JP3834329B2 - AB5 type hydrogen storage alloy with excellent life characteristics - Google Patents

AB5 type hydrogen storage alloy with excellent life characteristics Download PDF

Info

Publication number
JP3834329B2
JP3834329B2 JP2005335732A JP2005335732A JP3834329B2 JP 3834329 B2 JP3834329 B2 JP 3834329B2 JP 2005335732 A JP2005335732 A JP 2005335732A JP 2005335732 A JP2005335732 A JP 2005335732A JP 3834329 B2 JP3834329 B2 JP 3834329B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
powder
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005335732A
Other languages
Japanese (ja)
Other versions
JP2006173101A (en
Inventor
慎也 蔭井
秀利 井上
啓祐 宮之原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005335732A priority Critical patent/JP3834329B2/en
Publication of JP2006173101A publication Critical patent/JP2006173101A/en
Application granted granted Critical
Publication of JP3834329B2 publication Critical patent/JP3834329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、CaCu5型の結晶構造を有するAB5型水素吸蔵合金に関し、中でも寿命特性に優れた水素吸蔵合金に関する。 The present invention relates to an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, and more particularly to a hydrogen storage alloy having excellent life characteristics.

水素吸蔵合金は、水素と反応して金属水素化物となる合金であり、室温付近で多量の水素を可逆的に吸蔵・放出し得るため、この性質を利用して例えばハイブリッド自動車やデジタルスチルカメラに搭載されるニッケル・水素電池等、様々な分野で実用化が進められている。   A hydrogen storage alloy is an alloy that reacts with hydrogen to form a metal hydride and can reversibly store and release a large amount of hydrogen near room temperature, so this property can be used, for example, in hybrid vehicles and digital still cameras. Practical use is being promoted in various fields such as nickel-hydrogen batteries to be installed.

水素吸蔵合金としては、LaNi5に代表されるAB5型合金、ZrV0.4Ni1.5に代表されるAB2型合金、そのほかAB型合金やA2B型合金など様々な合金が知られている。
その多くは、水素との親和性が高く水素吸蔵量の多い元素グループ(Ca、Mg、希土類元素、Ti、Zr、V、Nb、Pt、Pdなど)と、水素との親和性が比較的低く吸蔵量は少ないが、水素化反応が速く反応温度を低くする元素グループ(Ni、Mn、Cr、Feなど)との組合せで構成される。いずれの型の合金も、組成によって特性が大きく変るため、最大水素吸蔵量及び有効水素吸蔵量の向上(高容量化)、長寿命化、高出力化などを目的として様々な合金組成が研究されている。
As the hydrogen storage alloy, various alloys such as an AB 5 type alloy typified by LaNi 5 , an AB 2 type alloy typified by ZrV 0.4 Ni 1.5 , and other AB type alloys and A 2 B type alloys are known.
Many of them have a relatively low affinity for hydrogen with element groups (Ca, Mg, rare earth elements, Ti, Zr, V, Nb, Pt, Pd, etc.) that have a high affinity for hydrogen and a large amount of hydrogen storage. Although the amount of occlusion is small, it is composed of a combination with an element group (Ni, Mn, Cr, Fe, etc.) that has a fast hydrogenation reaction and lowers the reaction temperature. Since the characteristics of all types of alloys vary greatly depending on the composition, various alloy compositions have been studied for the purpose of improving the maximum hydrogen storage capacity and effective hydrogen storage capacity (high capacity), extending the service life, and increasing output. ing.

水素吸蔵合金の中で、CaCu5型の結晶構造を有するAB5型水素吸蔵合金、例えば、Aサイト元素が希土類系の混合物であるMm(ミッシュメタル)で構成され、Bサイト元素がNi、Al、Mn、Coの4元素で構成されるMm−Ni−Mn−Al−Co合金は、LaNi5などのLa系合金に比べて比較的安価に製造できる上、サイクル寿命が長く、過充電時の発生ガスによる内圧上昇が少ない密閉型ニッケル水素蓄電池を得ることができるなどの特徴を備えている。 Among hydrogen storage alloys, AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, for example, A site element is composed of a rare earth-based mixture Mm (Misch metal), and B site element is Ni, Al Mm-Ni-Mn-Al-Co alloy composed of four elements, Mn and Co can be manufactured at a relatively low cost compared to La-based alloys such as LaNi 5 and has a long cycle life. A feature is that a sealed nickel-metal hydride storage battery with a small increase in internal pressure due to the generated gas can be obtained.

このようなAB5型水素吸蔵合金の製造方法としては、従来、鋳型鋳造法等によって鋳造された合金塊(インゴット)をアルゴン等の不活性ガス雰囲気中で熱処理し、熱処理した合金を所定の粒度に粉砕する方法が一般的であった。この製造においては、鋳造時の組織の乱れを熱処理によって均質化し、合金塊のまま熱処理することによって熱処理時の酸化を極力防いでいた。 As a method for producing such an AB 5 type hydrogen storage alloy, conventionally, an alloy lump (ingot) cast by a mold casting method or the like is heat-treated in an inert gas atmosphere such as argon, and the heat-treated alloy has a predetermined particle size. The method of pulverizing was generally used. In this production, the disorder of the structure at the time of casting is homogenized by heat treatment, and the heat treatment with the alloy lump is performed to prevent oxidation at the time of heat treatment as much as possible.

他方、本出願人は、寿命特性に特に優れた水素吸蔵合金、すなわち均質な組織及び特性を有する水素吸蔵合金を得るべく、ニッケル系水素吸蔵合金原料を溶解し、得られた溶湯を鋳型に流し込んで急冷し、得られた合金を粉砕して合金粉末とし、該合金粉末を分級し、分級した合金粉末を不活性ガス雰囲気中1000〜1200℃の温度で熱処理する製造方法を提案している(特許文献1)。   On the other hand, in order to obtain a hydrogen storage alloy having particularly excellent life characteristics, that is, a hydrogen storage alloy having a homogeneous structure and characteristics, the present applicant melts a nickel-based hydrogen storage alloy raw material and pours the obtained molten metal into a mold. And the obtained alloy is pulverized into an alloy powder, the alloy powder is classified, and the classified alloy powder is heat treated at a temperature of 1000 to 1200 ° C. in an inert gas atmosphere ( Patent Document 1).

特開2002−212601号公報JP 2002-212601 A

本発明は、寿命特性がより一層優れた水素吸蔵合金を得るべく研究し、その結果得られた新たな知見に基づき、新たな水素吸蔵合金を提供せんとするものである。   The present invention researches to obtain a hydrogen storage alloy having even better life characteristics, and provides a new hydrogen storage alloy based on the new knowledge obtained as a result.

本発明者は、放電容量が305mAh/g以上であるCaCu5型の結晶構造を有するAB5型水素吸蔵合金においては、X線回折から得られる(002)面の半値全幅が0.20°付近を境に寿命特性(微粉化残存率)の傾向が大きく変化し、半値全幅が0.20°付近未満のものは寿命特性(微粉化残存率)が顕著に優れたものとなることを見出し、かかる知見に基づいて本発明を想到した。 In the AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure with a discharge capacity of 305 mAh / g or more, the present inventor has a full width at half maximum of (002) plane obtained by X-ray diffraction of around 0.20 °. The tendency of the life characteristics (pulverization residual ratio) changes greatly with the boundary of the above, and it has been found that those with a full width at half maximum of less than about 0.20 ° are significantly superior in life characteristics (pulverization residual ratio), The present invention has been conceived based on such knowledge.

すなわち、本発明が提案する水素吸蔵合金は、CaCu5型の結晶構造を有し、下記放電容量測定試験で求められる放電容量が305mAh/g以上であるAB5型水素吸蔵合金であって、X線回折から得られる(002)面の半値全幅が0.20°未満であることを特徴とするAB5型水素吸蔵合金である。 That is, the hydrogen storage alloy proposed by the present invention is an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure and having a discharge capacity of 305 mAh / g or more determined by the following discharge capacity measurement test, The AB 5 type hydrogen storage alloy is characterized in that the full width at half maximum of the (002) plane obtained from line diffraction is less than 0.20 °.

−放電容量測定試験−
1) 水素吸蔵合金1gに、導電材としてのニッケル粉末3g、及び結合材としてのポリエチレン粉末0.12gを混合し、得られた混合粉0.3gを発泡Ni上に加圧成形して直径15mm、厚さ1.8mmのペレット型とし、150℃×1時間真空焼成を行ってペレット電極を作製し、このペレット電極を負極とし、これを正極(焼結式水酸化ニッケル)でセパレータを介して挟み込み、30wt%のKOH水溶液中に浸漬させて開放型試験セルを作製する。
2) 開放型試験セルを充放電装置に接続し、充電:0.2C−130%、放電:0.2C−0.7Vカット、温度20℃で充放電を行い、15サイクル目の放電容量(mAh/g)を測定する。
-Discharge capacity measurement test-
1) 3 g of nickel powder as a conductive material and 0.12 g of polyethylene powder as a binder are mixed with 1 g of a hydrogen storage alloy, and 0.3 g of the obtained mixed powder is pressure-molded on foamed Ni, and the diameter is 15 mm. Then, a pellet type with a thickness of 1.8 mm is formed by vacuum firing at 150 ° C. for 1 hour to produce a pellet electrode. This pellet electrode is used as a negative electrode, and this is used as a positive electrode (sintered nickel hydroxide) through a separator. An open test cell is produced by sandwiching and immersing in a 30 wt% KOH aqueous solution.
2) Connect the open test cell to the charge / discharge device, charge: 0.2C-130%, discharge: 0.2C-0.7V cut, charge / discharge at a temperature of 20 ° C, discharge capacity of 15th cycle ( mAh / g) is measured.

本発明の水素吸蔵合金は、放電容量が高く、しかも微粉化残存率に優れているという特徴を有する。一般的に放電容量と微粉化残存率とはトレードオフ(両立しない)の関係にあり、放電容量が高くなれば微粉化残存率が低下し、放電容量が低ければ微粉化残存率は高くなる傾向となるのが一般的であるが、本発明の水素吸蔵合金は両者がともに優れる点に特徴がある。本発明の水素吸蔵合金は、このような特徴を備えているが故、高放電容量の電池、例えば民生用のハイキャパシティ電池の負極材料などとして特に好適に用いることができる。本発明において「ハイキャパシティ電池」とは、電池の大きさによって異なるが、例えばD電池であれば6000mAh以上、S−C電池であれば3000mAh以上、AA電池であれば2000mAh以上、AAA電池であれば700mAh以上のものを意味する。   The hydrogen storage alloy of the present invention is characterized by high discharge capacity and excellent pulverization residual rate. Generally, there is a trade-off (incompatible) relationship between the discharge capacity and the pulverization residual rate. The higher the discharge capacity, the lower the pulverization residual rate. The lower the discharge capacity, the higher the pulverization residual rate. However, the hydrogen storage alloy of the present invention is characterized in that both are excellent. Since the hydrogen storage alloy of the present invention has such characteristics, it can be particularly suitably used as a negative electrode material for a battery having a high discharge capacity, for example, a high capacity battery for consumer use. In the present invention, the “high capacity battery” differs depending on the size of the battery. For example, it is 6000 mAh or more for a D battery, 3000 mAh or more for an S-C battery, 2000 mAh or more for an AA battery, and an AAA battery. Means 700 mAh or more.

以下、実施形態の例に基づいて説明するが、本発明が下記実施形態に限定されるものではない。
なお、本明細書において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意であり、「好ましくはXより大きく、Yより小さい」の意を包含するものである。
Hereinafter, although demonstrated based on the example of embodiment, this invention is not limited to the following embodiment.
In this specification, “X to Y” (X and Y are arbitrary numbers) means “X or more and Y or less” unless otherwise specified, “preferably larger than X, Y It includes the meaning of “smaller”.

本実施形態の水素吸蔵合金は、一般式MmNiaMnbAlcCod又はMmNiaMnbAlcCodFee(式中、Mmはミッシュメタル)で表すことができるCaCu5型結晶構造を有するAB5型の水素吸蔵合金であって、放電容量が305mAh/g以上であり、且つX線回折から得られる(002)面の半値全幅が0.20°未満であるという特徴を有するAB5型水素吸蔵合金である。 The hydrogen storage alloy of the present embodiment has a CaCu 5 type crystal structure that can be represented by the general formula MmNi a Mn b Al c Co d or MmNi a Mn b Al c Co d F e (where Mm is a misch metal). a AB 5 type hydrogen storage alloy having the discharge capacity is at 305mAh / g or more, AB 5 having the characteristic that and obtained from X-ray diffraction (002) plane full width at half maximum is less than 0.20 ° Type hydrogen storage alloy.

なお、本発明の水素吸蔵合金としては、CaCu5型の結晶構造を有するAB5型の水素吸蔵合金であれば、特に上記組成に限定されるものではない。ただし、ニッケルとミッシュメタルを成分として含有するニッケル系水素吸蔵合金であることが好ましい。 The hydrogen storage alloy of the present invention is not particularly limited to the above composition as long as it is an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure. However, a nickel-based hydrogen storage alloy containing nickel and misch metal as components is preferable.

ABx組成におけるxの合計値、すなわちAサイトを構成する元素の合計モル数に対するBサイトを構成する元素の合計モル数の比率としてのa+b+c+d又はa+b+c+d+e(この比率を「ABx」という)は、4.7≦ABx≦5.5、中でも特に4.7≦ABx或いはABx≦5.4、中でもさらに4.9≦ABx或いはABx≦5.4であるのが好ましい。   The total value of x in the ABx composition, that is, a + b + c + d or a + b + c + d + e (this ratio is referred to as “ABx”) as a ratio of the total number of moles of elements constituting the B site to the total number of moles of elements constituting the A site. It is preferable that 7 ≦ ABx ≦ 5.5, especially 4.7 ≦ ABx or ABx ≦ 5.4, and more preferably 4.9 ≦ ABx or ABx ≦ 5.4.

ABx組成においてBサイトを構成する元素Ni、Mn、Al、Fe及びCoの組成割合に関しては、上述のように4.7≦ABx≦5.5、好ましくは4.7≦ABx≦5.4の範囲内で適宜調整すればよいが、例えばCoの含有量を低下させることを優先的に考えると、Coの組成割合(モル比)を低くし、その代わりNiの組成割合(モル比)を高め、次いでMnの割合を所定範囲に入るように合金組成を調整し、あとは製造条件を調整することによって放電容量が305mAh/g以上となるように調製するのがよい。よってこの場合には、先ずCo及びNiの組成割合(モル比)を決め、次にMnの組成割合が所定範囲内に入るようにMn、Al及びFeの組成割合を変えてABxを調整して合金組成を決定するのが好ましい。   Regarding the composition ratio of the elements Ni, Mn, Al, Fe and Co constituting the B site in the ABx composition, as described above, 4.7 ≦ ABx ≦ 5.5, preferably 4.7 ≦ ABx ≦ 5.4. It may be adjusted as appropriate within the range. For example, if the priority is given to reducing the Co content, the Co composition ratio (molar ratio) is lowered, and instead the Ni composition ratio (molar ratio) is increased. Then, it is preferable to adjust the alloy composition so that the ratio of Mn falls within a predetermined range, and then adjust the manufacturing conditions so that the discharge capacity becomes 305 mAh / g or more. Therefore, in this case, the composition ratio (molar ratio) of Co and Ni is first determined, and then ABx is adjusted by changing the composition ratio of Mn, Al, and Fe so that the composition ratio of Mn falls within a predetermined range. It is preferable to determine the alloy composition.

Coの割合(d)は、0<d≦0.80、中でも好ましくは0.10≦d或いはd≦0.80、中でもさらに好ましくは0.30≦dである。d≦0.80の範囲内であれば、充分にコスト削減の利益を享受することができる。
Niの割合(a)は、3.45≦a≦4.70、中でも好ましくは3.45≦a或いはa≦4.30である。3.45≦a≦4.70の範囲内であれば、優れた出力特性を得ることができ、しかも微粉化特性や寿命特性に悪影響を与えることもない。
Mnの割合(b)は、0.20≦b≦0.70、中でも好ましくは0.20≦b或いはb≦0.50である。本発明の合金においては、Mnの割合が重要な要素である。Mnの割合を0.20≦b≦0.70の範囲に調整すれば、寿命特性を良好に維持することができる。
Alの割合(c)は、0.10≦c≦0.50、中でも好ましくは0.30≦c或いはc≦0.40である。0.10≦c≦0.50の範囲内であれば、プラトー圧力が必要以上に高くなって充放電のエネルギー効率を悪化させる影響が少なく、しかも水素吸蔵量を低下させる影響も少ない。
The ratio (d) of Co is 0 <d ≦ 0.80, preferably 0.10 ≦ d or d ≦ 0.80, and more preferably 0.30 ≦ d. If it is in the range of d <= 0.80, the profit of cost reduction can fully be enjoyed.
The proportion (a) of Ni is 3.45 ≦ a ≦ 4.70, preferably 3.45 ≦ a or a ≦ 4.30. If it is in the range of 3.45 ≦ a ≦ 4.70, excellent output characteristics can be obtained, and further, the pulverization characteristics and life characteristics are not adversely affected.
The ratio (b) of Mn is 0.20 ≦ b ≦ 0.70, preferably 0.20 ≦ b or b ≦ 0.50. In the alloy of the present invention, the proportion of Mn is an important factor. If the ratio of Mn is adjusted to the range of 0.20 ≦ b ≦ 0.70, the life characteristics can be maintained well.
The proportion (c) of Al is 0.10 ≦ c ≦ 0.50, preferably 0.30 ≦ c or c ≦ 0.40. If it is in the range of 0.10 ≦ c ≦ 0.50, the plateau pressure becomes higher than necessary, and the influence of deteriorating the energy efficiency of charge / discharge is small, and the influence of reducing the hydrogen storage amount is small.

Feの割合(e)は、0<e≦0.11、中でも好ましくは0.001≦e或いはe≦0.11、中でもさらに好ましくは0.002≦e或いはe≦0.11の範囲内で調整するのがよい。Feの添加によって微粉化特定(すなわち寿命特性)を更に良好にすることができるから、Feの含有が許容される用途においては、0<e≦0.11の範囲内で含有することにより、活性度を低下させる影響も少なく、微粉化特性を良好なものとすることができる。   The ratio (e) of Fe is within the range of 0 <e ≦ 0.11, particularly preferably 0.001 ≦ e or e ≦ 0.11, and more preferably 0.002 ≦ e or e ≦ 0.11. It is good to adjust. The addition of Fe can further improve the pulverization characteristics (that is, the life characteristics). Therefore, in applications where Fe content is allowed, the activity can be increased by including within the range of 0 <e ≦ 0.11. The effect of lowering the degree is small, and the pulverization characteristics can be improved.

他方、ABx組成においてAサイトを構成する「Mm」は、少なくともLa及びCeを含む希土類系の混合物(ミッシュメタル)であればよい。通常のMmは、La及びCeのほかにPr、Nd、Sm等の希土類を含んでいる。例えばCe(40〜50%)、La(20〜40%)、Pr、Ndを主要構成元素とする希土類混合物を挙げることができる。Mm中のLaの含有量は、一般的にはMm中の含有量において10〜90質量%、特に10〜85質量%であるのが好ましい。
なお、Ti,Mo,W,Si,Ca,Pb,Cd,Mgなどの不純物を0.05重量%程度以下であれば含んでいてもよい。
On the other hand, “Mm” constituting the A site in the ABx composition may be a rare earth-based mixture (Misch metal) containing at least La and Ce. Normal Mm contains rare earths such as Pr, Nd, and Sm in addition to La and Ce. For example, a rare earth mixture containing Ce (40 to 50%), La (20 to 40%), Pr, and Nd as main constituent elements can be given. The content of La in Mm is generally 10 to 90% by mass, particularly preferably 10 to 85% by mass, based on the content in Mm.
Note that impurities such as Ti, Mo, W, Si, Ca, Pb, Cd, and Mg may be included as long as they are about 0.05% by weight or less.

また、0<d≦0.20、好ましくは0.10≦d≦0.20という低Co組成のAB5型水素吸蔵合金においては、ABxが高くなるように設計することが特に好ましい。具体的には、5.15≦ABx≦5.40、中でも特に5.20≦ABx或いはABx≦5.40とするのが好ましい。すなわち、一般式MmNiaMnbAlcCod又はMmNiaMnbAlcCodFee(式中、Mmはミッシュメタル、0<d≦0.20、5.15≦ABx≦5.40)で表すことができるCaCu5型結晶構造を有するAB5型の水素吸蔵合金であるのが好ましい。
そしてこの場合、Niの割合(a)は、3.45≦a≦4.70、中でも4.20≦a或いはa≦4.48の範囲内で調整するのが好ましく、Mnの割合(b)は、0.20≦b≦0.70、中でも0.30≦b或いはb≦0.60の範囲内で調整するのが好ましく、Alの割合(c)は、0.10≦c≦0.50、中でも0.20≦c或いはc≦0.40の範囲内で調整するのが好ましく、Feの割合(e)は、0<e≦0.11、中でも0.001≦e或いはe≦0.11、その中でも特に0.025≦e或いはe≦0.10の範囲内で調整するのが好ましい。
In addition, in the AB 5 type hydrogen storage alloy having a low Co composition of 0 <d ≦ 0.20, preferably 0.10 ≦ d ≦ 0.20, it is particularly preferable to design the AB 5 type to be high. Specifically, it is preferable to satisfy 5.15 ≦ ABx ≦ 5.40, particularly 5.20 ≦ ABx or ABx ≦ 5.40. In other words, the general formula MmNi a Mn b Al c Co d or MmNi a Mn b Al c Co d Fe e ( wherein, Mm is the mischmetal, 0 <d ≦ 0.20,5.15 ≦ ABx ≦ 5.40) An AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure that can be represented by
In this case, the Ni ratio (a) is preferably adjusted within the range of 3.45 ≦ a ≦ 4.70, particularly 4.20 ≦ a or a ≦ 4.48, and the Mn ratio (b) Is preferably adjusted within the range of 0.20 ≦ b ≦ 0.70, particularly 0.30 ≦ b or b ≦ 0.60, and the Al ratio (c) is 0.10 ≦ c ≦ 0. 50, especially 0.20 ≦ c or c ≦ 0.40 is preferable, and the ratio (e) of Fe is 0 <e ≦ 0.11, especially 0.001 ≦ e or e ≦ 0. .11, and it is particularly preferable to adjust within the range of 0.025 ≦ e or e ≦ 0.10.

本実施形態の水素吸蔵合金は、下記放電容量測定試験で求められる放電容量が305mAh/g以上であることが重要である。該放電容量が305mAh/g以上である水素吸蔵合金は、(002)面の半値全幅が0.20°付近を境に寿命特性(微粉化残存率)の傾向が大きく変化する特異的な性質を示すことを本発明者は見出した。   It is important for the hydrogen storage alloy of this embodiment that the discharge capacity calculated | required by the following discharge capacity measurement test is 305 mAh / g or more. The hydrogen storage alloy having a discharge capacity of 305 mAh / g or more has a unique property that the tendency of the life characteristics (pulverization residual ratio) greatly changes when the full width at half maximum of the (002) plane is around 0.20 °. The inventor has found to show.

−放電容量測定試験−
JIS H 7205に準じた次の試験方法により、本発明が規定する放電容量を求めることができる。
1) 水素吸蔵合金1gに、導電材としてのニッケル粉末3g、及び結着材としてのポリエチレン粉末0.12gを混合し、得られた混合粉0.3gを発泡Ni上に加圧成形して直径15mm、厚さ1.8mmのペレット型とし、150℃×1時間真空焼成を行ってペレット電極を作製し、このペレット電極を負極とし、これを計算負極容量の2倍以上の容量をもつ正極(焼結式水酸化ニッケル)でセパレータを介して挟み込み、30wt%のKOH水溶液中に浸漬させて開放型試験セルを作製する。
2) 開放型試験セルを充放電装置に接続し、充電:0.2C−130%(対計算負極容量)、放電:0.2C−0.7Vカット、温度20℃で充放電を行い、15サイクル目の放電容量(mAh/g)を測定する。
-Discharge capacity measurement test-
The discharge capacity defined by the present invention can be determined by the following test method according to JIS H7205.
1) 3 g of nickel powder as a conductive material and 0.12 g of polyethylene powder as a binder are mixed with 1 g of a hydrogen storage alloy, and 0.3 g of the obtained mixed powder is pressure-molded on foamed Ni to obtain a diameter. A pellet electrode of 15 mm and a thickness of 1.8 mm was formed by vacuum baking at 150 ° C. for 1 hour, and this pellet electrode was used as a negative electrode. An open type test cell is prepared by sandwiching with a sintered nickel hydroxide) through a separator and dipping in a 30 wt% KOH aqueous solution.
2) Connect the open test cell to the charge / discharge device, charge: 0.2C-130% (vs. calculated negative electrode capacity), discharge: 0.2C-0.7V cut, charge / discharge at 20 ° C, 15 The discharge capacity (mAh / g) at the cycle is measured.

なお、上記の「対計算負極容量」とは、PCT(H/M)の測定方法で得られたH/Mを電気化学的容量に換算した容量である。例えば、H/M=0.8の場合、「対計算負極容量」=((96500×0.8)/(3600×水素吸蔵合金平均原子量))×1000(mAh/g)という式で換算することができる。   In addition, said "countermeasurement negative electrode capacity | capacitance" is the capacity | capacitance which converted H / M obtained by the measuring method of PCT (H / M) into the electrochemical capacity. For example, in the case of H / M = 0.8, it is converted by the formula of “calculated negative electrode capacity” = ((96500 × 0.8) / (3600 × hydrogen storage alloy average atomic weight)) × 1000 (mAh / g). be able to.

本実施形態の水素吸蔵合金において、上記放電容量とPCT(H/M)値との間には直線的な相関があることから、上記試験で求められる「放電容量305mAh/g以上」は、「45℃におけるPCT(H/M)値が0.820以上」に置き換えることが可能である。   In the hydrogen storage alloy of this embodiment, since there is a linear correlation between the discharge capacity and the PCT (H / M) value, the “discharge capacity of 305 mAh / g or more” obtained in the above test is “ The PCT (H / M) value at 45 ° C. can be replaced with 0.820 or more ”.

放電容量及びPCT(H/M)値を調整する手段としては、ABx(a+b+c+d或いはa+b+c+d+eの合計値:言い換えればAサイトとBサイトのモル比率)、Mn量、La量などを調節することによって放電容量及びPCT(H/M)値を調整する手段を挙げることができるが、これらに限定されるものではない。
より具体的には、本実施形態の水素吸蔵合金において放電容量を305mAh/g以上或いは45℃におけるPCT(H/M)値を0.820以上にするためには、Mmに含まれるLaの含有量を高めること、Mn量(すなわち“b”)を多くすること、ABxを化学量論比に近づけることを、バランスよく調整することが大切である。但し、このような手段に限定されるものではない。
As means for adjusting the discharge capacity and the PCT (H / M) value, discharge can be performed by adjusting ABx (total value of a + b + c + d or a + b + c + d + e: in other words, the molar ratio of A site to B site), Mn amount, La amount and the like. A means for adjusting the capacity and the PCT (H / M) value can be mentioned, but is not limited thereto.
More specifically, in order for the hydrogen storage alloy of this embodiment to have a discharge capacity of 305 mAh / g or more, or a PCT (H / M) value at 45 ° C. of 0.820 or more, the inclusion of La contained in Mm It is important to adjust the balance in a balanced manner: increasing the amount, increasing the amount of Mn (ie, “b”), and bringing ABx close to the stoichiometric ratio. However, it is not limited to such means.

また、本実施形態の水素吸蔵合金においては、X線回折から得られる(002)面の半値全幅が0.20°未満であることも重要である。
上述のように放電容量が305mAh/g以上のAB5型水素吸蔵合金においては、(002)面の半値全幅が0.20°付近を境に寿命特性(微粉化残存率)の傾向が大きく変化し、放電容量が305mAh/g以上であっても、(002)面の半値全幅が0.20°未満であれば結晶均質性が向上し、電池の負極活物質として用いた際に寿命特性(微粉化残存率)に優れるようになり、微粉化残存率は76%以上、好ましくは77%以上、さらに好ましくは80%以上にも達するようになる。
このような観点から、(002)面の半値全幅は0.19°以下であることがより好ましく、0.18°以下であることがさらに好ましく、中でも0.15°以下であることが特に好ましい。
但し、一般に放電容量を高めるために、上記の如くLaの含有量を高めたり、Mn量を増やしたり、ABx(;a+b+c+d或いはa+b+c+d+eの合計値)を所定範囲に限定したりすると、半値全幅が大きくなる傾向があるため、製造方法を適宜工夫して結晶性を高めて(002)面の半値全幅を小さくする必要がある。その製造方法の一例が下記に詳細に説明する製造方法である。
In the hydrogen storage alloy of this embodiment, it is also important that the full width at half maximum of the (002) plane obtained from X-ray diffraction is less than 0.20 °.
As described above, in the AB 5 type hydrogen storage alloy having a discharge capacity of 305 mAh / g or more, the tendency of the life characteristics (pulverization residual ratio) changes greatly when the full width at half maximum of the (002) plane is around 0.20 °. However, even when the discharge capacity is 305 mAh / g or more, if the full width at half maximum of the (002) plane is less than 0.20 °, the crystal homogeneity is improved, and the life characteristics ( The pulverization residual ratio becomes 76% or more, preferably 77% or more, and more preferably 80% or more.
From such a viewpoint, the full width at half maximum of the (002) plane is more preferably 0.19 ° or less, further preferably 0.18 ° or less, and particularly preferably 0.15 ° or less. .
However, in general, if the La content is increased as described above, the Mn content is increased, or ABx (the total value of a + b + c + d or a + b + c + d + e) is limited to a predetermined range in order to increase the discharge capacity, the full width at half maximum is increased. Therefore, it is necessary to appropriately devise the manufacturing method to increase the crystallinity and reduce the full width at half maximum of the (002) plane. An example of the manufacturing method is a manufacturing method described in detail below.

(水素吸蔵合金の製造方法)
本実施形態の水素吸蔵合金は、次のようにして製造することができる。但し、本発明の水素吸蔵合金の製造方法を次の製造方法に限定するものではない。また、以下では、一般式MmNiaMnbAlcCod(式中、Mmはミッシュメタル、3.45≦a≦4.70、0.20≦b≦0.65、0.10≦c≦0.50、0<d≦0.80、4.7≦a+b+c+d≦5.5)で表すことができるCaCu5型結晶構造を有する水素吸蔵合金の製造方法について説明するが、他の組成式(例えば又はMmNiaMnbAlcCodFee)で表されるCaCu5型結晶構造を有する水素吸蔵合金についても同様に製造可能である。
(Method for producing hydrogen storage alloy)
The hydrogen storage alloy of this embodiment can be manufactured as follows. However, the manufacturing method of the hydrogen storage alloy of this invention is not limited to the following manufacturing method. In the following, the general formula MmNi a Mn b Al c Co d (where Mm is Misch metal, 3.45 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.65, 0.10 ≦ c ≦ 0.50, 0 <d ≦ 0.80, 4.7 ≦ a + b + c + d ≦ 5.5) A method for producing a hydrogen storage alloy having a CaCu 5 type crystal structure, which can be represented by the following formula, will be described. For example, a hydrogen storage alloy having a CaCu 5 type crystal structure represented by, for example, MmNi a Mn b Al c Co d Fe e ) can be produced in the same manner.

上記水素吸蔵合金を製造するためには、例えば一般式MmNiaMnbAlcCod(式中、Mmはミッシュメタル、3.45≦a≦4.70、0.20≦b≦0.65、0.10≦c≦0.50、0<d≦0.80、4.7≦a+b+c+d≦5.5)の合金組成となるように、各水素吸蔵合金原料を秤量、混合し、この混合物を所定の方法で鋳造し、鋳造して得られた合金を所定の方法で粉砕して合金粉末とし、該合金粉末を分級し、分級して得られた合金粉末を所定の方法により不活性ガス雰囲気中で熱処理し、次いで所定の粒度分布となるように粉砕及び分級するようにすればよい。 In order to produce the hydrogen storage alloy, for example, the general formula MmNi a Mn b Al c Co d (where Mm is Misch metal, 3.45 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.65). 0.10 ≦ c ≦ 0.50, 0 <d ≦ 0.80, 4.7 ≦ a + b + c + d ≦ 5.5), each hydrogen storage alloy raw material is weighed and mixed, and this mixture The alloy obtained by casting is pulverized by a predetermined method to obtain an alloy powder, the alloy powder is classified, and the alloy powder obtained by classification is inert gas by a predetermined method. The heat treatment may be performed in an atmosphere, and then pulverized and classified so as to obtain a predetermined particle size distribution.

鋳造方法としては、例えば誘導加熱による高周波加熱溶解炉を用いて、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1350〜1550℃(鋳湯温度は1200〜1450℃)にて水冷型の鋳型に流し込んで鋳造して水素吸蔵合金を得るようにすればよい。鋳造温度とは、鋳造開始時のルツボ内溶湯温度であり、鋳湯温度とは鋳型注ぎ込み口温度(鋳型前温度)である。 As a casting method, for example, the pressure is reduced to 10 −4 to 10 −5 Torr using a high-frequency heating melting furnace by induction heating, and then heated and melted in an argon gas atmosphere to form a molten metal with a casting temperature of 1350 to 1550 ° C. ( The hydrogen storage alloy may be obtained by casting by casting into a water-cooled mold at a casting temperature of 1200 to 1450 ° C.). The casting temperature is the temperature of the molten metal in the crucible at the start of casting, and the casting temperature is the mold pouring port temperature (temperature before casting).

次に、得られた水素吸蔵合金を粉砕して合金粉末とし、これを分級し、分級して得られた合金粉末を真空中或いは不活性ガス雰囲気中、例えばアルゴンガス中で熱処理すればよい。
粉砕及び分級の程度は、振動分級機により測定される粒度分布において、150μm以下の含有量が30%以上、特に40%以上、中でも特に65%以上とするのが好ましい。
150μm以下の含有量が30%以上であれば、上述したように、得られる合金の結晶性がより一層高くなり、(002)面の半値全幅をより一層小さくすることができ、寿命特性(微粉化残存率)をさらに高めることができる。
Next, the obtained hydrogen storage alloy is pulverized to obtain an alloy powder, which is classified, and the obtained alloy powder may be heat-treated in a vacuum or in an inert gas atmosphere, for example, argon gas.
The degree of pulverization and classification is preferably such that the content of 150 μm or less is 30% or more, particularly 40% or more, and especially 65% or more in the particle size distribution measured by a vibration classifier.
When the content of 150 μm or less is 30% or more, as described above, the crystallinity of the obtained alloy is further increased, the full width at half maximum of the (002) plane can be further reduced, and the life characteristics (fine powder) The residual ratio) can be further increased.

分級後の熱処理は、従来行われていた1000℃以下の熱処理に比べてより高い温度で行って原子拡散をより促進させることにより、従来技術では達成し得なかった偏析相の消滅による特性の均質化を行うのが好ましい。よって、この際の熱処理は1040〜1100℃、1時間〜6時間で行うのが好ましい。
そして、得られた合金は、必要に応じて粗砕し、さらに粉砕するのが好ましい。
The heat treatment after the classification is performed at a higher temperature than the conventional heat treatment at 1000 ° C. or lower to further promote the atomic diffusion, thereby making it possible to achieve uniform characteristics due to the disappearance of the segregation phase, which could not be achieved by the prior art. It is preferable to carry out. Therefore, the heat treatment at this time is preferably performed at 1040 to 1100 ° C. for 1 to 6 hours.
The obtained alloy is preferably crushed as necessary and further pulverized.

なお、ツインロール法(詳しくは特願2002−299136の段落[0013]〜[0016]参照)により、鋳造と粉砕を同時に行うようにしてもよい。すなわち、例えば誘導加熱による高周波加熱溶解炉を用いて、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解し、その溶湯を回転するロール上に出湯し、段違いに配置されたCuロールの間で溶湯が衝突を繰り返すことで急冷凝固して水素吸蔵合金リボン(薄板状)とすることもできる。
得られた水素吸蔵合金粉末は、上記同様に分級し、熱処理すればよい。
Note that casting and pulverization may be simultaneously performed by a twin roll method (for details, refer to paragraphs [0013] to [0016] of Japanese Patent Application No. 2002-299136). That is, for example, using an induction heating high-frequency melting furnace, the pressure is reduced to 10 −4 to 10 −5 Torr, and then heated and melted in an argon gas atmosphere. The molten metal is discharged onto a rotating roll, The molten metal repeatedly collides between the arranged Cu rolls, so that it can be rapidly cooled and solidified to form a hydrogen storage alloy ribbon (thin plate shape).
The obtained hydrogen storage alloy powder may be classified and heat-treated in the same manner as described above.

また、上記の製造方法の代わりに、例えば、所定の組成となるように各水素吸蔵合金原料を秤量、混合し、この混合物を所定の方法で鋳造し、所定の冷却速度(所定の冷却水量)で冷却し、次いで真空中或いは不活性ガス雰囲気中、例えばアルゴンガス中で1040〜1080℃、3〜6時間で熱処理した後、所定の降温速度で急冷し、次いで所定の粒度分布となるように粉砕及び分級するようにして製造することもできる。
この際、熱処理後の降温速度は、熱処理温度(維持温度)から15〜25℃/min、特に20〜25℃/minの降温速度で500℃前後まで急冷させる必要があり、その後自然冷却させるのが好ましい。
Further, instead of the above manufacturing method, for example, each hydrogen storage alloy raw material is weighed and mixed so as to have a predetermined composition, the mixture is cast by a predetermined method, and a predetermined cooling rate (a predetermined amount of cooling water) is obtained. Then, after heat treatment in vacuum or in an inert gas atmosphere, for example, argon gas at 1040 to 1080 ° C. for 3 to 6 hours, rapidly cool at a predetermined temperature drop rate, and then have a predetermined particle size distribution It can also be produced by pulverization and classification.
At this time, the temperature lowering rate after the heat treatment needs to be rapidly cooled from the heat treatment temperature (maintenance temperature) to 15 to 25 ° C./min, particularly 20 to 25 ° C./min to around 500 ° C., and then naturally cooled. Is preferred.

(水素吸蔵合金利用)
このようにして得られた水素吸蔵合金粉末は、必要に応じ、金属材料や高分子樹脂等により合金表面を被覆したり、酸やアルカリで表面を処理したりするなど適宜表面処理を施し、各種の電池の負極活物質として用いることができる。
電池用負極の調製は、負極活物質に公知の方法により結着剤、導電助剤などを混合、成形すれば水素吸蔵合金負極を製造できる。
このようにして得られる水素吸蔵合金負極は、二次電池のほか一次電池(燃料電池含む)にも利用することができる。例えば、水酸化ニッケルを活物質とする正極と、アルカリ水溶液よりなる電解液と、セパレータからニッケル―MH(Metal Hydride)二次電池を構成することができ、電気自動車、ハイブリッド自動車、小型又は携帯型の各種電気機器、電動工具などの電源用途に好適に利用することができる。また、本発明の水素吸蔵合金は、コバルト含有量を抑えることができるので低価格・高出力・高耐久性が要求される次世代用電気自動車及びハイブリッド自動車用電池の負極活物質として特に好適である。
なお、ヒートポンプ、太陽・風力などの自然エネルギーの貯蔵、水素貯蔵、アクチュエータなどへの利用も可能である。
(Using hydrogen storage alloy)
The hydrogen storage alloy powder thus obtained is appropriately subjected to surface treatment such as coating the alloy surface with a metal material or polymer resin, or treating the surface with an acid or alkali, if necessary. It can be used as the negative electrode active material of the battery.
The negative electrode for a battery can be prepared by mixing a negative electrode active material with a binder, a conductive auxiliary agent, and the like by a known method and molding the negative electrode active material.
The hydrogen storage alloy negative electrode thus obtained can be used not only for secondary batteries but also for primary batteries (including fuel cells). For example, a nickel-MH (Metal Hydride) secondary battery can be composed of a positive electrode using nickel hydroxide as an active material, an electrolytic solution made of an alkaline aqueous solution, and a separator. It can be suitably used for power supply applications such as various electric devices and electric tools. The hydrogen storage alloy of the present invention is particularly suitable as a negative electrode active material for next-generation electric vehicles and hybrid vehicle batteries that require low price, high output, and high durability because the cobalt content can be suppressed. is there.
It can also be used for heat pumps, storage of natural energy such as solar and wind power, hydrogen storage, and actuators.

以下、本発明を実施例に基づき具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

(比較例1〜4:第1組成群)
第1組成:Mm(La20%)Al0.30Mn0.50Co0.30Ni4.20(ABx=5.30)(MmはLa、Ce、Nd、Pr等の希土類金属の混合物である。合金におけるMm中のLa含有量62.9%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:31.8%(Laは合金全体の20%)、Ni:56%、Mn:6.3%、Al:1.8%、Co:4.0%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金を、ジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、さらに横型ブラウン粉砕機(吉田製作所)を用いて粉砕時間を変化させて表に示される各粒度に粉砕した。なお、粒度分布の測定は、OCTAGON DIGITAL自動分級機(CSC SCIENTIFIC COMPANY製)に目開き500μm、300μm、150μm、106μm、75μm、45μmの順に篩(JIS Z 8801)をセットし、10分間分級を行った後、分級した粉末の質量を測定した。
次に、得られた合金粉末をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Examples 1-4: 1st composition group)
First composition: Mm (La 20%) Al 0.30 Mn 0.50 Co 0.30 Ni 4.20 (ABx = 5.30) (Mm is a mixture of rare earth metals such as La, Ce, Nd, Pr, etc. La content in Mm in alloy) In order to obtain a hydrogen storage alloy having a composition of 62.9%), Mm: 31.8% (La is 20% of the whole alloy), Ni: 56%, Mn: 6. 3%, Al: 1.8%, Co: 4.0% Weigh and mix so that the mixture is put in a crucible and fixed in a high-frequency melting furnace, and the pressure is reduced to 10 −4 to 10 −5 Torr. Then, the mixture was heated and melted in an argon gas atmosphere to form a molten metal, and cast into a water-cooled copper mold at a casting temperature of 1450 ° C. (the casting temperature was 1350 ° C.) to obtain an alloy.
The obtained alloy was coarsely crushed using a jaw crusher (Fuji Paudal: model1021-B), and further the pulverization time was changed using a horizontal brown grinder (Yoshida Seisakusho) to each particle size shown in the table. Crushed. The particle size distribution is measured by setting a sieve (JIS Z 8801) in the order of 500 μm, 300 μm, 150 μm, 106 μm, 75 μm, and 45 μm on an OCTAGON DIGITAL automatic classifier (manufactured by CSC SCIENTIFIC COMPANY) and classifying for 10 minutes. After that, the mass of the classified powder was measured.
Next, the obtained alloy powder was put in a SUS container, set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat-treated at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例5:第1組成群)
比較例1と同様に鋳造までを行い、得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、OCTAGON DIGITAL自動分級機(CSC SCIENTIFIC COMPANY製)に目開き5mm、1mmの順に篩をセットし、10分間分級を行い粒度分布1mm〜5mmの合金粒を得た。得られた合金粒をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 5: first composition group)
The casting was performed in the same manner as in Comparative Example 1, and the obtained alloy was roughly crushed using a jaw crusher (Fuji Paudal: model1021-B) and opened on an OCTAGON DIGITAL automatic classifier (CSC SCIENTIFIC COMPANY) with a mesh opening of 5 mm. Sieves were set in the order of 1 mm and classified for 10 minutes to obtain alloy grains having a particle size distribution of 1 mm to 5 mm. The obtained alloy particles were put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例6:第1組成群)
比較例1と同様に鋳造までを行い、得られた合金(インゴット)をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 6: first composition group)
Casting was performed in the same manner as in Comparative Example 1, and the obtained alloy (ingot) was placed in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例7:第1組成群)
比較例1と同様に鋳造までを行い、得られた合金(インゴット)をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で10時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 7: first composition group)
Casting was performed in the same manner as in Comparative Example 1, and the obtained alloy (ingot) was placed in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken) and heat treatment was performed at 1060 ° C. for 10 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例8:第1組成群)
比較例1と同様に鋳造、粉砕までを行い、OCTAGON DIGITAL自動分級機(CSC SCIENTIFIC COMPANY製)に目開き300μm、50μmの順に篩をセットし、10分間分級を行って粒度分布50μm〜300μmの合金粉を得た。得られた合金粉をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 8: first composition group)
Casting and crushing are performed in the same manner as in Comparative Example 1, and a sieve is set in the order of 300 μm and 50 μm openings on an OCTAGON DIGITAL automatic classifier (manufactured by CSC SCIENTIFIC COMPANY), and classification is performed for 10 minutes. I got a powder. The obtained alloy powder was put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

Figure 0003834329
Figure 0003834329

(実施例1〜3:第2組成群)
第2組成:Mm(La25%)Al0.40Mn0.20Co0.60Ni4.00(ABx=5.20)(MmはLa、Ce、Nd、Pr等の希土類金属の混合物である。合金におけるMm中のLa含有量77.2%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:32.4%(Laは合金全体の25%)、Ni:54.4%、Mn:2.5%、Al:2.5%、Co:8.2%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、さらに横型ブラウン粉砕機(吉田製作所)で粉砕時間を変化させて表に示される各粒度に粉砕した。これを、OCTAGON DIGITAL自動分級機(CSC SCIENTIFIC COMPANY製)に目開き500μm、300μm、150μm、106μm、75μm、45μmの順に篩(JIS Z 8801)をセットし、10分間分級を行った後、分級した粉末の質量を測定して粒度分布を測定した。
次に、得られた合金粉末をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Examples 1-3: 2nd composition group)
Second composition: Mm (La 25%) Al 0.40 Mn 0.20 Co 0.60 Ni 4.00 (ABx = 5.20) (Mm is a mixture of rare earth metals such as La, Ce, Nd, Pr. La content in Mm in alloy) In order to obtain a hydrogen storage alloy having a composition of 77.2%), Mm: 32.4% (La is 25% of the whole alloy), Ni: 54.4%, and Mn: Weigh and mix to 2.5%, Al: 2.5%, Co: 8.2%, and place the mixture in a crucible and fix to a high-frequency melting furnace, up to 10 −4 to 10 −5 Torr After the pressure was reduced, the mixture was heated and melted in an argon gas atmosphere to form a molten metal, and cast into a water-cooled copper mold at a casting temperature of 1450 ° C. (the casting temperature was 1350 ° C.) to obtain an alloy.
The obtained alloy was roughly crushed using a jaw crusher (Fuji Paudal: model 1021-B), and further pulverized to each particle size shown in the table by changing the pulverization time with a horizontal brown pulverizer (Yoshida Seisakusho). This was set in an OCTAGON DIGITAL automatic classifier (manufactured by CSC SCIENTIFIC COMPANY) with sieves (JIS Z 8801) in the order of openings of 500 μm, 300 μm, 150 μm, 106 μm, 75 μm, 45 μm, classified for 10 minutes, and then classified. The particle size distribution was measured by measuring the mass of the powder.
Next, the obtained alloy powder was put in a SUS container, set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat-treated at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例9:第2組成群)
実施例1と同様に鋳造までを行い、得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、OCTAGON DIGITAL自動分級機(CSC SCIENTIFIC COMPANY製)に目開き5mm、1mmの順に篩をセットし、10分間分級を行い粒度分布1mm〜5mmの合金粒を得た。得られた合金粒をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 9: second composition group)
The casting was performed in the same manner as in Example 1, and the obtained alloy was roughly crushed using a jaw crusher (manufactured by Fuji Paudal: model1021-B), and the aperture was 5 mm in an OCTAGON DIGITAL automatic classifier (manufactured by CSC SCIENTIFIC COMPANY). Sieves were set in the order of 1 mm and classified for 10 minutes to obtain alloy grains having a particle size distribution of 1 mm to 5 mm. The obtained alloy particles were put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例10:第2組成群)
実施例1と同様に鋳造までを行い、得られた合金(インゴット)をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 10: second composition group)
Casting was performed in the same manner as in Example 1. The obtained alloy (ingot) was placed in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

Figure 0003834329
Figure 0003834329

(実施例4、5:第3組成群)
第3組成:Mm(La16%)Al0.30Mn0.40Co0.75Ni3.45(ABx=4.90)(MmはLa、Ce、Nd、Prの希土類金属の混合物である。合金におけるMm中のLa含有量47.6%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:33.6%(Laは合金全体の16%)、Ni:48.6%、Mn:5.3%、Al:1.9%、Co:10.6%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、さらに横型ブラウン粉砕機(吉田製作所)で粉砕時間を変化させて表に示される各粒度に粉砕した。これを、OCTAGON DIGITAL自動分級機(CSC SCIENTIFIC COMPANY製)に目開き500μm、300μm、150μm、106μm、75μm、45μmの順に篩(JIS Z 8801)をセットし、10分間分級を行った後、分級した粉末の質量を測定し、粒度分布を測定した。
次に、得られた合金(インゴット)をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Examples 4, 5: third composition group)
Third composition: Mm (La 16%) Al 0.30 Mn 0.40 Co 0.75 Ni 3.45 (ABx = 4.90) (Mm is a mixture of rare earth metals of La, Ce, Nd, Pr. La content in Mm in alloy) In order to obtain a hydrogen storage alloy having a composition of 47.6%), Mm: 33.6% (La is 16% of the whole alloy), Ni: 48.6%, Mn: 5 .3%, Al: 1.9%, Co: 10.6%, weighed and mixed, put the mixture in a crucible and fixed in a high-frequency melting furnace, reduced pressure to 10 −4 to 10 −5 Torr Then, the mixture was heated and melted in an argon gas atmosphere to form a molten metal, which was cast into a water-cooled copper mold at a casting temperature of 1450 ° C. (the casting temperature was 1350 ° C.) to obtain an alloy.
The obtained alloy was roughly crushed using a jaw crusher (Fuji Paudal: model 1021-B), and further pulverized to each particle size shown in the table by changing the pulverization time with a horizontal brown pulverizer (Yoshida Seisakusho). This was set in an OCTAGON DIGITAL automatic classifier (manufactured by CSC SCIENTIFIC COMPANY) with sieves (JIS Z 8801) in the order of openings of 500 μm, 300 μm, 150 μm, 106 μm, 75 μm, 45 μm, classified for 10 minutes, and then classified. The mass of the powder was measured and the particle size distribution was measured.
Next, the obtained alloy (ingot) was placed in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例11:第3組成群)
実施例4と同様に鋳造までを行い、得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、OCTAGON DIGITAL自動分級機(CSC SCIENTIFIC COMPANY製)に目開き5mm、1mmの順に篩をセットし、10分間分級を行い粒度分布1mm〜5mmの合金粒を得た。得られた合金粒をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 11: third composition group)
The casting was performed in the same manner as in Example 4. The obtained alloy was roughly crushed using a jaw crusher (manufactured by Fuji Paudal: model1021-B), and the aperture was 5 mm in an OCTAGON DIGITAL automatic classifier (manufactured by CSC SCIENTIFIC COMPANY). Sieves were set in the order of 1 mm and classified for 10 minutes to obtain alloy grains having a particle size distribution of 1 mm to 5 mm. The obtained alloy particles were put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例12:第3組成群)
実施例4と同様に鋳造までを行い、得られた合金(インゴット)をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で5時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 12: third composition group)
Casting was performed in the same manner as in Example 4, and the obtained alloy (ingot) was placed in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 5 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(比較例13:第3組成群)
実施例4と同様に鋳造までを行い、得られた合金(インゴット)をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Comparative Example 13: third composition group)
Casting was performed in the same manner as in Example 4. The obtained alloy (ingot) was placed in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

(実施例6:第3組成群)
第3組成:Mm(La16%)Al0.30Mn0.40Co0.75Ni3.45(ABx=4.90)(MmはLa、Ce、Nd、Pr等の希土類金属の混合物である。合金におけるMm中のLa含有量47.6%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:33.6%(Laは合金全体の16%)、Ni:48.6%、Mn:5.3%、Al:1.9%、Co:10.6%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金をルツボに入れ、双ロール装置(日新技研製)に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解し、その溶湯を2000rpmで回転するロール上に出湯し、段違いに配置されたCuロールの間で溶湯が衝突を繰り返すことで急冷凝固した合金リボン(厚さ350μm以下の薄板)を得た。
次に、得られた合金リボンをSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った。なお、熱処理後は、500℃まで降温速度:5℃/minで冷却し、500℃に到達した後は自然冷却した。
(Example 6: Third composition group)
Third composition: Mm (La 16%) Al 0.30 Mn 0.40 Co 0.75 Ni 3.45 (ABx = 4.90) (Mm is a mixture of rare earth metals such as La, Ce, Nd, Pr. La content in Mm in alloy) In order to obtain a hydrogen storage alloy having a composition of 47.6%), Mm: 33.6% (La is 16% of the whole alloy), Ni: 48.6%, and Mn: Weigh and mix so that 5.3%, Al: 1.9%, Co: 10.6%, and place the mixture in a crucible and fix in a high-frequency melting furnace until 10 -4 to 10 -5 Torr. After the pressure was reduced, the mixture was heated and melted in an argon gas atmosphere to form a molten metal, and cast into a water-cooled copper mold at a casting temperature of 1450 ° C. (the casting temperature was 1350 ° C.) to obtain an alloy.
The obtained alloy is put in a crucible, fixed to a twin roll device (manufactured by Nisshin Giken), reduced in pressure to 10 −4 to 10 −5 Torr, heated and melted in an argon gas atmosphere, and the molten metal at 2000 rpm. The hot water was discharged onto a rotating roll, and the molten ribbon repeatedly collided between Cu rolls arranged at different levels to obtain a rapidly solidified alloy ribbon (thin plate having a thickness of 350 μm or less).
Next, the obtained alloy ribbon was put into a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), and heat treatment was performed at 1060 ° C. for 3 hours. In addition, after heat processing, it cooled by the temperature-fall rate: 5 degree-C / min to 500 degreeC, and reached natural temperature after reaching 500 degreeC.

Figure 0003834329
Figure 0003834329

(実施例7:第4組成群)
第4組成:Mm(La19%)Al0.20Mn0.60Co0.10Ni4.20Fe0.10(ABx=5.20)(MmはLa、Ce、Nd、Prの希土類金属の混合物である。合金におけるMm中のLa含有量59.2%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:32.1%(Laは合金全体の19%)、Ni:56.5%、Mn:7.6%、Al:1.2%、Co:1.4%、Fe:1.3%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金塊をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った後、真空熱処理装置の外側に配設された冷却水道管に冷却水を流通させて20℃/minの降温速度で500℃まで冷却し、それ以降は冷却水の流通をOFFにして室温まで自然冷却した。
得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、さらに横型ブラウン粉砕機(吉田製作所)で500μmの篩目を通過する粒子サイズ(−500μm)まで粉砕を行った。
(Example 7: Fourth composition group)
Fourth composition: Mm (La 19%) Al 0.20 Mn 0.60 Co 0.10 Ni 4.20 Fe 0.10 (ABx = 5.20) (Mm is a mixture of rare earth metals of La, Ce, Nd, Pr. La in Mm in the alloy) In order to obtain a hydrogen storage alloy having a composition of 59.2%), Mm: 32.1% (La is 19% of the whole alloy), Ni: 56.5%, Mn : 7.6%, Al: 1.2%, Co: 1.4%, Fe: 1.3% Weighed and mixed so that the mixture was put in a crucible and fixed in a high-frequency melting furnace, 10 After reducing the pressure to -4 to 10 -5 Torr, the mixture is heated and melted in an argon gas atmosphere to form a molten metal, cast into a water-cooled copper mold at a casting temperature of 1450 ° C (casting temperature is 1350 ° C), and cast. An alloy was obtained.
The obtained alloy lump is put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), heat treated at 1060 ° C. for 3 hours, and then cooled in a cooling water pipe arranged outside the vacuum heat treatment apparatus. Water was circulated and cooled to 500 ° C. at a temperature decrease rate of 20 ° C./min. Thereafter, the cooling water flow was turned off to naturally cool to room temperature.
The obtained alloy is roughly crushed using a jaw crusher (manufactured by Fuji Paudal: model1021-B), and further pulverized to a particle size (−500 μm) passing through a 500 μm sieve with a horizontal brown grinder (Yoshida Seisakusho). went.

(比較例14:第4組成群)
熱処理後500℃までの降温速度を5℃/minとした以外は、上記実施例7と同様に水素吸蔵合金を得た。
(Comparative Example 14: Fourth composition group)
A hydrogen storage alloy was obtained in the same manner as in Example 7 except that the temperature lowering rate to 500 ° C. after the heat treatment was changed to 5 ° C./min.

Figure 0003834329
Figure 0003834329

(実施例8:第5組成群)
第5組成:Mm(La27%)Al0.30Mn0.40Co0.10Ni4.45Fe0.075(ABx=5.325)(MmはLa、Ce、Nd、Prの希土類金属の混合物である。合金におけるMm中のLa含有量85.2%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:31.7%(Laは合金全体の27%)、Ni:59.2%、Mn:5.0%、Al:1.8%、Co:1.3%、Fe:1.0%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金塊をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った後、真空熱処理装置の外側に配設された冷却水道管に冷却水を流通させて20℃/minの降温速度で500℃まで冷却し、それ以降は冷却水の流通をOFFにして室温まで自然冷却した。
得られた合金をジョークラッシャー(Fuji Paudal社製:model1021−B)を用いて粗砕し、さらに横型ブラウン粉砕機(吉田製作所)で500μmの篩目を通過する粒子サイズ(−500μm)まで粉砕を行った。
(Example 8: Fifth composition group)
Fifth composition: Mm (La 27%) Al 0.30 Mn 0.40 Co 0.10 Ni 4.45 Fe 0.075 (ABx = 5.325) (Mm is a mixture of rare earth metals of La, Ce, Nd and Pr. La in Mm in the alloy. In order to obtain a hydrogen storage alloy having a composition with a content of 85.2%, Mm: 31.7% (La is 27% of the total alloy), Ni: 59.2%, Mn : 5.0%, Al: 1.8%, Co: 1.3%, Fe: 1.0% Weighed and mixed so that the mixture was put in a crucible and fixed in a high frequency melting furnace. After reducing the pressure to -4 to 10 -5 Torr, the mixture is heated and melted in an argon gas atmosphere to form a molten metal, cast into a water-cooled copper mold at a casting temperature of 1450 ° C (casting temperature is 1350 ° C), and cast. An alloy was obtained.
The obtained alloy lump is put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), heat treated at 1060 ° C. for 3 hours, and then cooled in a cooling water pipe arranged outside the vacuum heat treatment apparatus. Water was circulated and cooled to 500 ° C. at a temperature decrease rate of 20 ° C./min. Thereafter, the cooling water flow was turned off to naturally cool to room temperature.
The obtained alloy is roughly crushed using a jaw crusher (Fuji Paudal: model 1021-B), and further pulverized to a particle size (-500 μm) passing through a 500 μm sieve with a horizontal brown grinder (Yoshida Seisakusho). went.

Figure 0003834329
Figure 0003834329

(実施例9:第6組成群)
第6組成:Mm(La27%)Al0.40Mn0.30Co0.10Ni4.45Fe0.025(ABx=5.275)(MmはLa、Ce、Nd、Prの希土類金属の混合物である。合金におけるMm中のLa含有量84.1%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:32.1%(Laは合金全体の27%)、Ni:60.0%、Mn:3.8%、Al:2.5%、Co:1.4%、Fe:0.3%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金塊をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った後、真空熱処理装置の外側に配設された冷却水道管に冷却水を流通させて20℃/minの降温速度で500℃まで冷却し、それ以降は冷却水の流通をOFFにして室温まで自然冷却した。
得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、さらに横型ブラウン粉砕機(吉田製作所)で500μmの篩目を通過する粒子サイズ(−500μm)まで粉砕を行った。
(Example 9: Sixth composition group)
Sixth composition: Mm (La 27%) Al 0.40 Mn 0.30 Co 0.10 Ni 4.45 Fe 0.025 (ABx = 5.275) (Mm is a mixture of rare earth metals of La, Ce, Nd, and Pr. La in Mm in the alloy) In order to obtain a hydrogen storage alloy having a composition of 84.1% in content, Mm: 32.1% (La is 27% of the total alloy), Ni: 60.0%, Mn : 3.8%, Al: 2.5%, Co: 1.4%, Fe: 0.3% Weighed and mixed so that the mixture was put in a crucible and fixed in a high-frequency melting furnace, 10 After reducing the pressure to -4 to 10 -5 Torr, the mixture is heated and melted in an argon gas atmosphere to form a molten metal, cast into a water-cooled copper mold at a casting temperature of 1450 ° C (casting temperature is 1350 ° C), and cast. An alloy was obtained.
The obtained alloy lump is put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), heat treated at 1060 ° C. for 3 hours, and then cooled in a cooling water pipe arranged outside the vacuum heat treatment apparatus. Water was circulated and cooled to 500 ° C. at a temperature decrease rate of 20 ° C./min. Thereafter, the cooling water flow was turned off to naturally cool to room temperature.
The obtained alloy is roughly crushed using a jaw crusher (manufactured by Fuji Paudal: model1021-B), and further pulverized to a particle size (−500 μm) passing through a 500 μm sieve with a horizontal brown grinder (Yoshida Seisakusho). went.

Figure 0003834329
Figure 0003834329

(実施例10:第7組成群)
第7組成:Mm(La25%)Al0.35Mn0.40Co0.10Ni4.52Fe0.025(ABx=5.395)(MmはLa、Ce、Nd、Prの希土類金属の混合物である。合金におけるMm中のLa含有量79.3%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:31.5%(Laは合金全体の25%)、Ni:59.8%、Mn:5.0%、Al:2.1%、Co:1.3%、Fe:0.3%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金塊をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った後、真空熱処理装置の外側に配設された冷却水道管に冷却水を流通させて20℃/minの降温速度で500℃まで冷却し、それ以降は冷却水の流通をOFFにして室温まで自然冷却した。
得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、さらに横型ブラウン粉砕機(吉田製作所)で500μmの篩目を通過する粒子サイズ(−500μm)まで粉砕を行った。
(Example 10: seventh composition group)
Seventh composition: Mm (La 25%) Al 0.35 Mn 0.40 Co 0.10 Ni 4.52 Fe 0.025 (ABx = 5.395) (Mm is a mixture of rare earth metals La, Ce, Nd, Pr. La in Mm in the alloy) Mm: 31.5% (La is 25% of the whole alloy), Ni: 59.8%, Mn so that a hydrogen storage alloy having a composition of 79.3% is obtained. : 5.0%, Al: 2.1%, Co: 1.3%, Fe: 0.3%, and weighed and mixed so that the mixture was put in a crucible and fixed in a high-frequency melting furnace. After reducing the pressure to -4 to 10 -5 Torr, the mixture is heated and melted in an argon gas atmosphere to form a molten metal, cast into a water-cooled copper mold at a casting temperature of 1450 ° C (casting temperature is 1350 ° C), and cast. An alloy was obtained.
The obtained alloy lump is put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), heat treated at 1060 ° C. for 3 hours, and then cooled in a cooling water pipe arranged outside the vacuum heat treatment apparatus. Water was circulated and cooled to 500 ° C. at a temperature decrease rate of 20 ° C./min. Thereafter, the cooling water flow was turned off to naturally cool to room temperature.
The obtained alloy is roughly crushed using a jaw crusher (manufactured by Fuji Paudal: model1021-B), and further pulverized to a particle size (−500 μm) passing through a 500 μm sieve with a horizontal brown grinder (Yoshida Seisakusho). went.

Figure 0003834329
Figure 0003834329

(実施例11:第8組成群)
第8組成:Mm(La25%)Al0.35Mn0.40Co0.15Ni4.43Fe0.025(ABx=5.355)(MmはLa、Ce、Nd、Prの希土類金属の混合物である。合金におけるMm中のLa含有量78.9%)の組成の水素吸蔵合金が得られるように、各原料の質量%で、Mm:31.7%(Laは合金全体の25%)、Ni:58.9%、Mn:5.0%、Al:2.1%、Co:2.0%、Fe:0.3%となるように秤量および混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-4〜10-5Torrまで減圧にした後、アルゴンガス雰囲気中で加熱溶解して溶湯とし、鋳造温度1450℃(鋳湯温度は1350℃)にて水冷式銅鋳型に流し込んで鋳造を行い、合金を得た。
得られた合金塊をSUS容器に入れて真空熱処理装置(日新技研製)にセットし、1060℃で3時間熱処理を行った後、真空熱処理装置の外側に配設された冷却水道管に冷却水を流通させて20℃/minの降温速度で500℃まで冷却し、それ以降は冷却水の流通をOFFにして室温まで自然冷却した。
得られた合金をジョークラッシャー(Fuji Paudal社製:model1021-B)を用いて粗砕し、さらに横型ブラウン粉砕機(吉田製作所)で500μmの篩目を通過する粒子サイズ(−500μm)まで粉砕を行った。
(Example 11: eighth composition group)
Eighth composition: Mm (La 25%) Al 0.35 Mn 0.40 Co 0.15 Ni 4.43 Fe 0.025 (ABx = 5.355) (Mm is a mixture of rare earth metals of La, Ce, Nd, and Pr. La in Mm in the alloy) In order to obtain a hydrogen storage alloy having a composition with a content of 78.9%, Mm: 31.7% (La is 25% of the total alloy), Ni: 58.9%, Mn : 5.0%, Al: 2.1%, Co: 2.0%, Fe: 0.3% Weighed and mixed so that the mixture was put in a crucible and fixed in a high frequency melting furnace. After reducing the pressure to -4 to 10 -5 Torr, the mixture is heated and melted in an argon gas atmosphere to form a molten metal, cast into a water-cooled copper mold at a casting temperature of 1450 ° C (casting temperature is 1350 ° C), and cast. An alloy was obtained.
The obtained alloy lump is put in a SUS container and set in a vacuum heat treatment apparatus (manufactured by Nisshin Giken), heat treated at 1060 ° C. for 3 hours, and then cooled in a cooling water pipe arranged outside the vacuum heat treatment apparatus. Water was circulated and cooled to 500 ° C. at a temperature decrease rate of 20 ° C./min. Thereafter, the cooling water flow was turned off to naturally cool to room temperature.
The obtained alloy is roughly crushed using a jaw crusher (manufactured by Fuji Paudal: model1021-B), and further pulverized to a particle size (−500 μm) passing through a 500 μm sieve with a horizontal brown grinder (Yoshida Seisakusho). went.

Figure 0003834329
Figure 0003834329

[特性及び物性評価]
上記実施例及び比較例で得られた水素吸蔵合金粉末について、下記に示す方法によって諸物性値及び諸特性値を測定し、結果を上記表1〜8に示した。
[Characteristics and physical property evaluation]
About the hydrogen storage alloy powder obtained by the said Example and comparative example, various physical-property values and various characteristic values were measured by the method shown below, and the result was shown to the said Tables 1-8.

<振動分級機により測定される粒度分布>
上記実施例及び比較例で得られた水素吸蔵合金粉末について、OCTAGON DIGITAL自動分級機(CSC SCIENTIFIC COMPANY製)に目開き500μm、300μm、150μm、106μm、75μm、45μmの順に篩(JIS Z 8801)をセットし、それぞれ10分間分級を行ない、各粒度の含有割合(%)を求めた。
<Particle size distribution measured by vibration classifier>
About the hydrogen storage alloy powder obtained by the said Example and comparative example, the sieve (JIS Z 8801) is applied to OCTAGON DIGITAL automatic classifier (made by CSC SCIENTIFIC COMPANY) in order of openings of 500 μm, 300 μm, 150 μm, 106 μm, 75 μm, and 45 μm. Each was classified for 10 minutes, and the content ratio (%) of each particle size was determined.

<微粉化残存率>
上記実施例及び比較例で得られた水素吸蔵合金粉末を、篩い分けして粒度20μm〜53μmの範囲に調整し、測定サンプルを得た。なお、実施例及び比較例で得られた水素吸蔵合金がインゴット状或いはリボン状である場合には粉砕して調製した。
得られた測定サンプル2gをPCTホルダーに投入し、PCT特性測定装置((株)鈴木商館)に接続した。また、残りのサンプルを50サイクル前のサンプルとした。
<Micronized residual rate>
The hydrogen storage alloy powders obtained in the above Examples and Comparative Examples were sieved and adjusted to a particle size range of 20 μm to 53 μm to obtain measurement samples. In addition, when the hydrogen storage alloy obtained by the Example and the comparative example was ingot shape or ribbon shape, it pulverized and prepared.
2 g of the obtained measurement sample was put into a PCT holder and connected to a PCT characteristic measurement device (Suzuki Shokan Co., Ltd.). Further, the remaining sample was a sample before 50 cycles.

サイクルを回す前に次のような操作を実施した。
(1)合金付着水分処理:マントルヒーター(250℃)中、PCTホルダーを加熱した状態で1.75MPaの水素を導入し、10分間放置後、真空引きを行う一連の操作を2回実施した。
(2)合金活性化処理:マントルヒーターからPCTホルダーを取り出し、3MPaの水素を導入し、10分間保持をした。その後、マントルヒーター(250℃)中でPCTホルダーを加熱した状態で10分間真空引きを行った。この一連の操作を2回実施した。
The following operation was carried out before turning the cycle.
(1) Alloy adhesion moisture treatment: In a mantle heater (250 ° C.), 1.75 MPa of hydrogen was introduced while the PCT holder was heated, and after standing for 10 minutes, a series of operations for evacuation was performed twice.
(2) Alloy activation treatment: The PCT holder was taken out from the mantle heater, 3 MPa hydrogen was introduced, and held for 10 minutes. Thereafter, evacuation was performed for 10 minutes while the PCT holder was heated in a mantle heater (250 ° C.). This series of operations was performed twice.

マントルヒーターからPCTホルダーを取り出し、45℃の恒温槽にホルダーを移動させた後、真空引きを30分行い、その後、水素吸蔵・放出サイクルを下記条件設定の下で行った。
(導入圧力)1.1MPa
(吸蔵時間)300sec
(放出時間)420sec
(サイクル数)50サイクル
After removing the PCT holder from the mantle heater and moving the holder to a 45 ° C. thermostatic chamber, evacuation was performed for 30 minutes, and then a hydrogen storage / release cycle was performed under the following condition settings.
(Introduction pressure) 1.1 MPa
(Occlusion time) 300 sec
(Release time) 420 sec
(Number of cycles) 50 cycles

50サイクル終了後、30分の真空引きを行った後、PCTホルダーからサンプルを取り出し、50サイクル後のサンプルを得た。   After completion of 50 cycles, vacuuming was performed for 30 minutes, and then a sample was taken out from the PCT holder to obtain a sample after 50 cycles.

50サイクル前後の粉の平均粒径(D50)をマイクロトラック(日機装(株)、HRA9320−X100)を使用して下記条件設定の下で測定し、次式により微粉化残存率(%)を求めた。
(式)・・微粉化残存率(%)=(サイクル後D50/サイクル前D50)×100
(Transp):Reflec
(Sphere):No
(Ref Inx):1.51
(Flow):60ml/sec
(Power):25watts
(Time):10sec
The average particle size (D50) of the powder before and after 50 cycles was measured under the following condition settings using a Microtrac (Nikkiso Co., Ltd., HRA9320-X100), and the pulverization residual rate (%) was obtained by the following formula. It was.
(Formula) .. Micronized residual rate (%) = (D50 after cycle / D50 before cycle) × 100
(Transp): Reflect
(Sphere): No
(Ref Inx): 1.51
(Flow): 60 ml / sec
(Power): 25 watts
(Time): 10 sec

<XRD測定>
実施例及び比較例で得られた水素吸蔵合金粉末20gを、サイクロミル(株式会社吉田製作所製:型式1033−200)で1分間粉砕し、目開き20μmの篩で分級して−20μm(20μmφの篩目を通過する粒子)の水素吸蔵合金粉末を得た。こうして得られた水素吸蔵合金粉末100重量部に対し10重量部のSi粉を内部標準として混合し、X線回折用のサンプルとした。
<XRD measurement>
20 g of the hydrogen storage alloy powder obtained in the examples and comparative examples was pulverized with a cyclomill (manufactured by Yoshida Seisakusho Co., Ltd .: model 1033-200) for 1 minute, classified with a sieve having an opening of 20 μm, and −20 μm (with 20 μmφ). A hydrogen storage alloy powder of particles passing through a sieve mesh) was obtained. An X-ray diffraction sample was prepared by mixing 10 parts by weight of Si powder as an internal standard with respect to 100 parts by weight of the hydrogen storage alloy powder thus obtained.

X線回折用のサンプルをビオデンメッシュセメントでガラスホルダーに充填し、RINT−2200V((株)リガク製)を使用し、下記条件で測定すると共に、所定の精密化を行なって45°付近の(002)面の半値全幅(FWHM)を求めた。
この際の精密化は、上記RINT−2200V附属のアプリケーションソフト(ソフト名:格子定数の精密化)を用いて実施した。念のために解析時の詳細な設定条件を以下に示す。
A sample for X-ray diffraction is filled in a glass holder with bioden mesh cement, measured using RINT-2200V (manufactured by Rigaku Corporation) under the following conditions, and subjected to a predetermined refinement to a temperature around 45 °. The full width at half maximum (FWHM) of the (002) plane was determined.
The refinement at this time was performed using the application software (software name: refinement of lattice constant) attached to the RINT-2200V. As a precaution, detailed setting conditions at the time of analysis are shown below.

(平滑化)
・ 平滑化方法:加重平均
・ 平滑化点数:15
・ 高調波:128
(バックグラウンド除去)
・ バックグラウンド除去方法:両端に接する直線
・ 低角側平均点数:3
・ 高角側平均点数:3
(Kα2除去)
・ 強度比(Kα2/Kα1):0.500
(Smoothing)
・ Smoothing method: Weighted average ・ Smoothing points: 15
・ Harmonic: 128
(Background removal)
・ Background removal method: Straight line in contact with both ends ・ Average number of low-angle side points: 3
・ High angle side average score: 3
(Kα2 removal)
Strength ratio (Kα2 / Kα1): 0.500

(管球)CuKα線
(管電圧)40kV
(管電流)40mA
(発散スリット)1deg.
(散乱スリット)1deg
(受光スリット)0.3mm
(ゴニオメータ)RINT2000縦型ゴニオメータ
(アタッチメント)ASC−43(縦型)
(スリット)全自動広角ゴニオメータスリット
(モノクロメータ)全自動モノクロメータ
(カウンター)シンチレーションカウンター
(開始角度)40°
(終了角度)46°
(ステップ)0.002°
(スキャンスピード)0.25°/min
(Tube) CuKα line (Tube voltage) 40 kV
(Tube current) 40 mA
(Diverging slit) 1 deg.
(Scattering slit) 1 deg
(Light receiving slit) 0.3mm
(Goniometer) RINT2000 vertical goniometer (attachment) ASC-43 (vertical)
(Slit) Fully automatic wide angle goniometer slit (Monochromator) Fully automatic monochromator (Counter) Scintillation counter (Start angle) 40 °
(End angle) 46 °
(Step) 0.002 °
(Scanning speed) 0.25 ° / min

各実施例及び比較例の半値全幅に対する微粉化残存率(%)を図1に示した。図1に示した直線は、最小二乗法により近似した直線である。
なお、第1組成群に属する比較例1〜8は放電容量が305mAh/g未満であったのに対し、第2組成群に属する実施例1〜3及び比較例9〜10、第3組成群に属する実施例4〜6及び比較例11〜13、第4組成群に属する実施例7及び比較例14、第5組成群に属する実施例8、第6組成群に属する実施例9、第7組成群に属する実施例10、並びに第7組成群に属する実施例11は放電容量が305mAh/g以上であったため、図1においては、放電容量305mAh/g及び実施例・比較例を基準にプロットの形状を異ならしめ、それぞれについて近似直線を示した。
The pulverization residual ratio (%) with respect to the full width at half maximum of each example and comparative example is shown in FIG. The straight line shown in FIG. 1 is a straight line approximated by the method of least squares.
Incidentally, while Comparative Examples 1 to 8 belonging to the first composition group had a discharge capacity of less than 305 mAh / g, Examples 1 to 3 and Comparative Examples 9 to 10 belonging to the second composition group, the third composition group Examples 4 to 6 and Comparative Examples 11 to 13 belonging to Example 4, Example 7 and Comparative Example 14 belonging to the fourth composition group, Example 8 belonging to the fifth composition group, Example 9 belonging to the sixth composition group, Seventh Since Example 10 belonging to the composition group and Example 11 belonging to the seventh composition group had a discharge capacity of 305 mAh / g or more, in FIG. 1, the plot was made based on the discharge capacity of 305 mAh / g and Examples / Comparative Examples. Different shapes were used, and approximate lines were shown for each.

<電極セルの作製>
実施例及び比較例で得られた水素吸蔵合金粉末1gに、導電材としてのニッケル粉末3g、及び結合材としてのポリエチレン粉末0.12gを混合し、得られた混合粉0.3gを発泡Ni上に加圧成形し、直径15mm、厚さ1.8mmのペレット型とし、150℃×1時間真空焼成を行って焼結させてペレット電極を作製した。
このペレット電極を負極とし、これを計算負極容量の2倍以上の容量をもつ正極(焼結式水酸化ニッケル)でセパレータ(日本バイリーン製)を介して挟み込み、30wt%のKOH水溶液中に浸漬させて開放型試験セル(図2参照)を作製した。
<Production of electrode cell>
1 g of the hydrogen storage alloy powder obtained in Examples and Comparative Examples was mixed with 3 g of nickel powder as a conductive material and 0.12 g of polyethylene powder as a binder, and 0.3 g of the obtained mixed powder was added to the foamed Ni. To form a pellet mold having a diameter of 15 mm and a thickness of 1.8 mm, and vacuum sintering was performed at 150 ° C. for 1 hour to produce a pellet electrode.
This pellet electrode is used as a negative electrode, and this is sandwiched by a positive electrode (sintered nickel hydroxide) having a capacity more than twice the calculated negative electrode capacity via a separator (Nihon Vilene) and immersed in a 30 wt% KOH aqueous solution. An open type test cell (see FIG. 2) was prepared.

<15サイクル容量(15∞/mAh/g)>
上記の開放型試験セルを充放電装置(HOKUTO製充放電試験機)に接続し、充電:0.2C−130%、放電:0.2C−0.7Vカット、温度20℃で充放電を行い、15サイクル目の放電容量(mAh/g)を15サイクル容量とした。
<15 cycle capacity (15∞ / mAh / g)>
Connect the above open-type test cell to a charge / discharge device (HOKUTO charge / discharge tester), charge: 0.2C-130%, discharge: 0.2C-0.7V cut, charge / discharge at a temperature of 20 ° C. The discharge capacity (mAh / g) at the 15th cycle was set to the 15th cycle capacity.

<PCT(H/M)>
実施例及び比較例で得られた水素吸蔵合金粉末を5g秤量してPCTホルダーに投入し、PCT特性測定装置((株)鈴木商館)に接続した。
<PCT (H / M)>
5 g of the hydrogen storage alloy powders obtained in Examples and Comparative Examples were weighed and put into a PCT holder, and connected to a PCT characteristic measuring device (Suzuki Shokan Co., Ltd.).

PCT測定の前に次のような操作を実施した。
1)合金付着水分処理:マントルヒーター(250℃)中、PCTホルダーを加熱した状態で1.75MPaの水素を導入し、10分間放置後、真空引きを行う一連の操作を2回実施した。
2)合金活性化処理:マントルヒーターからPCTホルダーを取り出し、3MPaの水素を導入し、10分間保持をした。その後、マントルヒーター(250℃)中でPCTホルダーを加熱した状態で10分間真空引きを行った。この一連の操作を2回実施した。
The following operation was performed before the PCT measurement.
1) Alloy adhesion moisture treatment: In a mantle heater (250 ° C.), 1.75 MPa of hydrogen was introduced while the PCT holder was heated, and after standing for 10 minutes, a series of operations for evacuation was performed twice.
2) Alloy activation treatment: The PCT holder was taken out from the mantle heater, 3 MPa hydrogen was introduced, and held for 10 minutes. Thereafter, evacuation was performed for 10 minutes while the PCT holder was heated in a mantle heater (250 ° C.). This series of operations was performed twice.

マントルヒーターからPCTホルダーを取り出し、45℃の恒温槽にホルダーを移動させた後、真空引きを30分行い、その後、吸蔵終了圧力1.7MPaまでPCT測定を行った。得られた45℃における圧力−組成等温線図から、圧力が0.5MPaのときの水素吸蔵量をPCT容量H/M(H/M:金属原子M1個当たりの水素原子H量)として求めた。   The PCT holder was taken out from the mantle heater, moved to a 45 ° C. constant temperature bath, evacuated for 30 minutes, and then subjected to PCT measurement until the occlusion end pressure was 1.7 MPa. From the obtained pressure-composition isotherm diagram at 45 ° C., the hydrogen storage amount at a pressure of 0.5 MPa was determined as PCT capacity H / M (H / M: hydrogen atom H amount per metal atom M). .

(考察)
図1より、放電容量が305mAh/g未満の水素吸蔵合金においては、X線回折から得られる(002)面の半値全幅が小さくなるのに伴って直線的に寿命特性(微粉化残存率)が大きくなっているのに対し、放電容量が305mAh/g以上の水素吸蔵合金においては、(002)面の半値全幅が0.20°〜0.28°(差;0.08°)までの微粉化残存率の変化は5%程度である一方、0.20°未満では、同じく差が0.08°である0.12°〜0.20°までの微粉化残存率の変化は10%を超えており、0.20°付近を境に寿命特性(微粉化残存率)の傾向が明らかに変化しており、放電容量が305mAh/g以上の水素吸蔵合金においては、(002)面の半値全幅を0.20°未満、特に0.19°以下、中でも0.18°以下、その中でも0.15°以下に調整することにより、寿命特性(微粉化残存率)を顕著に高めることができることが判明した。
なお、当初の出願では、半値全幅が0.19°近傍を境に微粉化残存率の傾向が変化していると判断していたが、今回、実施例及び比較例を加えてプロット数を増やして最小2乗法で近似したところ、傾向の変化点は0.19°よりも0.20°近傍であることが確かめられた。
(Discussion)
From FIG. 1, in the hydrogen storage alloy having a discharge capacity of less than 305 mAh / g, the life characteristics (micronized residual ratio) linearly increase as the full width at half maximum of the (002) plane obtained from X-ray diffraction decreases. On the other hand, in the hydrogen storage alloy having a discharge capacity of 305 mAh / g or more, fine powder with a full width at half maximum of (002) plane of 0.20 ° to 0.28 ° (difference; 0.08 °). The change in the residual rate of pulverization is about 5%, but if it is less than 0.20 °, the change in the residual rate of pulverization from 0.12 ° to 0.20 °, which is also 0.08 °, is 10%. In the case of hydrogen storage alloys with a discharge capacity of 305 mAh / g or more, the half-value of the (002) plane is clearly changed. The total width is less than 0.20 °, especially 0.19 ° or less, especially 0.1 ° or less, by adjusting the following 0.15 ° among them, it was found that it is possible to increase significantly the lifetime characteristics (micronized residual rate).
In the original application, it was judged that the tendency of the pulverization residual rate was changing around the full width at half maximum of around 0.19 °, but this time, the number of plots was increased in addition to the examples and comparative examples. As a result of the approximation by the least square method, it was confirmed that the change point of the tendency was near 0.20 ° rather than 0.19 °.

(002)面の半値全幅(FWHM)と微粉化残存率との関係を放電容量毎に示したグラフである。It is the graph which showed the relationship between the full width at half maximum (FWHM) of a (002) surface and the pulverization residual rate for every discharge capacity. 試験で作製した開放型試験セルの構成を説明した側断面図である。It is a sectional side view explaining the structure of the open type test cell produced by the test.

Claims (9)

CaCu5型の結晶構造を有し、下記試験で求められる放電容量が305mAh/g以上であるAB5型水素吸蔵合金において、X線回折から得られる(002)面の半値全幅が0.20°未満であることを特徴とするAB5型水素吸蔵合金。
(放電容量測定試験)
1) 水素吸蔵合金1gに、導電材としてのニッケル粉末3g及び結合材としてのポリエチレン粉末0.12gを混合し、得られた混合粉0.3gを発泡Ni上に加圧成形して直径15mm、厚さ1.8mmのペレット型とし、150℃×1時間真空焼成を行ってペレット電極を作製し、このペレット電極を負極とし、これを正極(焼結式水酸化ニッケル)でセパレータを介して挟み込み、30wt%のKOH水溶液中に浸漬させて開放型試験セルを作製する。
2) 開放型試験セルを充放電装置に接続し、充電:0.2C−130%、放電:0.2C−0.7Vカット、温度20℃で充放電を行い、15サイクル目の放電容量(mAh/g)を測定する。
In an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure and having a discharge capacity of 305 mAh / g or more obtained in the following test, the full width at half maximum of the (002) plane obtained from X-ray diffraction is 0.20 °. AB 5 -type hydrogen absorbing alloy and less than.
(Discharge capacity measurement test)
1) 3 g of nickel powder as a conductive material and 0.12 g of polyethylene powder as a binder are mixed with 1 g of a hydrogen storage alloy, and 0.3 g of the obtained mixed powder is pressure-molded on foamed Ni to have a diameter of 15 mm, A pellet type with a thickness of 1.8 mm is vacuum-baked at 150 ° C. for 1 hour to produce a pellet electrode. This pellet electrode is used as a negative electrode, and this is sandwiched by a positive electrode (sintered nickel hydroxide) through a separator. Then, it is immersed in a 30 wt% KOH aqueous solution to produce an open test cell.
2) Connect the open test cell to the charge / discharge device, charge: 0.2C-130%, discharge: 0.2C-0.7V cut, charge / discharge at a temperature of 20 ° C, discharge capacity of 15th cycle ( mAh / g) is measured.
一般式MmNiaMnbAlcCod又はMmNiaMnbAlcCodFee(式中、Mmはミッシュメタル、4.7≦a+b+c+d又はa+b+c+d+e≦5.5)で表すことができるCaCu5型結晶構造を有する水素吸蔵合金であることを特徴とする請求項1に記載のAB5型水素吸蔵合金。 (Wherein, Mm is the mischmetal, 4.7 ≦ a + b + c + d or a + b + c + d + e ≦ 5.5) formula MmNi a Mn b Al c Co d or MmNi a Mn b Al c Co d Fe e CaCu 5 type which can be represented by AB 5 type hydrogen storage alloy according to claim 1, characterized in that a hydrogen absorbing alloy having a crystal structure. 請求項2に記載の一般式において、3.45≦a≦4.70、0.20≦b≦0.70、0.10≦c≦0.50、0<d≦0.80、0<e≦0.11であることを特徴とする請求項2に記載のAB5型水素吸蔵合金。 3. The general formula according to claim 2, wherein 3.45 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.70, 0.10 ≦ c ≦ 0.50, 0 <d ≦ 0.80, 0 < The AB 5 type hydrogen storage alloy according to claim 2, wherein e ≦ 0.11. 一般式MmNiaMnbAlcCod又はMmNiaMnbAlcCodFee(式中、Mmはミッシュメタル、0<d≦0.20、5.15≦a+b+c+d又はa+b+c+d+e≦5.40)で表すことができるCaCu5型結晶構造を有する水素吸蔵合金であることを特徴とする請求項1に記載のAB5型水素吸蔵合金。 Formula MmNi a Mn b Al c Co d or MmNi a Mn b Al c Co d Fe e ( wherein, Mm is the mischmetal, 0 <d ≦ 0.20,5.15 ≦ a + b + c + d or a + b + c + d + e ≦ 5.40) The AB 5 type hydrogen storage alloy according to claim 1, which is a hydrogen storage alloy having a CaCu 5 type crystal structure that can be expressed by: 請求項4に記載の一般式において、3.45≦a≦4.70、0.20≦b≦0.70、0.10≦c≦0.50、0<e≦0.11であることを特徴とする請求項2に記載のAB5型水素吸蔵合金。 5. The general formula according to claim 4, wherein 3.45 ≦ a ≦ 4.70, 0.20 ≦ b ≦ 0.70, 0.10 ≦ c ≦ 0.50, and 0 <e ≦ 0.11. AB 5 type hydrogen storage alloy of claim 2, wherein. 水素吸蔵合金原料を混合し、この混合物を鋳造し、鋳造して得られた合金を粉砕及び分級して合金粉末とし、該合金粉末を不活性ガス雰囲気中で熱処理して得られる水素吸蔵合金であって、
不活性ガス雰囲気中で熱処理する前の合金粉末の粒度が、振動分級機により測定される粒度分布において、150μm以下の含有量が30%以上であることを特徴とする請求項1乃至5の何れかに記載のAB5型水素吸蔵合金。
A hydrogen storage alloy obtained by mixing the hydrogen storage alloy raw material, casting the mixture, pulverizing and classifying the alloy obtained by casting to form an alloy powder, and heat-treating the alloy powder in an inert gas atmosphere. There,
6. The particle size distribution of the alloy powder before heat treatment in an inert gas atmosphere, wherein the content of 150 μm or less is 30% or more in the particle size distribution measured by a vibration classifier. AB 5 type hydrogen storage alloy crab according.
水素吸蔵合金原料を混合し、この混合物を鋳造し、鋳造して得られた合金を粉砕及び分級して合金粉末とし、該合金粉末を不活性ガス雰囲気中で熱処理して得られる水素吸蔵合金であって、
不活性ガス雰囲気中で熱処理する前の合金粉末の粒度が、振動分級機により測定される粒度分布において、150μm以下の含有量が40%以上であることを特徴とする請求項1乃至5の何れかに記載のAB5型水素吸蔵合金。
A hydrogen storage alloy obtained by mixing the hydrogen storage alloy raw material, casting the mixture, pulverizing and classifying the alloy obtained by casting to form an alloy powder, and heat-treating the alloy powder in an inert gas atmosphere. There,
6. The particle size distribution of the alloy powder before heat treatment in an inert gas atmosphere is such that the content of 150 μm or less is 40% or more in the particle size distribution measured by a vibration classifier. AB 5 type hydrogen storage alloy crab according.
水素吸蔵合金原料を混合し、この混合物を鋳造し、鋳造して得られた合金を粉砕及び分級して合金粉末とし、該合金粉末を不活性ガス雰囲気中で熱処理して得られる水素吸蔵合金であって、
不活性ガス雰囲気中で熱処理する前の合金粉末の粒度が、振動分級機により測定される粒度分布において、150μm以下の含有量が65%以上であることを特徴とする請求項1乃至5の何れかに記載のAB5型水素吸蔵合金。
A hydrogen storage alloy obtained by mixing the hydrogen storage alloy raw material, casting the mixture, pulverizing and classifying the alloy obtained by casting to form an alloy powder, and heat-treating the alloy powder in an inert gas atmosphere. There,
6. The particle size distribution of the alloy powder before heat treatment in an inert gas atmosphere, wherein the content of 150 μm or less is 65% or more in the particle size distribution measured by a vibration classifier. AB 5 type hydrogen storage alloy crab according.
請求項1乃至8の何れかに記載の水素吸蔵合金を負極活物質として用いてなる構成を備えた電池。



A battery comprising a structure using the hydrogen storage alloy according to any one of claims 1 to 8 as a negative electrode active material.



JP2005335732A 2004-11-19 2005-11-21 AB5 type hydrogen storage alloy with excellent life characteristics Active JP3834329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005335732A JP3834329B2 (en) 2004-11-19 2005-11-21 AB5 type hydrogen storage alloy with excellent life characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004335967 2004-11-19
JP2005335732A JP3834329B2 (en) 2004-11-19 2005-11-21 AB5 type hydrogen storage alloy with excellent life characteristics

Publications (2)

Publication Number Publication Date
JP2006173101A JP2006173101A (en) 2006-06-29
JP3834329B2 true JP3834329B2 (en) 2006-10-18

Family

ID=36673585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335732A Active JP3834329B2 (en) 2004-11-19 2005-11-21 AB5 type hydrogen storage alloy with excellent life characteristics

Country Status (1)

Country Link
JP (1) JP3834329B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250203B2 (en) * 2006-12-27 2013-07-31 プライムアースEvエナジー株式会社 Nickel metal hydride storage battery
WO2008123616A1 (en) * 2007-03-30 2008-10-16 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy
JP5367296B2 (en) * 2007-04-11 2013-12-11 三井金属鉱業株式会社 Hydrogen storage alloy
JP5774647B2 (en) * 2013-08-07 2015-09-09 プライムアースEvエナジー株式会社 Nickel metal hydride storage battery

Also Published As

Publication number Publication date
JP2006173101A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US9219277B2 (en) Low Co hydrogen storage alloy
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JP3965209B2 (en) Low Co hydrogen storage alloy
JP6608558B1 (en) Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment
JP3834329B2 (en) AB5 type hydrogen storage alloy with excellent life characteristics
JP3944237B2 (en) Low Co hydrogen storage alloy
JP3992289B2 (en) Low Co hydrogen storage alloy
JP7014937B1 (en) Hydrogen storage alloy
JP2019112714A (en) Hydrogen storing alloy mixed powder and hydrogen storing alloy powder
JP3697996B2 (en) Hydrogen storage alloy for battery negative electrode that enables high discharge capacity with a small number of charge / discharge cycles and improvement of low-temperature, high-rate discharge capacity with high-rate initial activation treatment
JP2009030158A (en) Hydrogen storage alloy
JP2005133193A (en) LOW Co HYDROGEN STORAGE ALLOY
JP5099870B2 (en) Hydrogen storage alloy and method for producing the same, hydrogen storage alloy electrode and secondary battery
JP7439316B1 (en) Hydrogen storage alloy powder for nickel metal hydride battery negative electrode
JP7451000B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP5342499B2 (en) Hydrogen storage alloy
JP2016126837A (en) Hydrogen-absorbable alloy, negative electrode, and battery
JP5137994B2 (en) Method for producing hydrogen storage alloy
JP2000160265A (en) Hydrogen storage alloy and its manufacture
JP2000129379A (en) Hydrogen storage alloy
JP2000345265A (en) Hydrogen storage alloy enabling high rate discharge of battery
JPH1025528A (en) Hydrogen storage alloy
JP2000345262A (en) Hydrogen storage alloy enabling high rate discharge of battery
JPH10152740A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060329

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3834329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140728

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250