JP7439316B1 - Hydrogen storage alloy powder for nickel metal hydride battery negative electrode - Google Patents

Hydrogen storage alloy powder for nickel metal hydride battery negative electrode Download PDF

Info

Publication number
JP7439316B1
JP7439316B1 JP2023048801A JP2023048801A JP7439316B1 JP 7439316 B1 JP7439316 B1 JP 7439316B1 JP 2023048801 A JP2023048801 A JP 2023048801A JP 2023048801 A JP2023048801 A JP 2023048801A JP 7439316 B1 JP7439316 B1 JP 7439316B1
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
negative electrode
nickel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023048801A
Other languages
Japanese (ja)
Inventor
亮 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2023048801A priority Critical patent/JP7439316B1/en
Application granted granted Critical
Publication of JP7439316B1 publication Critical patent/JP7439316B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】ニッケル水素電池の負極として用いられるCo含有CaCu5型水素吸蔵合金について、Co含有量低減による原料コスト抑制と、負極の寿命特性とを両立させることを課題とする。【解決手段】一般式MmNiaMnbAlcCod(式中、Mmはミッシュメタルであり、4.30≦a≦4.75、0.25≦b≦0.50、0.25≦c≦0.45、0≦d≦0.12、5.20≦a+b+c+d≦5.55)で表されるCaCu5型結晶構造を有する水素吸蔵合金であって、前記一般式で表される構成原子の一部が他の置換元素Xで置換されており、該水素吸蔵合金の結晶格子体積に占める各構成原子の体積を差し引いたものを結晶格子体積で除して求めた格子内空隙率が23.20%以上23.70%以下であることを特徴とする水素吸蔵合金である。【選択図】図2An object of the present invention is to achieve both reduction in raw material cost by reducing the Co content and improvement in the life characteristics of the negative electrode with respect to a Co-containing CaCu5 type hydrogen storage alloy used as a negative electrode of a nickel-metal hydride battery. [Solution] General formula MmNiaMnbAlcCod (where Mm is misch metal, 4.30≦a≦4.75, 0.25≦b≦0.50, 0.25≦c≦0.45, 0≦ A hydrogen storage alloy having a CaCu5 type crystal structure represented by d≦0.12, 5.20≦a+b+c+d≦5.55), in which some of the constituent atoms represented by the above general formula are substituted with other elements. is substituted with This is a hydrogen storage alloy characterized by the following characteristics. [Selection diagram] Figure 2

Description

本発明は、ニッケル水素電池の負極として用いられるCaCu型の結晶構造を有する水素吸蔵合金粉末に関する。更に本発明は、この水素吸蔵合金粉末を用いた負極およびこの負極を使用した電池に関する。 The present invention relates to a hydrogen storage alloy powder having a CaCu type 5 crystal structure used as a negative electrode of a nickel-metal hydride battery. Furthermore, the present invention relates to a negative electrode using this hydrogen storage alloy powder and a battery using this negative electrode.

負極に水素吸蔵合金を用いたニッケル水素電池は、1990年代前半に商品化され、その後、広く普及している。 Nickel-metal hydride batteries using a hydrogen storage alloy for the negative electrode were commercialized in the early 1990s, and have since become widespread.

ニッケル水素電池は、商品化当初は携帯電話やノートパソコンの電源として活躍していたが、その後は、徐々に小型で軽量なリチウムイオン電池へと置き換えられ、現在では、低廉さと安全性の高さ、及び、体積当りのエネルギー密度とのバランスの良さなどから、玩具、小型機器、更にはハイブリッド自動車などに用いられている。 Nickel metal hydride batteries were used as a power source for mobile phones and notebook computers when they were first commercialized, but they have since been gradually replaced by smaller and lighter lithium-ion batteries, and today they are cheaper and safer. Because of its good balance between energy density and energy density per volume, it is used in toys, small equipment, and even hybrid cars.

のようなニッケル水素電池に用いられる水素吸蔵合金は、水素と反応して金属水素化物となる合金である。この水素吸蔵合金は、室温付近で多量の水素を可逆的に吸蔵・放出することができる。 The hydrogen storage alloy used in such a nickel-metal hydride battery is an alloy that reacts with hydrogen to form a metal hydride. This hydrogen storage alloy can reversibly store and release a large amount of hydrogen at around room temperature.

水素吸蔵合金としては、LaNiに代表されるAB型合金、ZrV0.4Ni1.5に代表されるAB型合金のほか、AB型、AB型、AB型などの様々なタイプの合金が知られている。これらの合金は、水素との親和性が高く水素吸蔵量を高める役割を果たす元素グループ(希土類元素,Ca,Mg,Ti,Zr,V,Nb,Pt,Pd等)と、水素との親和性が比較的低く吸蔵量は少ないが、水素化反応が促進して反応温度を低くする役割を果たす元素グループ(Ni,Mn,Co,Al等)との組合せで構成されている。 Hydrogen storage alloys include AB 5 type alloy represented by LaNi 5 , AB 2 type alloy represented by ZrV 0.4 Ni 1.5 , and various other types such as AB type, A 2 B type, and AB 3 type. types of alloys are known. These alloys contain elemental groups (rare earth elements, Ca, Mg, Ti, Zr, V, Nb, Pt, Pd, etc.) that have a high affinity with hydrogen and play a role in increasing hydrogen storage capacity, and It is composed of a combination with an element group (Ni, Mn, Co, Al, etc.) that plays a role of promoting the hydrogenation reaction and lowering the reaction temperature, although the storage amount is relatively low and the amount of storage is small.

これらの中で、CaCu型結晶構造を有するAB型水素吸蔵合金、例えば、Aサイトに希土類系の混合物であるミッシュメタル(以下「Mm」という。)を用い、BサイトにNi,Mn,Co,Al等の元素を用いた合金は、他の組成の合金に比べて、比較的安価な材料で負極を形成することができる。 Among these, an AB 5 -type hydrogen storage alloy having a CaCu 5 -type crystal structure, for example, misch metal (hereinafter referred to as "Mm"), which is a rare earth mixture, is used at the A site, and Ni, Mn, An alloy using elements such as Co and Al can form a negative electrode with a relatively inexpensive material compared to alloys with other compositions.

AB型水素吸蔵合金では、Aサイト原子量に対するBサイト原子量の割合(AB比)、及びNiの一部をCo、Mn、Al等の置換量を調整することにより、それを用いた負極の充放電容量、入出力特性、サイクル寿命などの様々な特性を調整することができる。そのような特徴をもつAB型水素吸蔵合金は、様々な用途に応じたニッケル水素蓄電池を造り分けすることを可能としている。 AB 5 type hydrogen storage alloy can be used to fill a negative electrode by adjusting the ratio of the atomic weight of the B site to the atomic weight of the A site (AB ratio) and the amount of replacing part of Ni with Co, Mn, Al, etc. Various characteristics such as discharge capacity, input/output characteristics, and cycle life can be adjusted. The AB5 type hydrogen storage alloy, which has such characteristics, makes it possible to manufacture nickel-metal hydride storage batteries for various uses.

ハイブリッド自動車を普及拡大させるためには、ニッケル水素電池の製造コストを低く抑え、負極の寿命特性および入出力特性をさらに向上させる必要がある。そのひとつに、高価であるCoの使用量を可能な限り低減したAB型水素吸蔵合金にて、寿命特性の維持向上を目的として、合金中の「偏析相」に着目した検討がある。 In order to popularize hybrid vehicles, it is necessary to keep the manufacturing cost of nickel-metal hydride batteries low and to further improve the life characteristics and input/output characteristics of the negative electrode. One such study is to focus on the "segregation phase" in the AB5 type hydrogen storage alloy, which uses as little as possible the amount of expensive Co, with the aim of maintaining and improving its life characteristics.

例えば、特許文献1において、水素吸蔵合金電極の活物質として、CaCu型の結晶構造を有し、MmMgNiCoMnAlからなる水素吸蔵合金粉末であって、少なくとも水素吸蔵合金粉末の内部にMgNiCoMnAl合金相からなる微細な偏析相が分散して存在している水素吸蔵合金粉末を適用する。また、好ましくは、前記水素吸蔵合金粉末の表面に、NiとCoの合金からなる表面層を備えた水素吸蔵合金粉末を適用することが提案されている。このようにすることで、水素吸蔵合金粉末の微細化が抑制されるとしている。 For example, in Patent Document 1, a hydrogen storage alloy powder having a CaCu type 5 crystal structure and consisting of MmMgNiCoMnAl is used as an active material of a hydrogen storage alloy electrode, the hydrogen storage alloy powder having an MgNiCoMnAl alloy phase at least inside the hydrogen storage alloy powder. A hydrogen-absorbing alloy powder containing dispersed fine segregated phases is applied. Preferably, it has been proposed to apply a hydrogen storage alloy powder having a surface layer made of an alloy of Ni and Co on the surface of the hydrogen storage alloy powder. It is said that by doing this, the miniaturization of the hydrogen storage alloy powder is suppressed.

また、特許文献2において、La量が60~90wt%のミッシュメタル、Mg、Ni、Co、Mn及びAlを含み、ミッシュメタルとMgの合計量を基準として、Mg量が2~6原子%である水素吸蔵合金であって、母相中に少なくとも一相の偏析相が存在し、該偏析相中のMg濃度が母相中のMg濃度より高いことを特徴とする希土類系水素吸蔵合金が提案されている。このようにすることで、電池活性化時に合金中の偏析相が選択的に腐食されて、偏析相付近から表面積が増大し、早期に合金が活性化されるとしている。 In addition, in Patent Document 2, it contains misch metal with an amount of La of 60 to 90 wt%, Mg, Ni, Co, Mn, and Al, and has an amount of Mg of 2 to 6 at% based on the total amount of misch metal and Mg. A rare earth hydrogen storage alloy is proposed, which is characterized in that at least one segregated phase exists in the matrix, and the Mg concentration in the segregation phase is higher than the Mg concentration in the matrix. has been done. By doing this, the segregated phase in the alloy is selectively corroded during battery activation, the surface area increases from the vicinity of the segregated phase, and the alloy is activated early.

また、特許文献3において、負極活物質として、Mm(Mmは30重量%以上のLaを含む2種類以上の希土類元素の混合物を表す)と、少なくともNi、Co、Mn及びAlを構成元素とする水素吸蔵合金であって、上記水素吸蔵合金中にNiを主体とする偏析相を有し、かつ合金断面の任意の15μm平方の領域に露出する偏析相の数(ただし、偏析相に最小直径で外接する円の直径が0.05μm以上の偏析相の数)が1~40である水素吸蔵合金を用いることが提案されている。このようにすることによって、高容量で、低温での高率放電が可能であり、かつ高温貯蔵特性が優れるとしている。 Further, in Patent Document 3, the negative electrode active material contains Mm (Mm represents a mixture of two or more rare earth elements containing 30% by weight or more of La) and at least Ni, Co, Mn, and Al as constituent elements. The hydrogen storage alloy is a hydrogen storage alloy, which has a segregated phase mainly composed of Ni, and the number of segregated phases exposed in any 15 μm square area of the cross section of the alloy (however, the number of segregated phases in the minimum diameter of the segregated phase is It has been proposed to use a hydrogen storage alloy in which the number of segregated phases whose circumscribed circles have a diameter of 0.05 μm or more is 1 to 40. By doing so, it is possible to achieve high capacity, high-rate discharge at low temperatures, and excellent high-temperature storage characteristics.

そして、特許文献4において、CaCu型結晶構造の母相を有する水素吸蔵合金であって、エネルギー分散型X線分析装置(EDX)で点分析した時の母相のFeピーク強度に対する、偏析相のFeピーク強度の比率であるFeピーク強度比[{(偏析のFeピーク強度)/(母相のFeピーク強度)}×100(%)]と、母相のMnピーク強度に対する、偏析相のMnピーク強度の比率であるMnピーク強度比[{(偏析相のMnピーク強度)/(母相のMnピーク強度)}×100(%)]との比率であるFe/Mnピーク比[Fe/Mn比]が、0.12<[Fe/Mn比]<0.37であることを特徴とする水素吸蔵合金が提案されている。これは、Feを含有することで微粉化特性(寿命特性)が良好になることが知られていることから、Niの一部をFeで置換することで、優れたサイクル特性を得るとしている。詳しくは、該偏析相が、母相の水素吸蔵・放出に伴う格子の膨張・収縮による歪みを緩和する役割(クッションの役割)を果たしているとしている。 In Patent Document 4, in a hydrogen storage alloy having a matrix having a CaCu type 5 crystal structure, the segregated phase is The Fe peak intensity ratio [{(Fe peak intensity of segregation)/(Fe peak intensity of parent phase)}×100(%)] is the ratio of the Fe peak intensity of the segregated phase to the Mn peak intensity of the parent phase. The Fe/Mn peak ratio [Fe/ A hydrogen storage alloy has been proposed in which the Mn ratio] is 0.12<[Fe/Mn ratio]<0.37. This is because it is known that containing Fe improves the pulverization characteristics (life characteristics), so by replacing a portion of Ni with Fe, excellent cycle characteristics can be obtained. Specifically, it is said that the segregated phase plays a role (a cushion role) in mitigating strain caused by expansion and contraction of the lattice accompanying hydrogen absorption and release in the parent phase.

さらに、特許文献5において、一般式MmNix My(Mmはミッシュメタルまたは希土類元素の混合物、MはAl、Mn、Co、Cu、Fe、Cr、TiおよびVよりなる群から選択される少なくとも1種の元素であり、5.0≦x+y≦5.5)で表され、その合金組織が、CaCu型の結晶構造を有し水素を可逆的に吸蔵放出する相と、Mm以外の元素を主成分とし水素を吸蔵しない1種または複数の相からなり、後者の相が前者の相中に島状に分散している水素吸蔵合金が提案されている。そのようにすることで、多量のCoを含まなくとも長寿命と優れた高率放電特性を兼ね備えるとしている。すなわち、これらにおいてNiの一部をFeやCrが置換した組成を有するものが挙げられており、その結果、水素を吸蔵しない相が、水素を吸蔵する相自体を応力に強い構造にするとしている。 Furthermore, in Patent Document 5, the general formula MmNix My (Mm is a misch metal or a mixture of rare earth elements, M is at least one member selected from the group consisting of Al, Mn, Co, Cu, Fe, Cr, Ti, and V) is disclosed. 5.0≦x+y≦5.5), and its alloy structure consists of a phase that has a CaCu type 5 crystal structure and reversibly absorbs and releases hydrogen, and an element other than Mm as a main component. Hydrogen storage alloys have been proposed that are composed of one or more phases that do not store hydrogen, and in which the latter phase is dispersed in the form of islands in the former phase. By doing so, it is possible to achieve both long life and excellent high rate discharge characteristics without containing a large amount of Co. In other words, some of these have compositions in which a portion of Ni is replaced by Fe or Cr, and as a result, the phase that does not absorb hydrogen makes the phase that absorbs hydrogen itself a structure that is resistant to stress. .

さらに、特許文献6において、LaとCeからなるMm(ミッシュメタル)がAサイトを占め、Ni、Co、Mn及びAl、又は、Ni、Mn及びAlがBサイトを占めるAB型の水素吸蔵合金で、Co含有量をCo/Mmモル比で0.11以下に低減し、Al/Mnモル比を0.35~1.10、該結晶のc軸長/a軸長が0.8092以上にすると、Co量を低下させつつ、ニッケル水素電池の負極活物質として使用した場合に電池の寿命特性の低下を防ぐことができるとしている。上記の記述通りだと、AサイトはLaとCeのみが占めることになっているが、ABxのモル比xが5.0以上の組成においてはCaCu型の結晶構造を形成させるのは極めて困難である。なぜなら、AサイトをLaとCeのみにしてABxモル比が5+αである場合には、結晶構造を[A5/(5+α) 1-5/(5+α)]B5としてAサイトに1-5/(5+α)だけAサイト空孔を形成させる必要があるが、実際には、一部のB原子がAサイトの一部を占めることになるためである。 Further, in Patent Document 6, AB5 type hydrogen storage alloy in which Mm (misch metal) consisting of La and Ce occupies the A site and Ni, Co, Mn, and Al, or Ni, Mn, and Al occupies the B site. Then, the Co content was reduced to a Co/Mm molar ratio of 0.11 or less, the Al/Mn molar ratio was 0.35 to 1.10, and the c-axis length/a-axis length of the crystal was 0.8092 or more. Accordingly, it is possible to reduce the amount of Co and prevent deterioration in battery life characteristics when used as a negative electrode active material in a nickel-metal hydride battery. According to the above description, only La and Ce occupy the A site, but it is extremely difficult to form a CaCu type 5 crystal structure in a composition where the molar ratio x of ABx is 5.0 or more. It is. This is because if the A site is only La and Ce and the ABx molar ratio is 5+α, the crystal structure is set to [A 5/(5+α) V A 1-5/(5+α) ]B 5 Although it is necessary to form A-site vacancies by 1-5/(5+α), this is because some B atoms actually occupy a part of the A-site.

特開2005-93297号公報Japanese Patent Application Publication No. 2005-93297 特開2004-269929号公報Japanese Patent Application Publication No. 2004-269929 特開2000-353542号公報Japanese Patent Application Publication No. 2000-353542 特開2009-30158号公報Japanese Patent Application Publication No. 2009-30158 特開平7-286225号公報Japanese Patent Application Publication No. 7-286225 WO2021-220824WO2021-220824

上記の通り、寿命特性の維持向上の検討がなされているが、近年Coの取引価格が高騰するなか、Coを含有するAB型水素吸蔵合金の原料コストを維持あるいは低減するためには、Coの含有率を更に低減する、又はゼロにすることが望まれている。 As mentioned above, studies are being conducted to maintain and improve life characteristics, but as the trading price of Co has soared in recent years, in order to maintain or reduce the raw material cost of AB 5 type hydrogen storage alloy containing Co, It is desired to further reduce the content of or eliminate it.

しかしながら、AB型水素吸蔵合金のCo含有率を低減すると、水素の吸蔵放出が繰り返されることによる合金の微粉化が促進し、負極の寿命特性が低下する傾向がある。先の特許文献1~6の例では偏析相に着目し、一部の構成原子を他の元素で置換するなどして寿命特性の維持を図っているものの、実際には、ある程度のCoが含有されており、Co含有量の低減と、負極の寿命特性を両立させるためには、更なる検討が必要である。 However, when the Co content of the AB 5 type hydrogen storage alloy is reduced, pulverization of the alloy due to repeated storage and release of hydrogen is promoted, which tends to reduce the life characteristics of the negative electrode. In the examples of Patent Documents 1 to 6 mentioned above, attention is paid to the segregated phase and attempts are made to maintain the life characteristics by replacing some constituent atoms with other elements, but in reality, a certain amount of Co is contained. Therefore, further study is required in order to achieve both reduction in Co content and improvement in the life characteristics of the negative electrode.

本発明は、上記問題点に鑑みてなされたものであり、CaCu型結晶構造を有する水素吸蔵合金について、Co含有量の低減により原料コストを抑制したうえで、水素の繰返し吸蔵放出による合金の微粉化を抑制することができる水素吸蔵合金および水素吸蔵合金を用いた負極、電池を提供することを課題としている。 The present invention has been made in view of the above-mentioned problems, and is aimed at reducing the raw material cost by reducing the Co content in a hydrogen storage alloy having a CaCu type 5 crystal structure, and by repeatedly absorbing and releasing hydrogen. It is an object of the present invention to provide a hydrogen storage alloy that can suppress pulverization, and a negative electrode and a battery using the hydrogen storage alloy.

本発明者は、上記課題を解決すべく、鋭意研究し、CaCu型結晶構造を有する水素吸蔵合金において、Co含有量の低減により原料コストを抑制したうえで、Coによる微粉化抑制効果を代替する方法を検討した結果、水素吸蔵合金を構成する原子の充填によって形成される結晶格子内の格子内空隙率を十分確保して水素原子が入っても体積変化が小さくなるようにすれば、水素の繰返し吸蔵放出による合金の微粉化を抑制することができるという考えに至った。その上で、CaCu型結晶構造を有する水素吸蔵合金の構成原子の一部をある元素Xで置換して、格子内空隙率を所定の範囲で確保するようにすることで、Co含有量の低減と微粉化抑制を両立することができることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventor conducted extensive research and developed a hydrogen storage alloy having a CaCu type 5 crystal structure, which suppresses the raw material cost by reducing the Co content and replaces the pulverization suppressing effect of Co. As a result of considering methods to do this, we found that if we ensure sufficient intralattice porosity in the crystal lattice formed by filling the atoms that make up the hydrogen storage alloy so that the volume change is small even when hydrogen atoms enter, it is possible to We came up with the idea that it is possible to suppress the pulverization of the alloy due to repeated occlusion and release of . On top of that, some of the constituent atoms of the hydrogen storage alloy having a CaCu type 5 crystal structure are replaced with a certain element The present invention was completed by discovering that it is possible to achieve both reduction and suppression of pulverization.

本発明の要旨は、次の通りである。 The gist of the present invention is as follows.

(1)一般式MmNiMnAlCo(式中、Mmはミッシュメタルであり、4.30≦a≦4.75、0.25≦b≦0.50、0.25≦c≦0.45、0≦d≦0.12、5.20≦a+b+c+d≦5.55)で表されるCaCu型結晶構造を有してニッケル水素電池の負極に用いられる水素吸蔵合金粉末であって、前記一般式で表される構成原子の一部が他の置換元素Xで置換されており、下記の式で表される格子内空隙率が23.20%以上23.70%以下であることを特徴とするニッケル水素電池負極用水素吸蔵合金粉末
格子内空隙率=(結晶格子体積-構成原子の総体積)/結晶格子体積×100
(2)前記一般式で表される構成原子のうち、Ni、Mn及びAlからなる群から選ばれた1つ以上の対象元素Y2が前記置換元素Xで置換されて、組成式MmNia-a1Mnb-b1Alc-c1Co(式中、e=a1+b1+c1、5.20≦a+b+c+d+e≦5.55)を満たすことを特徴とする(1)に記載のニッケル水素電池負極用水素吸蔵合金粉末
(3)前記置換元素Xは、置換される対象の原子よりも金属結合半径が大きいものであることを特徴とする(2)に記載のニッケル水素電池負極用水素吸蔵合金粉末
(4)MmがCeよりも原子半径の小さい希土類金属を含むことを特徴とする(1)又は(2)に記載のニッケル水素電池負極用水素吸蔵合金粉末
(5)該水素吸蔵合金の微粉化難度が、0.55以上であることを特徴とする(1)又は(2)に記載のニッケル水素電池負極用水素吸蔵合金粉末
(6)(1)又は(2)に記載の水素吸蔵合金粉末ニッケル水素電池の負極活物質としたことを特徴とするニッケル水素電池負極。
(7)(6)に記載のニッケル水素電池負極を用いたことを特徴とするニッケル水素電池。
(1) General formula MmNi a Mn b Al c Co d (wherein, Mm is misch metal, 4.30≦a≦4.75, 0.25≦b≦0.50, 0.25≦c≦ 0.45, 0≦d≦0.12, 5.20≦a+b+c+d≦5.55) A hydrogen storage alloy powder having a CaCu type 5 crystal structure and used for a negative electrode of a nickel-hydrogen battery. , some of the constituent atoms represented by the above general formula are substituted with other substituent elements X, and the intralattice porosity represented by the following formula is 23.20% or more and 23.70% or less. Hydrogen storage alloy powder for nickel-metal hydride battery negative electrodes .
Intralattice porosity = (crystal lattice volume - total volume of constituent atoms) / crystal lattice volume x 100
(2) Among the constituent atoms represented by the general formula, one or more target elements Y2 selected from the group consisting of Ni, Mn, and Al are substituted with the substituting element X, resulting in the composition formula MmNi a-a1 Mn b-b1 Al c - c1 Alloy powder .
(3) The hydrogen storage alloy powder for a negative electrode of a nickel-hydrogen battery according to (2), wherein the substitution element X has a larger metal bond radius than the atom to be replaced.
(4) The hydrogen storage alloy powder for a nickel-metal hydride battery negative electrode according to (1) or (2), wherein Mm contains a rare earth metal whose atomic radius is smaller than that of Ce.
(5) The hydrogen storage alloy powder for a nickel -hydrogen battery negative electrode according to (1) or (2), wherein the hydrogen storage alloy has a degree of difficulty in pulverization of 0.55 or more.
(6) A negative electrode for a nickel-metal hydride battery, characterized in that the hydrogen-absorbing alloy powder according to (1) or (2) is used as a negative electrode active material for a nickel-metal hydride battery .
(7) A nickel-metal hydride battery characterized by using the nickel- metal hydride battery negative electrode according to (6).

本発明によれば、Co含有量の低減により原料コストを抑制したうえで、水素の繰返し吸蔵放出による合金の微粉化を抑制した水素吸蔵合金を提供することができ、負極や電池に有効に用いることができる。本発明の水素吸蔵合金を電池の負極活物質に用いたときの寿命特性を維持又は向上させて、Co使用量を低減できる。 According to the present invention, it is possible to provide a hydrogen storage alloy that suppresses raw material costs by reducing Co content and suppresses pulverization of the alloy due to repeated absorption and release of hydrogen, and can be effectively used in negative electrodes and batteries. be able to. When the hydrogen storage alloy of the present invention is used as a negative electrode active material of a battery, the life characteristics can be maintained or improved, and the amount of Co used can be reduced.

図1はAB型合金の結晶構造を示す模式図であり、(a)はAとBの化学量論比5.0の場合を示し、(b)はAサイト原子の一部が欠落した化学量論比5.0超の場合を示す。Figure 1 is a schematic diagram showing the crystal structure of AB type 5 alloy. (a) shows the case where the stoichiometric ratio of A and B is 5.0, and (b) shows the case where some of the A site atoms are missing. The case where the stoichiometric ratio exceeds 5.0 is shown. 図2は、図1に示した結晶構造のAサイトに2つのB原子がダンベル型で置換した様子を示す模式図である。FIG. 2 is a schematic diagram showing how two B atoms are substituted in a dumbbell shape at the A site of the crystal structure shown in FIG.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明者らは、CaCu型結晶構造を有する水素吸蔵合金において、水素吸蔵・放出に伴う微粉化とその抑制に関し、Coによる微粉化抑制効果を考えてその代替方法について詳細に検討した。
先ず、Coによる微粉化抑制の効果として、CaCu型結晶構造の水素吸蔵合金にCoを添加すると(Coで置換すると)、Coの金属結合半径が置換するLaNi結晶格子のNiの原子半径とほぼ同じであるので(藤原鎭男監訳「サンダーソン 無機化学 上」廣川書店 1969年発行 p.87;非特許文献1参照)、Co原子でNi原子を置換しても結晶格子サイズ(結晶格子体積)は殆ど変化しない。ところが、Coを添加した水素吸蔵合金の結晶では、水素化(水素吸蔵)時の体積変化が小さくなって微粉化し難くなる。
The present inventors conducted a detailed study on an alternative method for pulverization due to hydrogen storage and release and its suppression in a hydrogen storage alloy having a CaCu type 5 crystal structure, considering the pulverization suppressing effect of Co.
First, as an effect of suppressing pulverization by Co, when Co is added to a hydrogen storage alloy with a CaCu 5 -type crystal structure (replaced with Co), the metallic bond radius of Co becomes the atomic radius of Ni in the LaNi 5- crystal lattice to be replaced. Since they are almost the same (translation supervised by Shigeo Fujiwara, “Sanderson Inorganic Chemistry Vol. 1”, Hirokawa Shoten, 1969, p. 87; see Non-Patent Document 1), even if Co atoms are substituted for Ni atoms, the crystal lattice size (crystal lattice volume) remains almost unchanged. However, in the case of a crystal of a hydrogen storage alloy to which Co is added, the change in volume during hydrogenation (hydrogen storage) becomes small, making it difficult to be pulverized.

ここで、水素化(水素吸蔵)による水素吸蔵合金の割れ発生は、合金結晶内に水素原子Hが侵入型で入って結晶が膨張するので、水素化する過程では、水素化で膨張している部分とまだ水素化していない部分との界面でまだ入っていない結晶部との間に応力が発生すると考えられる。水素化の逆反応(水素放出)でも同様に応力が発生することによるものである。つまり、上記で発生する応力が合金結晶の強度を超えると割れるため、水素化による合金結晶の変形量(膨張)が小さければ、発生する応力も小さくなるので合金結晶が割れ難くなる、即ち、微粉化し難くなる。 Here, the occurrence of cracks in hydrogen storage alloys due to hydrogenation (hydrogen storage) occurs when hydrogen atoms H enter the alloy crystal in an interstitial manner and the crystal expands. It is thought that stress is generated between the crystal part and the unhydrogenated part at the interface between the part and the part which has not yet been hydrogenated. This is because stress is similarly generated in the reverse reaction of hydrogenation (hydrogen release). In other words, if the stress generated above exceeds the strength of the alloy crystal, it will crack, so if the amount of deformation (expansion) of the alloy crystal due to hydrogenation is small, the stress generated will also be small, making the alloy crystal difficult to crack. becomes difficult to change.

次に、Ni原子とほぼ同じ金属結合半径を有するCo原子を添加した場合に、水素吸蔵合金が水素化してもその体積変化が小さくなることを考える。前述のように、水素原子Hが合金結晶を構成する原子間に入る侵入型で水素吸蔵合金が水素化するので、通常、合金結晶は大きく膨張する。ところが、Co原子の電子雲が水素原子の電子雲と重なった共有結合を形成し易いために、合金結晶の膨張が抑えられているという考えに至った。CoとNiのd電子配置を比較すると、それぞれ3d4sと3d4sであるため、Co原子の方が水素原子とd電子を介して共有結合次数が多くなって電子雲の重なりが大きい。即ち、水素原子Hが合金結晶格子内に入っても小さな膨張になる。 Next, consider that when a Co atom having substantially the same metal bond radius as a Ni atom is added, the change in volume of the hydrogen storage alloy becomes smaller even when the hydrogen storage alloy is hydrogenated. As mentioned above, since hydrogen storage alloys are hydrogenated in an interstitial manner in which hydrogen atoms H enter between the atoms constituting the alloy crystals, the alloy crystals usually expand significantly. However, they came up with the idea that the expansion of the alloy crystal is suppressed because the electron cloud of Co atoms easily forms covalent bonds that overlap with the electron cloud of hydrogen atoms. Comparing the d-electron configurations of Co and Ni, they are 3d 7 4s 2 and 3d 8 4s 2 , respectively, so the Co atom has a higher covalent bond order through the hydrogen atom and the d-electron, and the electron clouds overlap. big. That is, even if a hydrogen atom H enters the alloy crystal lattice, a small expansion occurs.

以上を踏まえて、Coの代替を考えると、共有結合できるd電子配置を有する元素ということになる。しかしながら、鉄FeやマンガンMnは共有結合次数が更に多くなるd電子配置を有するが、金属結合半径が大きく(先の非特許文献1参照)、水素Hとの共有結合で合金結晶の膨張を小さくする効果は少ない。 Based on the above, when considering an alternative to Co, it becomes an element that has a d electron configuration that allows for covalent bonding. However, although iron (Fe) and manganese (Mn) have a d-electron configuration that increases the covalent bond order, they have a large metallic bond radius (see Non-Patent Document 1), and covalent bonds with hydrogen H reduce the expansion of alloy crystals. It has little effect.

ところで、その他にも、合金結晶の格子を予め拡大しておくという発想ができる。合金結晶の格子を予め大きくしておけば、水素化しても膨張が小さくなるという単純な発想である。合金結晶格子を拡大するには、ニッケルNiよりも金属結合半径の大きな原子でNiサイト(Bサイト)を置換する(例えば、J.-M. Jouberta, et.al., Journal of Alloys and Compounds 330-332 (2002) 208-214;非特許文献2参照)、AサイトとBサイトのB/Aモル比(ABxのx値)を5.0以上の非化学量論にする(例えば、M. Latroche, et.al., Journal of Solid State Chemistry 146, 343-321(1999);非特許文献3参照)というような方法がある。 By the way, another idea is to expand the lattice of the alloy crystal in advance. The simple idea is that if the lattice of the alloy crystal is made larger in advance, the expansion will be smaller even when hydrogenated. To expand the alloy crystal lattice, replace the Ni site (B site) with an atom with a larger metallic bond radius than nickel (e.g., J.-M. Jouberta, et.al., Journal of Alloys and Compounds 330 -332 (2002) 208-214; see Non-Patent Document 2), and make the B/A molar ratio (x value of ABx) of A site and B site non-stoichiometric to 5.0 or more (for example, M. There is a method such as Latroche, et.al., Journal of Solid State Chemistry 146, 343-321 (1999); see Non-Patent Document 3).

後者のABx組成のxを5.0以上の非化学量論にすると、上述の特許文献6とは異なって、結晶構造が[AB2/7×α]B5+(5/7)αとしてAサイトの一部をB原子が占有する。B原子がAサイトを占有する際には、Aサイトに2つのB原子がダンベル型で置換する。図1は、AB型合金の結晶構造を模式的に示したものであり、(a)はAとBの化学量論比が5.0の場合、(b)はAサイト原子の一部が欠落した化学量論比5.0超の場合である。図2は、Aサイトに2つのB原子がダンベル型で置換した状態を表している。このように合金結晶の格子拡張、特にc軸方向に拡張すると水素吸蔵放出による合金結晶の割れ(微粉化)が抑制できると本発明者らは各種合金設計を試みてきた。 When x of the latter ABx composition is made non-stoichiometric to 5.0 or more, the crystal structure becomes [AB 2/7×α ]B 5+(5/7)α , unlike the above-mentioned Patent Document 6. B atoms occupy part of the A site. When a B atom occupies the A site, two B atoms are substituted at the A site in a dumbbell shape. Figure 1 schematically shows the crystal structure of AB type 5 alloy, where (a) shows the case where the stoichiometric ratio of A and B is 5.0, and (b) shows the part of the A site atoms. This is the case when the stoichiometric ratio exceeds 5.0. FIG. 2 shows a state in which two B atoms are substituted at the A site in a dumbbell shape. The present inventors have attempted various alloy designs in the belief that by expanding the lattice of the alloy crystal, particularly in the c-axis direction, cracking (pulverization) of the alloy crystal due to hydrogen absorption and release can be suppressed.

本発明者らが更に詳細に検討を重ねたところ、結晶格子を拡張した合金が必ずしも微粉化し難くなるわけでなく、特に、Co含有量が少ない又はゼロの場合は結晶格子を拡張しただけでは微粉化抑制が困難になることを突き止めた。 Further detailed studies by the present inventors revealed that alloys with expanded crystal lattices do not necessarily become difficult to pulverize, and in particular, when the Co content is low or zero, simply expanding the crystal lattice does not make it difficult to pulverize. It was found that it becomes difficult to suppress the

そこで、本発明者らは、上記原因の究明を行った結果、水素吸蔵合金の結晶格子を拡張しても水素原子Hの入る空間が確保できていなければ、大きな結晶格子の合金でも微粉化は抑制できないということも見出し、本発明を導いた。即ち、合金の結晶格子内により大きな空間を形成して、水素原子Hが侵入しても変化の少ないようにすることが重要である。具体的には、下記の式で表される格子内空隙率を23.20%以上にすることで微粉化を抑制できることを見出した。
格子内空隙率=(結晶格子体積-構成原子の総体積)/結晶格子体積×100
また、格子内空隙率とともに、水素吸蔵合金を構成する原子の電子密度(=電子数/原子体積)が小さくなると、水素原子が侵入した際の変化が小さくなることも見出した。なお、上記の格子内空隙率は、水素吸蔵合金の結晶格子体積に占める各構成原子の体積を除いて求めたものである。
As a result of investigating the above-mentioned causes, the present inventors found that even if the crystal lattice of the hydrogen storage alloy is expanded, if space for hydrogen atoms H cannot be secured, even alloys with large crystal lattices will not be pulverized. It was also discovered that this could not be suppressed, leading to the present invention. That is, it is important to form larger spaces in the crystal lattice of the alloy so that even if hydrogen atoms H enter, there will be little change. Specifically, it has been found that pulverization can be suppressed by setting the intralattice porosity expressed by the following formula to 23.20% or more.
Intralattice porosity = (crystal lattice volume - total volume of constituent atoms) / crystal lattice volume x 100
It was also discovered that as the electron density (=number of electrons/atomic volume) of the atoms constituting the hydrogen storage alloy decreases as well as the intralattice porosity, the change when hydrogen atoms invade decreases. Note that the above-mentioned intralattice porosity was determined by excluding the volume of each constituent atom occupying the crystal lattice volume of the hydrogen storage alloy.

ここで、前記格子空隙率を大きくするには、金属結合半径の大きな原子で単に置換したり、上記のようなAサイトにダンベル型置換をして結晶格子を広げるだけでは駄目であり、置換される対象の原子と実際に置換する原子(置換元素)を選択する必要があり、特に、金属結合半径の小さな原子で適宜置換して空間を確保するとよいことを本発明者らは見出した。 Here, in order to increase the lattice porosity, it is not enough to simply substitute atoms with a large metal bond radius or to widen the crystal lattice by making a dumbbell-shaped substitution at the A site as described above; It is necessary to select an atom (substitution element) to actually replace the target atom, and the present inventors have found that it is particularly advantageous to appropriately substitute an atom with a small metal bond radius to secure space.

よって、本発明は、一般式MmNiMnAlCo(式中、Mmはミッシュメタルであり、4.30≦a≦4.75、0.25≦b≦0.50、0.25≦c≦0.45、0≦d≦0.12、5.20≦a+b+c+d≦5.55)で表され、CaCu型結晶構造を有する水素吸蔵合金であり、前記一般式で表される構成原子の一部が当該構成原子より金属結合半径の小さな原子で置換され、若しくは当該構成原子より金属結合半径の大きな原子で置換され、又は当該記構成原子より金属結合半径の小さな原子と当該構成原子より金属結合半径の大きな原子との両方で置換されており、下記の式で表される格子内空隙率が23.20%以上23.70%以下の水素吸蔵合金である。
格子内空隙率=(結晶格子体積-構成原子の総体積)/結晶格子体積×100
Therefore, the present invention is based on the general formula MmNiaMnbAlcCod (wherein, Mm is misch metal , 4.30≦a≦4.75, 0.25 b≦0.50, 0.25 ≦c≦0.45, 0≦d≦0.12, 5.20≦a+b+c+d≦5.55), is a hydrogen storage alloy having a CaCu 5 type crystal structure, and has a configuration represented by the above general formula. Part of an atom is replaced by an atom with a smaller metal bond radius than the constituent atom, or an atom with a larger metal bond radius than the constituent atom, or an atom with a smaller metal bond radius than the constituent atom and the constituent atom. It is a hydrogen storage alloy in which the lattice porosity is 23.20% or more and 23.70% or less expressed by the following formula.
Intralattice porosity = (crystal lattice volume - total volume of constituent atoms) / crystal lattice volume x 100

本発明のCaCu型結晶構造を有する水素吸蔵合金、即ちAB型水素吸蔵合金において、先ず、Aサイトを構成する金属(原子)について説明する。本発明では、Aサイトを構成する金属として、LaまたはLaの一部もしくは全部が希土類金属混合物であるミッシュメタル(Mm)を用いる。Mmでは、LaおよびCeが、Mm全質量に対して80質量%以上100質量%以下の範囲内の割合を占めているのがよく、なかでもLaが70~99質量%、Ceが1~30質量%の範囲であり、好ましくは、Laが74~97質量%、Ceが3~26質量%の範囲であるのがよい。 In the hydrogen storage alloy having the CaCu type 5 crystal structure of the present invention, that is, the AB type hydrogen storage alloy, first, the metal (atom) constituting the A site will be explained. In the present invention, misch metal (Mm) in which La or a part or all of La is a rare earth metal mixture is used as the metal constituting the A site. In Mm, it is preferable that La and Ce occupy a proportion within the range of 80% by mass or more and 100% by mass or less based on the total mass of Mm, in particular, La is 70 to 99% by mass and Ce is 1 to 30% by mass. Preferably, La is in the range of 74 to 97% by mass, and Ce is in the range of 3 to 26% by mass.

次に、Bサイトを構成する金属(原子)について説明する。本発明では、Bサイトを構成する金属として、Ni、Mn、Al、及びCoを用いる。前記一般式におけるこれら金属のモル比は、以下の条件を満たすものである。
Niモル比(a) 4.30≦a≦4.75
Mnモル比(b) 0.25≦b≦0.50
Alモル比(c) 0.25≦c≦0.45
Coモル比(d) 0≦d≦0.12
AB比 5.20≦(a+b+c+d)≦5.55
好ましい条件は、次の通りである。
Niモル比(a) 4.40≦a≦4.70
Mnモル比(b) 0.35≦b≦0.43
Alモル比(c) 0.38≦c≦0.42
Coモル比(d) 0≦d≦0.05
AB比 5.25≦(a+b+c+d)≦5.46
Next, the metal (atom) constituting the B site will be explained. In the present invention, Ni, Mn, Al, and Co are used as metals constituting the B site. The molar ratio of these metals in the general formula satisfies the following conditions.
Ni molar ratio (a) 4.30≦a≦4.75
Mn molar ratio (b) 0.25≦b≦0.50
Al molar ratio (c) 0.25≦c≦0.45
Co molar ratio (d) 0≦d≦0.12
AB ratio 5.20≦(a+b+c+d)≦5.55
Preferred conditions are as follows.
Ni molar ratio (a) 4.40≦a≦4.70
Mn molar ratio (b) 0.35≦b≦0.43
Al molar ratio (c) 0.38≦c≦0.42
Co molar ratio (d) 0≦d≦0.05
AB ratio 5.25≦(a+b+c+d)≦5.46

Coのモル比dは、原料コスト低減のため、なるべく少ない方が好ましく、0≦d≦0.12としている。dを0より大きく、0.12以下とすることにより、即ち、Co置換することにより、水素の吸蔵放出が繰り返されても微粉化し難くなり、置換量が増加するとその傾向が著しくなる。但し、d=0、即ち、Co置換しなくても、本発明のAB型水素吸蔵合金にすることにより、水素の吸蔵放出が繰り返されても微粉化し難くさせることができる。そのため、Coモル比(d)は0≦d≦0.12であり、好ましくは0≦d≦0.05である。なお、dが0.12を超えると、原料コスト低減につながらない。 The molar ratio d of Co is preferably as small as possible in order to reduce raw material costs, and is set to 0≦d≦0.12. By setting d to be greater than 0 and less than or equal to 0.12, that is, by replacing with Co, it becomes difficult to pulverize even if hydrogen absorption and desorption is repeated, and this tendency becomes more pronounced as the amount of substitution increases. However, even if d=0, that is, without Co substitution, by using the AB 5 type hydrogen storage alloy of the present invention, it is possible to make it difficult to pulverize even if hydrogen storage and release are repeated. Therefore, the Co molar ratio (d) is 0≦d≦0.12, preferably 0≦d≦0.05. Note that if d exceeds 0.12, it will not lead to reduction in raw material cost.

MmのLa、Ceの比率、Ni、Mn、Alのモル比を上記の通りに設定した理由としては、AB型水素吸蔵合金の水素吸蔵量(H/M)が、0.85~1.00とすることにより充放電容量を確保すること、平衡圧を0.04~0.07MPaとして初期活性化しやすくすること、PCT曲線におけるプラトー域をなるべく広くすることを考慮したためである。
Mmでは、LaおよびCeが、MmのMm全質量に対して80質量%以上100質量%以下の範囲内とすることで、水素吸蔵量(H/M)を0.85~1.00として充放電容量を確保することができるためである。Niの割合(a)は、上述の通り、4.30以上4.75以下の範囲内であるが、水素吸蔵合金粉末を活物質として負極を作製した際、その出力特性を維持し易く、しかもその寿命特性を格別に悪化させることもない。Mnの割合(b)は、上述の通り、0.25以上0.50以下の範囲内であるが、この範囲内であれば、水素吸蔵合金粉末の微粉化難度を維持し易くすることができる。Alの割合(c)は、上述の通り、0.25以上0.45以下の範囲内であるが、この範囲内であれば、PCT特性におけるヒステリシスが小さく水素吸蔵合金粉末の充放電効率の悪化を抑えることでき、かつ水素吸蔵合金粉末の水素吸蔵量の低下を抑えることができる。
The reason why the ratio of La and Ce in Mm and the molar ratio of Ni, Mn, and Al were set as above is that the hydrogen storage capacity (H/M) of AB 5 type hydrogen storage alloy is 0.85 to 1. 00 to ensure charge/discharge capacity, setting the equilibrium pressure to 0.04 to 0.07 MPa to facilitate initial activation, and widening the plateau region in the PCT curve as much as possible.
In Mm, by setting La and Ce within the range of 80% by mass or more and 100% by mass or less based on the total mass of Mm, the hydrogen storage capacity (H/M) can be set to 0.85 to 1.00. This is because discharge capacity can be secured. As mentioned above, the ratio (a) of Ni is within the range of 4.30 or more and 4.75 or less, but when a negative electrode is produced using the hydrogen storage alloy powder as an active material, it is easy to maintain its output characteristics, and There is no particular deterioration in its life characteristics. As mentioned above, the ratio of Mn (b) is within the range of 0.25 or more and 0.50 or less, but within this range, it is possible to easily maintain the difficulty of pulverizing the hydrogen storage alloy powder. . As mentioned above, the Al ratio (c) is within the range of 0.25 or more and 0.45 or less, but within this range, the hysteresis in the PCT characteristics is small and the charge/discharge efficiency of the hydrogen storage alloy powder is deteriorated. can be suppressed, and a decrease in the hydrogen storage amount of the hydrogen storage alloy powder can be suppressed.

以上が、一般式MmNiMnAlCo(式中、Mmはミッシュメタルであり、4.30≦a≦4.75、0.25≦b≦0.50、0.25≦c≦0.45、0≦d≦0.12、5.20≦a+b+c+d≦5.55)で表されるCaCu型結晶構造を有する合金の基本的な説明である。 The above is the general formula MmNia Mn b Al c Co d (where Mm is misch metal, 4.30≦a≦4.75, 0.25≦b≦0.50, 0.25≦c≦ 0.45, 0≦d≦0.12, 5.20≦a+b+c+d≦5.55) This is a basic explanation of an alloy having a CaCu type 5 crystal structure.

本発明では、前記一般式で表される構成原子の一部をこれら以外の他の置換元素Xで置換する。その際、前記構成原子より金属結合半径の小さな原子で置換してもよい。例えば、上述した一般式で表される構成原子のうち、Mmを置換する対象の元素(対象元素Y1)とした場合、詳しくはLa又はCe等を対象元素Y1とした場合に、これらよりも金属結合半径の小さな原子(置換元素X)でAサイトを置換してもよい。また、Ni、Mn、Al、及びCoからなる群から選ばれた1つ以上の対象元素Y2よりも金属結合原子半径の小さな原子でBサイトを置換してもよい。これらについて、より具体的に例示すると、La又はCeよりも金属結合半径の小さな原子は、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Y、Sc等が挙げられる。一方、Ni、Mn、Al、又はCoよりも金属結合原子半径の小さな原子は、例えば、Be、B、C、N等が挙げられる。 In the present invention, some of the constituent atoms represented by the above general formula are substituted with other substituent elements X other than these. In this case, the substitution may be made with an atom having a smaller metal bond radius than the constituent atoms. For example, among the constituent atoms represented by the above general formula, when Mm is the target element to be replaced (target element Y1), more specifically, when La or Ce, etc. are the target element Y1, the metal The A site may be substituted with an atom (substituting element X) having a small bond radius. Further, the B site may be substituted with an atom having a smaller metal bond atomic radius than one or more target elements Y2 selected from the group consisting of Ni, Mn, Al, and Co. More specifically, examples of atoms having a smaller metal bond radius than La or Ce include Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y, and Sc. On the other hand, examples of atoms having a smaller metal bond atomic radius than Ni, Mn, Al, or Co include Be, B, C, and N.

また、前記構成原子より金属結合半径の大きな原子で置換してもよい。例えば、上述した一般式で表される構成原子のうち、対象元素Y1を置換する場合は、これらよりも金属結合半径の大きな原子でAサイトを置換してもよく、また、同じく対象元素Y2を置換する場合は、これらよりも金属結合半径の大きな原子でBサイトを置換してもよい。これらについて、より具体的に例示すると、La又はCeよりも金属結合半径の大きな原子は、Eu、Yb、Ba、Ca等が挙げられる。一方、Ni、Mn、Al、Coよりも金属結合原子半径の大きな原子は、例えば、Fe、Cu、Zn、Ga、Ge、Cr、V、Ti、Zr、Nb、Mo、Mg等が挙げられる。 Further, an atom having a larger metal bond radius than the constituent atoms may be substituted. For example, when replacing the target element Y1 among the constituent atoms represented by the above general formula, the A site may be replaced with an atom with a larger metal bond radius than these atoms, and the target element Y2 may also be replaced with an atom having a larger metal bond radius than these atoms. In the case of substitution, the B site may be substituted with an atom having a larger metal bond radius than these atoms. To give more specific examples of these, examples of atoms having a larger metal bond radius than La or Ce include Eu, Yb, Ba, Ca, and the like. On the other hand, examples of atoms having a larger metal bond atomic radius than Ni, Mn, Al, and Co include Fe, Cu, Zn, Ga, Ge, Cr, V, Ti, Zr, Nb, Mo, and Mg.

或いは、前記構成原子より金属結合半径の小さな原子と大きな原子とを組み合わせて、Aサイトを置換したり、Bサイトを置換したり、両者を置換するようにしてもよい。なかでも、上述したように、金属結合半径の大きな原子での置換やAサイトにダンベル型置換をして結晶格子を広げて、金属結合半径の小さな原子で適宜置換すると、格子内空隙率を23.20%以上にすることができ、これによって微粉化を抑制することができる。特に、Co含有量が少ない又はゼロの際には有効である。 Alternatively, an atom with a smaller metal bond radius and an atom with a larger metal bond radius than the constituent atoms may be combined to replace the A site, the B site, or both. Among these, as mentioned above, by expanding the crystal lattice by substitution with atoms with a large metal bond radius or dumbbell-shaped substitution at the A site, and replacing appropriately with atoms with a small metal bond radius, the intralattice porosity can be increased to 23 .20% or more, thereby suppressing pulverization. This is particularly effective when the Co content is low or zero.

特に、置換する対象が対象元素Y2であって、置換元素Xが、Ni、Mn、又はAlの1つ以上を置換した組成式MmNia-a1Mnb―b1Alc―c1Co(式中、e=a1+b1+c1、5.20≦a+b+c+d+e≦5.55)を満たす水素吸蔵合金にするのがより好ましい。 In particular, the target to be substituted is the target element Y2 , and the substitutional element X substitutes one or more of Ni, Mn , or Al . It is more preferable to use a hydrogen storage alloy that satisfies the following formula: e=a1+b1+c1, 5.20≦a+b+c+d+e≦5.55).

本発明の結晶格子体積は、次のようにして求める。すなわち、X線回折法によって測定したX線回折パターンから算出した格子定数(a軸、c軸)から結晶格子体積を求めることができる(P. H. L. Notten, et.al., Journal of The Electrochemical Society 146(9), 3181-3189(1999);非特許文献4と同様である)。 The crystal lattice volume of the present invention is determined as follows. In other words, the crystal lattice volume can be determined from the lattice constants (a-axis, c-axis) calculated from the X-ray diffraction pattern measured by the X-ray diffraction method (P. H. L. Notten, et.al., Journal of The Electrochemical Society 146). 9), 3181-3189 (1999); same as Non-Patent Document 4).

一方、前記結晶格子体積を占める原子の総体積は、結晶格子を構成する各原子の金属結合半径から球モデルで計算する。その上で、本発明の格子内空隙率は、下記の式から算出される。
格子内空隙率=(結晶格子体積-構成原子の総体積)/結晶格子体積×100
尚、本発明の金属結合半径は、日本化学会編「化学便覧 基礎編」1984年発行に記載の値を用いる。また、典型元素の場合、原子間隔の代表値に記載されている同種原子間の結合距離の2分の1を用いる。
On the other hand, the total volume of atoms occupying the crystal lattice volume is calculated using a spherical model from the metal bond radius of each atom constituting the crystal lattice. Then, the intralattice porosity of the present invention is calculated from the following formula.
Intralattice porosity = (crystal lattice volume - total volume of constituent atoms) / crystal lattice volume x 100
For the metal bond radius of the present invention, the value described in "Chemical Handbook Basic Edition" edited by the Chemical Society of Japan, published in 1984 is used. Further, in the case of a typical element, one-half of the bond distance between like atoms described in the representative value of atomic spacing is used.

格子内空隙率は、上述のように23.20%以上にすれば、水素の吸蔵に伴う微粉化を抑制でき、大きくすればするほど微粉化抑制効果が大きくなる。よって、格子内空隙率の上限はないが、CaCu型結晶構造の安定性という観点から23.70%以下とした。 If the intralattice porosity is set to 23.20% or more as described above, pulverization due to hydrogen absorption can be suppressed, and the larger the porosity, the greater the pulverization suppressing effect. Therefore, although there is no upper limit for the intralattice porosity, it was set to 23.70% or less from the viewpoint of stability of the CaCu type 5 crystal structure.

本発明の水素吸蔵合金において、微粉化難度が0.55~0.70であることで、水素吸蔵合金粉末を負極としたときに、寿命特性が長く、及び初期活性化がしやすい負極となる。
ここで、微粉化難度とは、「保持温度45℃および水素圧力調整1.82MPaの環境下における水素の吸蔵放出サイクル10回後の水素吸蔵合金粉末の粒度」を「水素吸蔵合金粉末の初期粒度」で除した値である。また、プラトー圧力は、測定温度45℃水素放出側のH/M=0.5における平衡水素圧力(MPa)のことである。詳しくは、本発明における微粉化難度の測定方法について、以下で説明する。また、後述の実施例では、下記の方法に従って得られた水素吸蔵合金の微粉化難度を測定した。
In the hydrogen storage alloy of the present invention, since the degree of difficulty in pulverization is 0.55 to 0.70, when the hydrogen storage alloy powder is used as a negative electrode, it becomes a negative electrode with long life characteristics and easy initial activation. .
Here, the degree of difficulty in pulverization is defined as the "particle size of the hydrogen storage alloy powder after 10 hydrogen storage/release cycles in an environment with a holding temperature of 45°C and hydrogen pressure adjustment of 1.82 MPa" and "initial particle size of the hydrogen storage alloy powder". ” is the value divided by . Moreover, the plateau pressure is the equilibrium hydrogen pressure (MPa) at H/M=0.5 on the hydrogen release side at a measurement temperature of 45°C. In detail, the method for measuring the degree of difficulty in pulverization in the present invention will be described below. Furthermore, in the Examples described below, the degree of difficulty in pulverizing a hydrogen storage alloy obtained according to the method described below was measured.

すなわち、PCT(水素圧-組成-等温線図)特性評価装置を用いて、「保持温度45℃および水素圧力調整1.82MPaの環境下における水素の吸蔵放出サイクル10回後の水素吸蔵合金粉末の粒度」を「水素吸蔵合金粉末の初期粒度」で除した値を、微粉化難度として指標化した。すなわち、微粉化難度は、1に近いほど水素吸蔵合金粉末が微粉化しにくいことを示し、0に近いほど水素吸蔵合金粉末が微粉化しやすいことを示す。微粉化難度を求めるに当たり、「水素吸蔵合金粉末の初期粒度」とは、リーズアンドノースラップ社製の粒度分布測定装置7997SRAを用いて測定した平均粒径D50のことである。「保持温度45℃および水素圧力調整1.82MPaの環境下における水素の吸蔵放出サイクル10回後の水素吸蔵合金粉末の粒度」とは、株式会社鈴木商館製の全自動PCT測定装置(1/2インチ直管サンプルセル,試料量3g)を用いて保持温度45℃および水素圧力調整1.82MPaの環境下で水素の吸蔵放出サイクルを10回行った後に、リーズアンドノースラップ社製の粒度分布測定装置7997SRAを用いて測定した平均粒径D50のことである。なお、全自動PCT測定装置における水素吸蔵合金粉末の活性化処理は、活性化温度80℃および水素圧力1.82MPaの環境下で行ない、同装置における水素吸蔵合金粉末の水素吸蔵放出サイクルは、保持温度45℃、水素吸蔵圧力1.82MPaおよび水素放出圧力0MPaの環境下で行った。 In other words, using a PCT (hydrogen pressure-composition-isotherm diagram) characteristic evaluation device, the hydrogen storage alloy powder was evaluated after 10 hydrogen storage and desorption cycles under an environment of a holding temperature of 45°C and a hydrogen pressure adjustment of 1.82 MPa. The value obtained by dividing the "particle size" by the "initial particle size of the hydrogen storage alloy powder" was indexed as the degree of difficulty in pulverization. That is, the closer the pulverization difficulty level is to 1, the harder it is to pulverize the hydrogen storage alloy powder, and the closer it is to 0, the easier it is to pulverize the hydrogen storage alloy powder. In determining the degree of difficulty in pulverization, the "initial particle size of the hydrogen storage alloy powder" refers to the average particle size D50 measured using a particle size distribution analyzer 7997SRA manufactured by Lees & Northrup. "Particle size of hydrogen storage alloy powder after 10 hydrogen storage and desorption cycles in an environment with a holding temperature of 45°C and hydrogen pressure adjustment of 1.82 MPa" refers to the fully automatic PCT measuring device (1/2 After 10 cycles of hydrogen storage and desorption using an inch straight tube sample cell (sample amount: 3 g) at a holding temperature of 45°C and hydrogen pressure adjustment of 1.82 MPa, particle size distribution measurements were performed using a Leeds and Northrup Co., Ltd. It refers to the average particle diameter D50 measured using the device 7997SRA. The activation treatment of the hydrogen storage alloy powder in the fully automatic PCT measuring device is performed under an environment with an activation temperature of 80°C and a hydrogen pressure of 1.82 MPa, and the hydrogen storage and release cycle of the hydrogen storage alloy powder in the device is The test was conducted under an environment of a temperature of 45° C., a hydrogen storage pressure of 1.82 MPa, and a hydrogen release pressure of 0 MPa.

微粉化難度を0.55~0.70とした理由は、高すぎると初期活性化し難く、かつ、電池の入出力特性が低下するためであり、反対に低すぎると、電池の寿命特性が確保されないためである。 The reason why the pulverization difficulty level is set to 0.55 to 0.70 is that if it is too high, initial activation will be difficult and the input/output characteristics of the battery will deteriorate.On the other hand, if it is too low, the life characteristics of the battery will be ensured. This is so that it will not happen.

本発明の水素吸蔵合金は、上述した本発明の要件を満たすものであればよく、それを得る方法については特に制限はない。以下に、本発明の水素吸蔵合金の製造方法として採用できる1つの例を示す。 The hydrogen storage alloy of the present invention may be one that satisfies the requirements of the present invention described above, and there are no particular limitations on the method for obtaining it. Below, one example that can be adopted as a method for manufacturing the hydrogen storage alloy of the present invention will be shown.

水素吸蔵合金は、秤量工程、混合工程、鋳造工程、熱処理工程で製造できる。電池に使用するには、このようにして製造した水素吸蔵合金を粉砕して使用される(粉砕工程を経て使用される)。秤量工程では、所望の合金組成となるように水素吸蔵合金の各原料が秤量される。その際、本発明に係る水素吸蔵合金が得られるように、置換元素Xを含めた各原料を秤量する。混合工程では、秤量された複数種類の原料が混合される。鋳造工程において、高周波加熱溶解炉に混合原料を投入し、混合原料を溶解させて溶湯となし、この溶湯を例えば鋳型に流し込んで1150℃~1550℃の範囲の温度(鋳造温度=鋳造開始時の坩堝内溶湯温度)で鋳造する。 The hydrogen storage alloy can be manufactured through a weighing process, a mixing process, a casting process, and a heat treatment process. For use in batteries, the hydrogen storage alloy produced in this way is pulverized and used (used after a pulverization process). In the weighing step, each raw material of the hydrogen storage alloy is weighed so as to have a desired alloy composition. At that time, each raw material including the substituent element X is weighed so that the hydrogen storage alloy according to the present invention can be obtained. In the mixing step, a plurality of weighed raw materials are mixed. In the casting process, a mixed raw material is put into a high-frequency heating melting furnace, the mixed raw material is melted to form a molten metal, and this molten metal is poured into a mold, for example, at a temperature in the range of 1150°C to 1550°C (casting temperature = the temperature at the start of casting). The temperature of the molten metal in the crucible) is then cast.

鋳造後の合金は、熱処理工程において非酸化雰囲気下で950℃~1250℃の温度で熱処理される。また、熱処理時間は、鋳造後のインゴット(水素吸蔵合金片)の大きさにもよるが、例えば、5時間以上から18時間以下である。インゴットの中心部まで所定温度になって、所望の結晶サイズに粒成長するように時間設定すればよい。
電池に使用するには、このようにして製造した水素吸蔵合金を粉砕して使用される。この粉砕工程では、粗粉砕、微粉砕により必要な粒度の水素吸蔵合金粉末にする。例えば、インゴットを500μmの篩目を通過するサイズまで粉砕して水素吸蔵合金粉末とする。
The alloy after casting is heat treated in a heat treatment step at a temperature of 950° C. to 1250° C. in a non-oxidizing atmosphere. Further, the heat treatment time is, for example, 5 hours or more and 18 hours or less, although it depends on the size of the ingot (hydrogen storage alloy piece) after casting. The time may be set so that the temperature reaches a predetermined temperature to the center of the ingot and grains grow to a desired crystal size.
For use in batteries, the hydrogen storage alloy thus produced is pulverized. In this pulverization process, the hydrogen storage alloy powder is made into a hydrogen storage alloy powder having the required particle size by coarse pulverization and fine pulverization. For example, an ingot is ground to a size that passes through a sieve of 500 μm to obtain a hydrogen storage alloy powder.

このようにして得られた水素吸蔵合金粉末は、公知の方法により、電池用負極を調整することができる。すなわち、公知の方法により結着剤、導電助剤などを混合、成形することにより水素吸蔵合金負極を構成することができる。そして、好適には、ニッケル水素電池を構成する負極として用いられる。 The hydrogen storage alloy powder thus obtained can be used to prepare a battery negative electrode by a known method. That is, a hydrogen storage alloy negative electrode can be constructed by mixing and molding a binder, a conductive aid, etc. using a known method. Then, it is preferably used as a negative electrode constituting a nickel-metal hydride battery.

以下、本発明の実施例に基づいて説明する。なお、本発明は実施例に限定されるものはない。 Hereinafter, the present invention will be explained based on examples. Note that the present invention is not limited to the examples.

[実施例1~8、比較例1~7]
Ni、Mn、Al、Co、MmとしてLaとCe、及び置換元素Xの各金属原料を、表1、表2に示した合金組成となるように秤量した。これらの表中ではMmとしてのLa、CeをAサイトの元素とし、その他原料をBサイトの元素として、モル比で示した。それらの原料を溶解炉内のルツボに入れて真空排気した後、アルゴンガス雰囲気とした。次いで、高周波加熱装置で加熱溶解し、1540℃まで加熱した溶湯を10分保持後、1250℃まで降温し、鋳造温度1230℃で鋳型に流し込んで鋳造を行った。鋳造した合金インゴットは、アルゴン雰囲気下で1080℃×12時間の熱処理を行って合金インゴットを得た。得られた合金インゴットは、不活性雰囲気下でクラッシャーにより粗粉砕し、続いて、不活性雰囲気下でカッティングミル(フリュッチュ社製)を用いて粉砕し、続いて篩目500μmを通過する粒子サイズ(500μm以下)の水素吸蔵合金粉末とした。
[Examples 1 to 8, Comparative Examples 1 to 7]
Each metal raw material of Ni, Mn, Al, Co, La and Ce as Mm, and the substitution element X was weighed so as to have the alloy composition shown in Tables 1 and 2. In these tables, La and Ce as Mm are shown as elements at the A site, and other raw materials are shown as elements at the B site, expressed in molar ratio. These raw materials were placed in a crucible in a melting furnace and evacuated, followed by an argon gas atmosphere. Next, the molten metal was heated and melted using a high-frequency heating device, and the molten metal heated to 1540°C was held for 10 minutes, then lowered to 1250°C, and cast into a mold at a casting temperature of 1230°C. The cast alloy ingot was heat treated at 1080° C. for 12 hours in an argon atmosphere to obtain an alloy ingot. The obtained alloy ingot was coarsely crushed by a crusher under an inert atmosphere, and then crushed using a cutting mill (manufactured by Frütsch) under an inert atmosphere, and then the particle size passing through a sieve of 500 μm ( 500 μm or less) was made into a hydrogen storage alloy powder.

<評価方法>
実施例・比較例で得た水素吸蔵合金粉末(サンプル)について、次のようにして各種評価を行った。
<Evaluation method>
Various evaluations were performed on the hydrogen storage alloy powders (samples) obtained in Examples and Comparative Examples as follows.

(微粉化難度の測定)
粒度分布測定装置及びPCT特性評価装置を用いて、前述の方法で微粉化難度を測定した。
(Measurement of difficulty in pulverization)
The degree of difficulty in pulverization was measured by the method described above using a particle size distribution measuring device and a PCT characteristic evaluation device.

(格子内空隙率)
格子内空隙率の定義は前述の通り、下記の式
格子内空隙率=(結晶格子体積-構成原子の総体積)/結晶格子体積×100
で算出されるが、結晶格子体積はX線回折装置(株式会社リガク製 SmartLab)を使用して測定を行い、リートベルト解析により得られたa軸長、c軸長より計算した。具体的には、20μm以下に粉砕された水素吸蔵合金を、粉末X線回析装置(リガク社製、SmartLab)を用い、ゴニオ半径300mm、X線源CuKα線、管電圧45kV、管電流200mAで測定した。その際、回析角は2θ=15.0~85.0°の範囲とし、スキャンスピードは4.000°/min、スキャンステップは0.020°とした。得られたX線回析結果に基づいて、リートベルト法(解析ソフト SmartLab StudioII、PowderXRDプラグイン)により結晶構造の解析を行った。
(Intra-lattice porosity)
As mentioned above, the definition of intralattice porosity is as follows: Intralattice porosity = (crystal lattice volume - total volume of constituent atoms) / crystal lattice volume x 100
The crystal lattice volume was measured using an X-ray diffraction device (SmartLab manufactured by Rigaku Co., Ltd.), and calculated from the a-axis length and c-axis length obtained by Rietveld analysis. Specifically, a hydrogen storage alloy pulverized to 20 μm or less was analyzed using a powder X-ray diffraction device (Rigaku Corporation, SmartLab) with a goniometer radius of 300 mm, an X-ray source of CuKα rays, a tube voltage of 45 kV, and a tube current of 200 mA. It was measured. At that time, the diffraction angle was in the range of 2θ=15.0 to 85.0°, the scan speed was 4.000°/min, and the scan step was 0.020°. Based on the obtained X-ray diffraction results, the crystal structure was analyzed by the Rietveld method (analysis software SmartLab Studio II, PowderXRD plug-in).

一方、構成原子の総体積も前述の通り、結晶格子を構成する各原子の金属結合半径から球モデルで計算した。その際、金属結合半径は、日本化学会編「化学便覧 基礎編」1984年発行に記載の値を用いた。また、典型元素の場合には、原子間隔の代表値の同種原子間の結合距離の2分の1を用いるようにした。更には、結晶構造を表すABxの組成がABx>5となった場合(即ち、AB比>5の場合)、前述の通りBサイトの元素がAサイトにダンベル状に置換するため、ABx=5+αのとき、総体積は表1、表2に示した各元素のモル比を(1+1/7α)で除したものに金属結合半径から求めた各元素の原子体積をそれぞれ乗じたものの総和が構成原子の総体積となる。なお、表1、表2における「置換元素」の欄では、置換元素とその置換元素が置換する対象元素のサイトと表している。また、「半径の関係」では、置換対象元素と置換元素との金属結合半径の関係を表している。 On the other hand, as mentioned above, the total volume of the constituent atoms was calculated using a spherical model from the metal bond radius of each atom constituting the crystal lattice. At that time, for the metal bond radius, the value described in "Chemical Handbook Basic Edition" edited by the Chemical Society of Japan, published in 1984 was used. Further, in the case of typical elements, one-half of the bond distance between the same kind of atoms as the representative value of the atomic spacing is used. Furthermore, when the composition of ABx representing the crystal structure becomes ABx > 5 (that is, when the AB ratio > 5), the elements at the B site are substituted into the A site in a dumbbell shape as described above, so ABx = 5 + α In this case, the total volume is the sum of the molar ratio of each element shown in Tables 1 and 2 divided by (1+1/7α) multiplied by the atomic volume of each element determined from the metal bond radius. The total volume of In addition, in the "substitution element" column in Tables 1 and 2, the substitution element and the site of the target element to be substituted by the substitution element are shown. Furthermore, the "radius relationship" represents the relationship in the metal bond radius between the element to be replaced and the replacement element.

Figure 0007439316000002
Figure 0007439316000002

Figure 0007439316000003
Figure 0007439316000003

上記実施例に加えて、これまでの本発明者が行ってきた試験結果などから、Mm-Ni-Mn-Al-Co合金系のAB型水素吸蔵合金において、微粉化難度を0.55以上にするためには、構成原子の一部を所定の置換元素で置換して、格子内空隙率を23.30%以上23.70%以下にすることが好ましいことが分かった。比較例1~7では、組成は実施例とほぼ同じでありながら、格子内空隙率が23.20%以下であったため、実施例1~8に匹敵する微粉化難度を得ることができなかった。このことから、本発明によれば、Co含有量が少なく、原料コストが低く、寿命特性に優れ、ニッケル水素電池用負極に好適な合金が得られることが確認できた。
In addition to the above examples, based on the test results conducted by the present inventors so far, it was found that the difficulty of pulverization of AB 5 type hydrogen storage alloy of Mm-Ni-Mn-Al-Co alloy is 0.55 or more. It has been found that in order to achieve this, it is preferable to substitute some of the constituent atoms with a predetermined substituting element so that the intralattice porosity is 23.30% or more and 23.70% or less. In Comparative Examples 1 to 7, although the compositions were almost the same as those of Examples, the intralattice porosity was 23.20% or less, so it was not possible to obtain a level of difficulty in pulverization comparable to Examples 1 to 8. . From this, it was confirmed that according to the present invention, an alloy with a low Co content, low raw material cost, excellent life characteristics, and suitable for a negative electrode for nickel-hydrogen batteries can be obtained.

Claims (7)

一般式MmNiMnAlCo(式中、Mmはミッシュメタルであり、4.30≦a≦4.75、0.25≦b≦0.50、0.25≦c≦0.45、0≦d≦0.12、5.20≦a+b+c+d≦5.55)で表されるCaCu型結晶構造を有してニッケル水素電池の負極に用いられる水素吸蔵合金粉末であって、前記一般式で表される構成原子の一部が他の置換元素Xで置換されており、下記の式で表される格子内空隙率が23.20%以上23.70%以下であることを特徴とするニッケル水素電池負極用水素吸蔵合金粉末
格子内空隙率=(結晶格子体積-構成原子の総体積)/結晶格子体積×100
General formula MmNia Mn b Al c Co d (wherein, Mm is misch metal, 4.30≦a≦4.75, 0.25≦b≦0.50, 0.25≦c≦0.45 , 0≦d≦0.12, 5.20≦a+b+c+d≦5.55) A hydrogen storage alloy powder having a CaCu type 5 crystal structure represented by A part of the constituent atoms represented by the formula is substituted with another substituent element Hydrogen storage alloy powder for negative electrodes of nickel-metal hydride batteries .
Intralattice porosity = (crystal lattice volume - total volume of constituent atoms) / crystal lattice volume x 100
前記一般式で表される構成原子のうち、Ni、Mn及びAlからなる群から選ばれた1つ以上の対象元素Y2が前記置換元素Xで置換されて、組成式MmNia-a1Mnb-b1Alc-c1Co(式中、e=a1+b1+c1、5.20≦a+b+c+d+e≦5.55)を満たすことを特徴とする請求項1に記載のニッケル水素電池負極用水素吸蔵合金粉末 Among the constituent atoms represented by the general formula, one or more target elements Y2 selected from the group consisting of Ni, Mn, and Al are substituted with the substituting element X, resulting in a compositional formula MmNi a-a1 Mn b- The hydrogen storage alloy powder for a negative electrode of a nickel-hydrogen battery according to claim 1, which satisfies b1 Al c−c1 X e Co d (wherein, e=a1+b1+c1, 5.20≦a+b+c+d+e≦ 5.55 ). 前記置換元素Xは、置換される対象の原子よりも金属結合半径が大きいものであることを特徴とする請求項2記載のニッケル水素電池負極用水素吸蔵合金粉末 3. The hydrogen storage alloy powder for a negative electrode of a nickel-hydrogen battery according to claim 2, wherein the substitutional element X has a larger metal bond radius than the atom to be substituted. MmがCeよりも原子半径の小さい希土類金属を含むことを特徴とする請求項1又は2に記載のニッケル水素電池負極用水素吸蔵合金粉末 The hydrogen storage alloy powder for a nickel-hydrogen battery negative electrode according to claim 1 or 2, wherein Mm contains a rare earth metal whose atomic radius is smaller than that of Ce. 該水素吸蔵合金の微粉化難度が、0.55以上であることを特徴とする請求項1又は2に記載のニッケル水素電池負極用水素吸蔵合金粉末 The hydrogen storage alloy powder for a negative electrode of a nickel-hydrogen battery according to claim 1 or 2, wherein the hydrogen storage alloy has a degree of difficulty in pulverization of 0.55 or more. 請求項1又は2に記載の水素吸蔵合金粉末ニッケル水素電池の負極活物質としたことを特徴とするニッケル水素電池負極。 A nickel-metal hydride battery negative electrode , characterized in that the hydrogen storage alloy powder according to claim 1 or 2 is used as a negative electrode active material for a nickel-metal hydride battery . 請求項6に記載のニッケル水素電池負極を用いたことを特徴とするニッケル水素電池。 A nickel-metal hydride battery characterized by using the nickel -metal hydride battery negative electrode according to claim 6.
JP2023048801A 2023-03-24 2023-03-24 Hydrogen storage alloy powder for nickel metal hydride battery negative electrode Active JP7439316B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023048801A JP7439316B1 (en) 2023-03-24 2023-03-24 Hydrogen storage alloy powder for nickel metal hydride battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023048801A JP7439316B1 (en) 2023-03-24 2023-03-24 Hydrogen storage alloy powder for nickel metal hydride battery negative electrode

Publications (1)

Publication Number Publication Date
JP7439316B1 true JP7439316B1 (en) 2024-02-27

Family

ID=90011448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023048801A Active JP7439316B1 (en) 2023-03-24 2023-03-24 Hydrogen storage alloy powder for nickel metal hydride battery negative electrode

Country Status (1)

Country Link
JP (1) JP7439316B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080925A (en) 1999-08-05 2002-03-22 Shin Etsu Chem Co Ltd Hydrogen storage alloy and nickel-hydrogen secondary battery
WO2005014871A1 (en) 2003-08-08 2005-02-17 Mitsui Mining & Smelting Co., Ltd. LOW Co HYDROGEN OCCLUSION ALLOY
JP7158550B1 (en) 2021-10-11 2022-10-21 新日本電工株式会社 Hydrogen storage alloy powder, negative electrode for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080925A (en) 1999-08-05 2002-03-22 Shin Etsu Chem Co Ltd Hydrogen storage alloy and nickel-hydrogen secondary battery
WO2005014871A1 (en) 2003-08-08 2005-02-17 Mitsui Mining & Smelting Co., Ltd. LOW Co HYDROGEN OCCLUSION ALLOY
JP7158550B1 (en) 2021-10-11 2022-10-21 新日本電工株式会社 Hydrogen storage alloy powder, negative electrode for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery using the same

Similar Documents

Publication Publication Date Title
US9219277B2 (en) Low Co hydrogen storage alloy
JP3965209B2 (en) Low Co hydrogen storage alloy
CN111636012B (en) La-Mg-Ni series hydrogen storage material and preparation method thereof
JP6608558B1 (en) Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment
JP2007291474A (en) Hydrogen storage alloy and nickel-hydride secondary battery
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP7439316B1 (en) Hydrogen storage alloy powder for nickel metal hydride battery negative electrode
JP5367296B2 (en) Hydrogen storage alloy
JP3834329B2 (en) AB5 type hydrogen storage alloy with excellent life characteristics
JP3944237B2 (en) Low Co hydrogen storage alloy
JP3992289B2 (en) Low Co hydrogen storage alloy
JP2022052729A (en) Hydrogen storage alloy for alkaline storage battery
JP7175372B1 (en) Low Co hydrogen storage alloy
JP7451000B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP7251864B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP5342499B2 (en) Hydrogen storage alloy
JP4634256B2 (en) Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery
JP5137994B2 (en) Method for producing hydrogen storage alloy
CN117940595A (en) Hydrogen storage alloy for alkaline storage battery
JP4462909B2 (en) Hydrogen storage alloy
JPH1025528A (en) Hydrogen storage alloy
JP2001192756A (en) Hydrogen storage alloy, producing method therefor and hydrogen storage alloy electrode made of same alloy
JP2016125068A (en) Hydrogen storage alloy, and anode and battery
JPH10152740A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230817

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240214

R150 Certificate of patent or registration of utility model

Ref document number: 7439316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150