 to 40 nm. At this time, it is desirable to select and observe a flat surface without nests or missing parts.
The hydrogen storage alloy undergoes crystal growth during casting, but the grain size of the alloy cross section observed by EBSD shows an average of 134 μm even on a cooling surface where the grain size is relatively small with respect to the free surface. Since the particles obtained by mechanically pulverizing the hydrogen storage alloy crack preferentially from the grain boundaries, the obtained particles having a size of about 100 μm are almost single crystals. If the particles are embedded in resin and polished to the center of the 100 μm particle cross section, the single crystal phase is selected. Therefore, the Young's modulus measurement by nanoindentation should be performed at this part. (See FIG. 1 (b)).

本発明における微粉化難度の測定方法について説明する。
PCT(水素圧-組成-等温線図)特性はJIS H 7201「水素吸蔵合金の圧力-等温線(PCT線)の測定法」に準じた市販の評価装置具、例えば、株式会社鈴木商館で販売されているPCT特性測定装置とSUS316製、外形12.7mm、長さ91mmのサンプルホルダーを用い、試料5gの測定からより得られた「保持温度45℃および水素圧力調整1.82MPaの環境下における水素の吸蔵放出サイクル10回後の水素吸蔵合金粉末の粒度(D50)」を「水素吸蔵合金粉末の初期粒度(D50)」で除した値を、微粉化難度として指標化した。
The method for measuring the difficulty of micronization in the present invention will be described.
PCT (hydrogen pressure-composition-isothermal diagram) characteristics are sold by commercially available evaluation equipment based on JIS H7201 "Measurement method of pressure-isothermal wire (PCT line) of hydrogen storage alloy", for example, Suzuki Shokan Co., Ltd. Using the PCT characteristic measuring device and a sample holder made by SUS316 with an outer diameter of 12.7 mm and a length of 91 mm, it was obtained from the measurement of 5 g of the sample under the environment of "holding temperature 45 ° C. and hydrogen pressure adjustment 1.82 MPa". The value obtained by dividing "the particle size of the hydrogen storage alloy powder after 10 hydrogen storage and release cycles (D 50 )" by "the initial particle size of the hydrogen storage alloy powder (D 50 )" was indexed as the difficulty of pulverization.

以下、本発明の実施例に基づいて説明する。なお、本発明は実施例に限定されるものはない。 Hereinafter, description will be given based on examples of the present invention. The present invention is not limited to the examples.

(実施例1-4)
MmとしてLaとCe、Ni、Mn、Al、Coの各金属原料を、表1に示した最終的な製品の合金組成となるように秤量した。
それらの原料を高周波溶解炉内のアルミナルツボに入れて27Paまで真空排気した後、アルゴンガスを導入してアルゴンガスの雰囲気とした。
次いで高周波加熱装置で加熱溶解し、溶湯を1550~1600℃、 20~30分間の範囲で保持した後、1300~1400℃の温度範囲の溶湯を水冷鉄鋳型に流し込んで鋳造を行った。この時の鋳込み厚さは40mmであった。
次に鋳込んだ合金を塊状に粉砕後、ステンレス製の容器に入れ、アルゴン雰囲気下1100℃で12.5時間の熱処理を行った。
ついで、熱処理後の900℃付近から500℃付近まで4.45℃/minの冷却速度で降温し、ついで、100℃まで1℃/minの冷却速度で降温させた。
得られた合金は、アルゴンガス雰囲気下でクラッシャーにより粗粉砕し、続いて、不活性雰囲気下でカッティングミルを用いて粉砕し、続いて篩目500μmを通過する粒子サイズ(500μm以下)とした。
以上のようにして、表1に実施例1~4として示す水素吸蔵合金粉末を作製した。
なお、表1には、熱処理条件も併記した。
(Example 1-4)
La and Ce, Ni, Mn, Al, and Co metal raw materials as Mm were weighed so as to have the alloy composition of the final product shown in Table 1.
These raw materials were placed in an aluminal pot in a high-frequency melting furnace and evacuated to 27 Pa, and then argon gas was introduced to create an atmosphere of argon gas.
Then, it was heated and melted by a high-frequency heating device, and the molten metal was held in the range of 1550 to 1600 ° C. for 20 to 30 minutes, and then the molten metal in the temperature range of 1300 to 1400 ° C. was poured into a water-cooled iron mold for casting. The casting thickness at this time was 40 mm.
Next, the cast alloy was crushed into chunks, placed in a stainless steel container, and heat-treated at 1100 ° C. for 12.5 hours under an argon atmosphere.
Then, the temperature was lowered from around 900 ° C. to around 500 ° C. after the heat treatment at a cooling rate of 4.45 ° C./min, and then to 100 ° C. at a cooling rate of 1 ° C./min.
The obtained alloy was coarsely pulverized by a crusher under an argon gas atmosphere, subsequently pulverized using a cutting mill under an inert atmosphere, and subsequently made into a particle size (500 μm or less) passing through a sieve mesh of 500 μm.
As described above, the hydrogen storage alloy powders shown in Examples 1 to 4 in Table 1 were prepared.
The heat treatment conditions are also shown in Table 1.

(PCT特性の測定)
得られた水素吸蔵合金粉末について、PCT特性評価装置により、水素吸蔵量(H/M)、平衡圧力を測定した。その結果を表2に示す。
(Measurement of PCT characteristics)
With respect to the obtained hydrogen storage alloy powder, the hydrogen storage amount (H / M) and the equilibrium pressure were measured by a PCT characterization device. The results are shown in Table 2.

(微粉化難度の測定)
PCT特性評価装置を用いて、微粉化難度を測定した。その結果を表2に示す。
(Measurement of difficulty in micronization)
The difficulty of micronization was measured using a PCT characterization device. The results are shown in Table 2.

(ナノインデンテーション法によるヤング率の測定)
上記のようにして作製した水素吸蔵合金粉末を、直径31mm、高さ30mmとなるよう樹脂包埋、鏡面研磨した試料をナノインデンター(Nanomechanics社iMicro型ナノインデンター、InForce50ヘッド使用)を用い、連続剛性測定法(CSM/CSR)により、測点点数として粒子当たり5点、押し込み試験5点、最大押し込み荷重50mN、ヤング率算出深さ30~40nmでヤング率の測定を行った。その結果を図2、表2に示す。
水素吸蔵合金は鋳込み時、結晶成長するが、その合金断面のEBSD観察によるグレインサイズをみると、自由面に対して比較的グレインサイズが小さくなる冷却面であっても100~200μm程度となる。水素吸蔵合金の機械的粉砕により得られた粒子は粒界から優先して割れるため、得られた100μm程度の粒子であればほぼ単結晶となっている。この粒子を樹脂包埋し、研磨により得られた100μmの粒子断面の中心部であれば、単結晶相を選択していることになるので、ナノインデンテーションによるヤング率測定はこの部分で測定を行う(図1(b)参照)。
(Measurement of Young's modulus by nanoindentation method)
The hydrogen storage alloy powder prepared as described above was embedded in a resin so as to have a diameter of 31 mm and a height of 30 mm, and a mirror-polished sample was used with a nanoindenter (using Nanomechanics iMicro type nanoindenter, InForce 50 head). The Young's modulus was measured by the continuous rigidity measurement method (CSM / CSR) at 5 points per particle, 5 points for the indentation test, a maximum indentation load of 50 mN, and a Young's modulus calculation depth of 30 to 40 nm. The results are shown in FIGS. 2 and 2.
The hydrogen storage alloy undergoes crystal growth during casting, but the grain size obtained by EBSD observation of the cross section of the alloy is about 100 to 200 μm even on a cooling surface where the grain size is relatively small with respect to the free surface. Since the particles obtained by mechanically pulverizing the hydrogen storage alloy crack preferentially from the grain boundaries, the obtained particles having a size of about 100 μm are almost single crystals. If the particles are embedded in resin and polished to the center of the 100 μm particle cross section, the single crystal phase is selected. Therefore, the Young's modulus measurement by nanoindentation should be performed at this part. (See FIG. 1 (b)).

(比較例1)
組成を表1の比較例1とした以外は、実施例と同じ方法で水素吸蔵合金を作製した。
(比較例2)
表1の比較例2の組成で熱処理時間を5時間とした以外は、実施例と同じ方法で水素吸蔵合金を作製した。
(比較例3)
表1の比較例3の組成で熱処理温度を1050℃とした以外は、実施例と同じ方法で水素吸蔵合金を作製した。
(比較例4)
表1の比較例4の組成で900から500℃までの冷却速度を10℃/minで降温した以外は、実施例と同じ方法で水素吸蔵合金を作製した。
上記比較例1~4についても、実施例と同様な方法で、水素吸蔵量(H/M)、平衡圧力、微粉化難度、ヤング率を測定した。その結果を表2に示す。
(Comparative Example 1)
A hydrogen storage alloy was prepared by the same method as in Examples except that the composition was set to Comparative Example 1 in Table 1.
(Comparative Example 2)
A hydrogen storage alloy was prepared by the same method as in Examples except that the heat treatment time was set to 5 hours in the composition of Comparative Example 2 in Table 1.
(Comparative Example 3)
A hydrogen storage alloy was produced by the same method as in Examples except that the heat treatment temperature was set to 1050 ° C. in the composition of Comparative Example 3 in Table 1.
(Comparative Example 4)
A hydrogen storage alloy was produced by the same method as in Examples except that the cooling rate from 900 to 500 ° C. was lowered at 10 ° C./min in the composition of Comparative Example 4 in Table 1.
In Comparative Examples 1 to 4 above, the hydrogen storage amount (H / M), the equilibrium pressure, the difficulty of micronization, and the Young's modulus were measured by the same method as in the examples. The results are shown in Table 2.

Figure 2022020892000002

表中の熱処理の冷却速度は900℃から500℃までの冷却速度を示す。
Figure 2022020892000002

The cooling rate of the heat treatment in the table shows the cooling rate from 900 ° C to 500 ° C.

Figure 2022020892000003
Figure 2022020892000003


表2、図2から、ヤング率は微粉化難度と相関があることが解かる。本発明の水素吸蔵合金は、比較例(従来)の水素吸蔵合金に比較してヤング率が120GPa以上と高いため微粉化難度が高い結果を示した。更に、H/Mが、0.92以上と比較的高く、平衡圧力も比較的低めであることが確認できた。
このことから、本発明の水素吸蔵合金は、Co含有量が少なく原料コストが低く、初期特性に優れ、微粉化難度に優れ、寿命特性に優れ、ニッケル水素電池用負極に好適な合金であることが確認できた。

From Table 2 and FIG. 2, it can be seen that Young's modulus correlates with the degree of difficulty in micronization. The hydrogen storage alloy of the present invention has a Young's modulus of 120 GPa or more, which is higher than that of the hydrogen storage alloy of the comparative example (conventional), and thus shows a high degree of difficulty in micronization. Furthermore, it was confirmed that the H / M was relatively high at 0.92 or more and the equilibrium pressure was also relatively low.
From this, the hydrogen storage alloy of the present invention has a low Co content, a low raw material cost, excellent initial characteristics, excellent difficulty in pulverization, excellent life characteristics, and is an alloy suitable for a negative electrode for a nickel hydrogen battery. Was confirmed.

(1)一般式MmNiaMnbAlcCod(式中、Mmはミッシュメタルであり、4.30≦a≦4.70、0.25≦b≦0.45、0.35≦c≦0.45、0≦d≦0.14(ただし、0≦d≦0.06の範囲を除く)、5.20≦a+b+c+d≦5.50)で表され、CaCu5型結晶構造を有する水素吸蔵合金粉末であって、
前記Mmは、LaおよびCeの合計が、Mm全質量に対して90質量%以上100質量%以下の範囲内であり、前記水素吸蔵合金粉末の粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が120GPa以上127GPa以下であることを特徴とする水素吸蔵合金粉末
)水素吸蔵量(H/M)が0.85以上1.00以下、かつ、微粉化難度が0.50以上0.60以下であり、平衡圧力が0.040MPa以上0.070MPa以下であることを特徴とする前記(1)に記載の水素吸蔵合金粉末。
)前記(1)又は(2)に記載の水素吸蔵合金を負極活物質としたことを特徴とする負極。
)前記()に記載の負極を用いたことを特徴とする電池。
(1) General formula MmNiaMnbAlcCod (In the formula, Mm is a misch metal, 4.30 ≦ a ≦ 4.70, 0.25 ≦ b ≦ 0.45, 0.35 ≦ c ≦ 0.45, 0 ≦ d ≤0.14 (excluding the range of 0≤d≤0.06) 5.20≤a + b + c + d≤5.50), which is a hydrogen storage alloy powder having a CaCu5 type crystal structure.
In Mm, the total of La and Ce is in the range of 90% by mass or more and 100% by mass or less with respect to the total mass of Mm, and the single crystal phase of the particle cross section of the hydrogen storage alloy powder is measured by a nanoindenter. A hydrogen storage alloy powder having a young ratio of 120 GPa or more and 127 GPa or less.
( 2 ) When the hydrogen storage amount (H / M) is 0.85 or more and 1.00 or less, the difficulty of pulverization is 0.50 or more and 0.60 or less, and the equilibrium pressure is 0.040 MPa or more and 0.070 MPa or less. The hydrogen storage alloy powder according to (1) above, which is characterized by being present.
( 3 ) A negative electrode characterized in that the hydrogen storage alloy according to (1) or (2) above is used as a negative electrode active material.
( 4 ) A battery characterized by using the negative electrode according to ( 3 ) above.

本発明者は、Co含有量の少ないAB5型水素吸蔵合金の機械的性質に着目し、水素吸蔵合金粉末(以下、単に「水素吸蔵合金」と記す場合もある。)の粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が大きくなるほど微粉化難度に優れることを見出した。前記ヤング率は合金結晶の剛直さを示すものであり、合金結晶の剛直さによって水素吸蔵しても合金結晶が割れ難くなっていると解釈できる。よって、微粉化難度を良好にして、ニッケル水素電池用負極として優れた寿命特性を得るには、前記ヤング率の大きな合金結晶を用いることである。
具体的には、水素吸蔵合金の粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が120GPa以上であると、ニッケル水素電池用負極として優れた合金となる。120GPa未満では、水素吸蔵放出を繰り返すと合金結晶の割れが進行し易くなり、即ち、微粉化難度が低下してニッケル水素電池用負極として十分な特性が得られない。前記ヤング率が大きくなれば、より良好な微粉化難度となるが、前記ヤング率が大きくなり過ぎると合金の加工性が悪くなってニッケル水素電池用負極とできる合金粉砕に時間がかかり過ぎる。よって、前記ヤング率の上限は、127GPaとした。
The present inventor pays attention to the mechanical properties of the AB5 type hydrogen storage alloy having a low Co content, and the single crystal phase of the particle cross section of the hydrogen storage alloy powder (hereinafter, may be simply referred to as “hydrogen storage alloy”). It was found that the larger the young rate obtained when measuring with a nanoindenter, the more difficult it is to atomize. The Young's modulus indicates the rigidity of the alloy crystal, and it can be interpreted that the rigidity of the alloy crystal makes it difficult for the alloy crystal to crack even if hydrogen is stored. Therefore, in order to improve the difficulty of micronization and obtain excellent life characteristics as a negative electrode for a nickel-metal hydride battery, it is necessary to use the alloy crystal having a large Young's modulus.
Specifically, when the Young's modulus obtained when the single crystal phase of the particle cross section of the hydrogen storage alloy is measured by a nanoindenter is 120 GPa or more, the alloy is excellent as a negative electrode for a nickel hydrogen battery. If it is less than 120 GPa, cracking of the alloy crystal tends to proceed when hydrogen storage and release are repeated, that is, the difficulty of micronization decreases and sufficient characteristics cannot be obtained as a negative electrode for a nickel hydrogen battery. If the Young's modulus becomes large, the difficulty of pulverization becomes better, but if the Young's modulus becomes too large, the processability of the alloy deteriorates and it takes too much time to pulverize the alloy that can be used as the negative electrode for nickel-metal hydride batteries. Therefore, the upper limit of the Young's modulus was 127 GPa.

Figure 2022020892000006
Figure 2022020892000006

Claims (5)

一般式MmNiMnAlCo(式中、Mmはミッシュメタルであり、4.30≦a≦4.70、0.25≦b≦0.45、0.35≦c≦0.45、0≦d≦0.14、5.20≦a+b+c+d≦5.50)で表され、CaCu5型結晶構造を有する水素吸蔵合金であって、
前記Mmは、LaおよびCeの合計が、Mm全質量に対して90質量%以上100質量%以下の範囲内であり、熱処理後の前記水素吸蔵合金の粒子断面の単結晶相をナノインデンターで測定したときに得られるヤング率が120GPa以上127GPa以下であることを特徴とする水素吸蔵合金。
General formula MmNi a Mn b Al c Cod (In the formula, Mm is a misch metal, 4.30 ≦ a ≦ 4.70, 0.25 ≦ b ≦ 0.45, 0.35 ≦ c ≦ 0.45 , 0 ≦ d ≦ 0.14, 5.20 ≦ a + b + c + d ≦ 5.50), which is a hydrogen storage alloy having a CaCu5 type crystal structure.
In Mm, the total of La and Ce is in the range of 90% by mass or more and 100% by mass or less with respect to the total mass of Mm, and the single crystal phase of the particle cross section of the hydrogen storage alloy after heat treatment is subjected to nanoindenter. A hydrogen storage alloy characterized in that the young ratio obtained when measured is 120 GPa or more and 127 GPa or less.
前記dが、0.02≦d≦0.14であることを特徴とする請求項1に記載の水素吸蔵合金粉末。 The hydrogen storage alloy powder according to claim 1, wherein d is 0.02 ≦ d ≦ 0.14. 水素吸蔵量(H/M)が0.85以上1.00以下、かつ、微粉化難度が0.50以上0.60以下であり、平衡圧力が0.040MPa以上0.070MPa以下であることを特徴とする請求項1又は2に記載の水素吸蔵合金粉末。 The hydrogen storage amount (H / M) is 0.85 or more and 1.00 or less, the pulverization difficulty is 0.50 or more and 0.60 or less, and the equilibrium pressure is 0.040 MPa or more and 0.070 MPa or less. The hydrogen storage alloy powder according to claim 1 or 2, wherein the hydrogen storage alloy powder is characterized. 請求項1~3のいずれかに記載の水素吸蔵合金粉末を負極活物質としたことを特徴とする負極。 A negative electrode using the hydrogen storage alloy powder according to any one of claims 1 to 3 as a negative electrode active material. 請求項4に記載の負極を用いたことを特徴とする電池。

A battery according to claim 4, wherein the negative electrode is used.

JP2020124133A 2020-07-21 2020-07-21 Low Co hydrogen storage alloy powder Active JP6948441B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020124133A JP6948441B1 (en) 2020-07-21 2020-07-21 Low Co hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020124133A JP6948441B1 (en) 2020-07-21 2020-07-21 Low Co hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JP6948441B1 JP6948441B1 (en) 2021-10-13
JP2022020892A true JP2022020892A (en) 2022-02-02

Family

ID=78001319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124133A Active JP6948441B1 (en) 2020-07-21 2020-07-21 Low Co hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP6948441B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023027792A (en) * 2021-08-18 2023-03-03 新日本電工株式会社 Hydrogen storage alloy
CN117980514A (en) * 2021-10-22 2024-05-03 三井金属矿业株式会社 Hydrogen storage alloy
WO2023067848A1 (en) * 2021-10-22 2023-04-27 三井金属鉱業株式会社 Hydrogen storage alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190959A (en) * 1990-11-22 1992-07-09 Nikko Kyodo Co Ltd Manufacture of hydrogen occluding alloy
JPH05114403A (en) * 1991-10-24 1993-05-07 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JP2019112714A (en) * 2017-12-22 2019-07-11 新日本電工株式会社 Hydrogen storing alloy mixed powder and hydrogen storing alloy powder
JP2019185852A (en) * 2018-04-02 2019-10-24 新日本電工株式会社 Inspection method for hydrogen storage alloy powder
JP6608558B1 (en) * 2019-06-18 2019-11-20 新日本電工株式会社 Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190959A (en) * 1990-11-22 1992-07-09 Nikko Kyodo Co Ltd Manufacture of hydrogen occluding alloy
JPH05114403A (en) * 1991-10-24 1993-05-07 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JP2019112714A (en) * 2017-12-22 2019-07-11 新日本電工株式会社 Hydrogen storing alloy mixed powder and hydrogen storing alloy powder
JP2019185852A (en) * 2018-04-02 2019-10-24 新日本電工株式会社 Inspection method for hydrogen storage alloy powder
JP6608558B1 (en) * 2019-06-18 2019-11-20 新日本電工株式会社 Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment

Also Published As

Publication number Publication date
JP6948441B1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6948441B1 (en) Low Co hydrogen storage alloy powder
WO1997003213A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
US11094932B2 (en) Hydrogen storage alloy
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
CN101849305A (en) Nickel-metal hydride battery and method for producing hydrogen storage alloy
WO2007023901A1 (en) Hydrogen storing alloy, process for producing the same and secondary battery
JP2017532446A (en) Hydrogen storage alloy and method for producing the same
JP5909600B2 (en) Hydrogen storage alloy
JP4503915B2 (en) Hydrogen storage alloy and method for producing the same
JP5001809B2 (en) Hydrogen storage alloy
JP7158550B1 (en) Hydrogen storage alloy powder, negative electrode for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery using the same
JP3834329B2 (en) AB5 type hydrogen storage alloy with excellent life characteristics
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP5342669B2 (en) Hydrogen storage alloy
JPH05303966A (en) Hydrogen storage alloy electrode
JP3992289B2 (en) Low Co hydrogen storage alloy
JP2014198907A (en) Hydrogen storage alloy
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP7175372B1 (en) Low Co hydrogen storage alloy
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
JP5617094B2 (en) Hydrogen storage alloy
JP2001266864A (en) Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same
JP2023029212A (en) Hydrogen storage alloy
JP3984802B2 (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210917

R150 Certificate of patent or registration of utility model

Ref document number: 6948441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150