JP2022052729A - Hydrogen storage alloy for alkaline storage battery - Google Patents

Hydrogen storage alloy for alkaline storage battery Download PDF

Info

Publication number
JP2022052729A
JP2022052729A JP2021142517A JP2021142517A JP2022052729A JP 2022052729 A JP2022052729 A JP 2022052729A JP 2021142517 A JP2021142517 A JP 2021142517A JP 2021142517 A JP2021142517 A JP 2021142517A JP 2022052729 A JP2022052729 A JP 2022052729A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
alloy
storage alloy
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021142517A
Other languages
Japanese (ja)
Other versions
JP7461655B2 (en
Inventor
沙紀 能登山
Saki NOTOYAMA
友樹 相馬
Yuki Soma
勝幸 工藤
Katsuyuki Kudo
巧也 渡部
Takuya Watabe
孝雄 澤
Takao Sawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Publication of JP2022052729A publication Critical patent/JP2022052729A/en
Application granted granted Critical
Publication of JP7461655B2 publication Critical patent/JP7461655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a hydrogen storage alloy suitable for use as a negative electrode of an alkaline storage battery.SOLUTION: There is provided a hydrogen storage alloy having an A2B7-type crystal structure as a main phase. A volume average particle size MV after repeated hydrogen storage/release with respect to the hydrogen storage alloy that is adjusted in particle size in a range of 150 μm or more and 2 mm or less is 75 μm or more, and a hydrogen storage amount (H/M: H represents the number of hydrogen atoms, and M represents the number of metal atoms) when hydrogen is pressurized to 1 MPa at 80°C is 0.9 or more. Herein, a volume average particle size MV is measured after hydrogen storage, where hydrogen pressure is pressurized to 3 MPa at 80°C and kept for one hour, and hydrogen release, where, after vacuum evacuation, hydrogen pressure is reduced to 0.01 MPa at 80°C and kept for one hour, have been repeated 5 times.SELECTED DRAWING: Figure 1

Description

本発明は、アルカリ蓄電池に用いる水素吸蔵合金に関する。 The present invention relates to a hydrogen storage alloy used in an alkaline storage battery.

アルカリ蓄電池の代表例であるニッケル水素二次電池は、ニッケルカドミウム電池に比べて高容量で、かつ環境面でも有害物質を含まないことが特徴である。そのため、近年、たとえば、携帯電話やパーソナルコンピュータ、電動工具、アルカリ一次電池代替の民生用途からハイブリッド自動車(HEV)用の蓄電池などに幅広く使われるようになってきている。 Nickel-metal hydride secondary batteries, which are a typical example of alkaline storage batteries, are characterized by having a higher capacity than nickel-cadmium batteries and containing no harmful substances in terms of the environment. Therefore, in recent years, for example, it has been widely used for mobile phones, personal computers, electric tools, consumer applications as a substitute for alkaline primary batteries, and storage batteries for hybrid electric vehicles (HEVs).

アルカリ蓄電池の負極には、当初AB型結晶構造の水素吸蔵合金が使用されていた。その中で、電池の保存特性や寿命特性のバラツキを完全に抑えることを目的として、従来から、AB系合金に水素吸蔵放出させた後の平均粒径の検討がなされてきた。たとえば、特許文献1には、20~60μmの範囲に篩い分けした合金粉末に、45℃で水素を吸蔵・放出させる活性化を10サイクル繰り返した後の平均粒径や比表面積、アルカリ水溶液へのAl溶出量や溶出後の磁化率などを特定し、保存特性やサイクル寿命特性に優れた水素吸蔵合金電極が示されている。 Initially, a hydrogen storage alloy having an AB5 type crystal structure was used for the negative electrode of the alkaline storage battery. Among them, for the purpose of completely suppressing the variation in the storage characteristics and the life characteristics of the battery, the average particle size after hydrogen storage and release into the AB5 series alloy has been studied conventionally. For example, Patent Document 1 describes the average particle size, specific surface area, and alkaline aqueous solution after repeating activation of storing and releasing hydrogen at 45 ° C. for 10 cycles in an alloy powder sieved in the range of 20 to 60 μm. A hydrogen storage alloy electrode having excellent storage characteristics and cycle life characteristics is shown by specifying the Al elution amount and the magnetic susceptibility after elution.

しかしながら、該合金では、電池の小型軽量化には限界があり、小型で高容量を実現できる新たな水素吸蔵合金の開発が望まれていた。そこで、その解決策として、たとえば、特許文献2や特許文献3は、Mgを含む希土類-Mg遷移金属系水素吸蔵合金が提案されている。 However, with this alloy, there is a limit to reducing the size and weight of the battery, and it has been desired to develop a new hydrogen storage alloy that can realize a small size and a high capacity. Therefore, as a solution thereof, for example, Patent Document 2 and Patent Document 3 propose a rare earth-Mg transition metal-based hydrogen storage alloy containing Mg.

また、小型化、軽量化の手法として、たとえば、負極に用いる水素吸蔵合金の量を削減することが考えられるが、水素吸蔵合金の量を削減すると、ニッケル活性点の減少による出力低下という新たな問題が生じる。これを改善するため、特許文献4には、高水素平衡圧の水素吸蔵合金を用いて作動電圧を高くする手法が提案されている。 In addition, as a method of miniaturization and weight reduction, for example, it is conceivable to reduce the amount of hydrogen storage alloy used for the negative electrode, but if the amount of hydrogen storage alloy is reduced, the output will decrease due to the decrease of nickel active sites. Problems arise. In order to improve this, Patent Document 4 proposes a method of increasing the operating voltage by using a hydrogen storage alloy having a high hydrogen equilibrium pressure.

また、水素吸蔵合金として、希土類-Mg-Ni系合金がいくつか提案されている。たとえば、特許文献5には、体積エネルギー密度の向上に好適な長寿命の二次電池を提供することを目的として、一般式:(LaCePrNd1-xMg(Ni1-y(式中、Aは、Pm等よりなる群から選ばれる少なくとも1種の元素を表し、Tは、V等よりなる群から選ばれる少なくとも1種の元素を表し、a、b、c、d、eは、0≦a≦0.25、0≦b≦0.2、0≦c、0≦d、0≦eで示される範囲にあるとともにa+b+c+d+e=1で示される関係を満たし、x、y、zはそれぞれ0<x<1、0≦y≦0.5、2.5≦z≦4.5で示される範囲にある)で表される組成を有する水素吸蔵合金が開示されている。 Further, as a hydrogen storage alloy, some rare earth-Mg-Ni based alloys have been proposed. For example, Patent Document 5 discloses a general formula: (La a Ce b Pr c Nd d A e ) 1-x Mg x , for the purpose of providing a long-life secondary battery suitable for improving the volumetric energy density. (Ni 1-y T y ) z (In the formula, A represents at least one element selected from the group consisting of Pm and the like, and T represents at least one element selected from the group consisting of V and the like. , A, b, c, d, e are in the range indicated by 0 ≦ a ≦ 0.25, 0 ≦ b ≦ 0.2, 0 ≦ c, 0 ≦ d, 0 ≦ e, and at a + b + c + d + e = 1. It satisfies the relationship shown and has a composition represented by 0 <x <1, 0 ≦ y ≦ 0.5, 2.5 ≦ z ≦ 4.5, respectively). Hydrogen storage alloys are disclosed.

特許文献6には、過放電後の充電時に電池の内圧上昇が抑制され、電池のサイクル寿命の向上に貢献する水素吸蔵合金として、一般式:(LaPrNd1-wMgNiz-x-yAl(式中、記号Zは、Ce等よりなる群から選ばれる元素を表し、記号Tは、V等よりなる群から選ばれる元素を表し、下付き添字a、b、c、dは、0≦a≦0.25、0<b、0<c、0≦d≦0.20で示される範囲にあるとともにa+b+c+d=1、0.20≦b/c≦0.35で示される関係を満たし、下付き添字x、y、z、wはそれぞれ0.15≦x≦0.30、0≦y≦0.5、3.3≦z≦3.8、0.05≦w≦0.15で示される範囲にある)で表される組成を有する水素吸蔵合金が開示されている。 In Patent Document 6, as a hydrogen storage alloy that suppresses an increase in the internal pressure of a battery during charging after over-discharge and contributes to an improvement in the cycle life of the battery, a general formula: (La a Pr b Nd c Z d ) 1-w . Mg w Ni z-x-y Al x T y (In the formula, the symbol Z represents an element selected from the group consisting of Ce and the like, and the symbol T represents an element selected from the group consisting of V and the like, and is subscripted. The subscripts a, b, c, and d are in the range indicated by 0 ≦ a ≦ a ≦ 0.25, 0 <b, 0 <c, 0 ≦ d ≦ 0.20, and a + b + c + d = 1, 0.20 ≦ b /. The relationship shown by c≤0.35 is satisfied, and the subscripts x, y, z, and w are 0.15≤x≤0.30, 0≤y≤0.5, 3.3≤z≤3, respectively. 8. A hydrogen storage alloy having a composition represented by (8, 0.05 ≦ w ≦ 0.15) is disclosed.

特許文献7には、耐アルカリ性に優れ、安価な希土類-Mg-Ni系の水素吸蔵合金として、一般式:(CePrNd1-wMgNiAl(式中、Aは、Pm、Sm等よりなる群から選ばれる少なくとも1種の元素を表し、Tは、V、Nb等よりなる群から選ばれる少なくとも1種の元素を表し、a、b、c、d、eは、a>0、b≧0、c≧0、d≧0、e≧0、a+b+c+d+e=1で示される関係を満たし、w、x、y、zはそれぞれ0.08≦w≦0.13、3.2≦x+y+z≦4.2、0.15≦y≦0.25、0≦z≦0.1で示される範囲にある)で表される組成を有する水素吸蔵合金が開示されている。 In Patent Document 7, as an inexpensive rare earth-Mg-Ni hydrogen storage alloy having excellent alkali resistance, the general formula: ( Cea Pr b Nd c Y d A e ) 1-w Mg w Ni x Al y T. z (In the formula, A represents at least one element selected from the group consisting of Pm, Sm, etc., T represents at least one element selected from the group consisting of V, Nb, etc., a, b. , C, d, e satisfy the relationship shown by a> 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, a + b + c + d + e = 1, and w, x, y, and z are 0.08, respectively. Hydrogen storage having a composition represented by (within the range indicated by ≦ w ≦ 0.13, 3.2 ≦ x + y + z ≦ 4.2, 0.15 ≦ y ≦ 0.25, 0 ≦ z ≦ 0.1) Alloys are disclosed.

さらに特許文献8には、一般式:Ln1-xMgNi(式中、Lnは、Yを含む希土類元素とCaとZrとTiとから選択される少なくとも1種の元素であり、Aは、Co、Mn、V、Cr、Nb、Al、Ga、Zn、Sn、Cu、Si、PおよびBから選択される少なくとも1種の元素であり、添字x、yおよびzが、0.05≦x0.25、0<z≦1.5、2.8≦y+z≦4.0の条件を満たす)で表される水素吸蔵合金において、上記のLn中にSmが20モル%以上含まれるようにした水素吸蔵合金が開示されている。 Further, in Patent Document 8, the general formula: Ln 1-x Mg x Ny Az (in the formula, Ln is at least one element selected from rare earth elements including Y and Ca, Zr and Ti. , A is at least one element selected from Co, Mn, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P and B, and the subscripts x, y and z are 0. In the hydrogen storage alloy represented by (the condition of 0.05 ≦ x0.25, 0 <z ≦ 1.5, 2.8 ≦ y + z ≦ 4.0), 20 mol% or more of Sm is contained in the above Ln. The hydrogen storage alloys that have been made to be used are disclosed.

さらに、特許文献9には、耐アルカリ性に優れた水素吸蔵合金として、一般式:(LaSm1-wMgNiAl(式中、AおよびTは、Pr、Nd等よりなる群およびV、Nb等よりなる群から選ばれる少なくとも1種の元素をそれぞれ表し、添字a、b、cはそれぞれ、a>0、b>0、0.1>c≧0、a+b+c=lで示される関係を満たし、添字w、x、y、zはそれぞれ0.1<w≦1、0.05≦y≦0.35、0≦z≦0.5、3.2≦x+y+z≦3.8で示される範囲にある)にて示される組成を有する水素吸蔵合金が開示されている。 Further, in Patent Document 9, as a hydrogen storage alloy having excellent alkali resistance, a general formula: (La a Smb A c ) 1-w Mg w Ni x Aly T z (in the formula, A and T are Pr. , Nd and the like and at least one element selected from the group consisting of V, Nb and the like, respectively, and the subscripts a, b and c represent a> 0, b> 0 and 0.1> c ≧ 0, respectively. , A + b + c = l, and the subscripts w, x, y, and z are 0.1 <w≤1, 0.05≤y≤0.35, 0≤z≤0.5, 3.2, respectively. A hydrogen storage alloy having the composition shown by (within the range shown by ≦ x + y + z ≦ 3.8) is disclosed.

一方、特許文献10には主たる結晶相がCaCu型構造を持たない(I)式で表される合金について、8Nの水酸化カリウム水溶液に60℃、24時間浸漬した後の表面の強磁性成分による飽和磁化から同水酸化カリウム水溶液に60℃、96時間浸漬した後の表面の強磁性成分による飽和磁化の増加分が0.05~5.0emu/mである水素吸蔵合金粉末を用いたアルカリ二次電池が報告されている。
Ln1-xMg(Ni1-y ・・・(I)
ただし、式中のLnはランタノイド元素、Ca、Sr、Sc、Y、Ti、ZrおよびHfから選ばれる少なくとも1つの元素、TはLi、V、Nb、Ta、Cr、Mo、Mn、Fe、Co、Al、Ga、Zn、Sn、In、Cu、Si、PおよびBから選ばれる少なくとも1つの元素、x、y、zはそれぞれ0<x<1、0≦y≦0.5、2.5≦z≦4.5を示す。
この技術は、濃度むらの大小に着目、均質性が高い場合、水素の吸蔵・放出に伴う微粉化が起こり難く、かつ電解液により腐食され難いという性質を有するため、二次電池に搭載した場合、充放電サイクル寿命が向上されるとしている。
On the other hand, in Patent Document 10, the main crystalline phase of the alloy represented by the formula (I) having no CaCu type 5 structure is immersed in an 8N potassium hydroxide aqueous solution at 60 ° C. for 24 hours, and then the surface ferromagnetic component. A hydrogen storage alloy powder having an increase in saturation magnetization due to the ferromagnetic component on the surface after being immersed in the same potassium hydroxide aqueous solution at 60 ° C. for 96 hours was used. Alkaline secondary batteries have been reported.
Ln 1-x Mg x (Ni 1-y T y ) z ... (I)
However, Ln in the formula is at least one element selected from lanthanoid elements, Ca, Sr, Sc, Y, Ti, Zr and Hf, and T is Li, V, Nb, Ta, Cr, Mo, Mn, Fe and Co. , Al, Ga, Zn, Sn, In, Cu, Si, P and B, at least one element, x, y, z is 0 <x <1, 0 ≦ y ≦ 0.5, 2.5, respectively. ≤z ≤ 4.5 is shown.
This technology pays attention to the magnitude of the concentration unevenness, and when the homogeneity is high, it has the property that it is difficult for pulverization due to occlusion / release of hydrogen to occur and it is difficult for it to be corroded by the electrolytic solution. , It is said that the charge / discharge cycle life will be improved.

一方、非特許文献1にはLaをCeで置換した水素吸蔵合金、La0.8-xCeMg0.2Ni3.5(x=0~0.20)が報告されている。この合金の評価結果は、電気化学特性を総合的に見て、x=0.1が最適な組成と結論づけている。 On the other hand, Non-Patent Document 1 reports a hydrogen storage alloy in which La is substituted with Ce, La 0.8-x Ce x Mg 0.2 Ni 3.5 (x = 0 to 0.20). The evaluation results of this alloy conclude that x = 0.1 is the optimum composition by comprehensively looking at the electrochemical properties.

また、非特許文献2によると、RE-Mg-Ni系水素吸蔵合金(RE:希土類元素)へのCeの影響に関する章が設定されている。この章では、
(La0.5Nd0.50.85Mg0.15Ni3.3Al0.2
(La0.45Nd0.45Ce0.10.85Mg0.15Ni3.3Al0.2
(La0.4Nd0.4Ce0.20.85Mg0.15Ni3.3Al0.2
(La0.3Nd0.3Ce0.40.85Mg0.15Ni3.3Al0.2
の合金が開示され、評価した結果が報告されている。
Further, according to Non-Patent Document 2, a chapter on the influence of Ce on the RE-Mg—Ni hydrogen storage alloy (RE: rare earth element) is set. In this chapter
(La 0.5 Nd 0.5 ) 0.85 Mg 0.15 Ni 3.3 Al 0.2
(La 0.45 Nd 0.45 Ce 0.1 ) 0.85 Mg 0.15 Ni 3.3 Al 0.2
(La 0.4 Nd 0.4 Ce 0.2 ) 0.85 Mg 0.15 Ni 3.3 Al 0.2
(La 0.3 Nd 0.3 Ce 0.4 ) 0.85 Mg 0.15 Ni 3.3 Al 0.2
Alloys have been disclosed and the results of their evaluation have been reported.

また、非特許文献3によると、La-Sm-Mg-Ni系水素吸蔵合金の特性が報告されている。具体的には、La0.6Sm0.15Mg0.25Ni3.4合金の相構成および電気化学特性が示されている。 Further, according to Non-Patent Document 3, the characteristics of the La—Sm—Mg—Ni hydrogen storage alloy are reported. Specifically, the phase composition and electrochemical characteristics of the La 0.6 Sm 0.15 Mg 0.25 Ni 3.4 alloy are shown.

特開2001-266861号公報Japanese Unexamined Patent Publication No. 2001-266861 特開平11-323469号公報Japanese Unexamined Patent Publication No. 11-323469 国際公開第01/ 48841号International Publication No. 01/48841 特開2005- 32573号公報Japanese Unexamined Patent Publication No. 2005-32573 特開2005-290473号公報Japanese Unexamined Patent Publication No. 2005-290473 特開2007-169724号公報Japanese Unexamined Patent Publication No. 2007-169724 特開2008- 84668号公報Japanese Unexamined Patent Publication No. 2008-84668 特開2009- 74164号公報Japanese Unexamined Patent Publication No. 2009-74164 特開2009-108379号公報Japanese Unexamined Patent Publication No. 2009-108379 特開2000-188105号公報Japanese Unexamined Patent Publication No. 2000-188105

S.Xiangqian et al., Intern. J. Hydrogen Energy, 34、 395(2009)S. Xiangqian et al. , Intern. J. Hydrogen Energy, 34, 395 (2009) 安岡茂和、 博士論文:希土類-Mg-Ni系(超格子)水素吸蔵合金の実用化とこれを用いた高性能市販ニッケル水素電池の開発(2017年、京都大学)Shigekazu Yasuoka, Doctoral Dissertation: Practical application of rare earth-Mg-Ni (super lattice) hydrogen storage alloy and development of high-performance commercial nickel-metal hydride battery using this (2017, Kyoto University) L.Zhang et al., Intern. J. Hydrogen Energy 41 1791(2016)L. Zhang et al. , Intern. J. Hydrogen Energy 41 1791 (2016)

特許文献1に開示された技術は、予め20~60μmに微粉砕した合金を水素吸蔵・放出によりさらなる割れを評価しているため、もともと割れにくく、割れ性の評価としては厳しい条件ではない。特に、対象としている合金がAB合金であり、さらに耐久性を上げるには本質的に課題がある。 Since the technique disclosed in Patent Document 1 evaluates further cracking by storing and releasing hydrogen from an alloy finely pulverized to 20 to 60 μm in advance, it is originally difficult to crack and is not a strict condition for evaluation of crackability. In particular, the target alloy is AB5 alloy, and there is an essential problem in further improving the durability.

また、上記特許文献2や特許文献3に開示の技術は、合金の最適化がなされず各種用途に実用化されるまでには至らなかった。 Further, the techniques disclosed in Patent Documents 2 and 3 have not been put into practical use in various applications without optimizing the alloy.

特許文献4に開示の技術では、高水素平衡圧の水素吸蔵合金を用いると、充放電サイクル寿命が低下するという新たな問題が生じた。 In the technique disclosed in Patent Document 4, a new problem has arisen in which the charge / discharge cycle life is shortened when a hydrogen storage alloy having a high hydrogen equilibrium pressure is used.

特許文献5に開示の技術では、比較的安価な素材であるLa含有量が低く抑えられており、結果として高価なPr、NdさらにはTiを多く含んでいて、安価で耐久性に優れた水素吸蔵合金は供しえない。 In the technique disclosed in Patent Document 5, the La content, which is a relatively inexpensive material, is suppressed to a low level, and as a result, hydrogen containing a large amount of expensive Pr, Nd, and Ti, is inexpensive and has excellent durability. Storage alloys cannot be provided.

特許文献6に開示の技術も特許文献5と同様に、Pr、Ndが必須の合金で、かつLaの含有量は少なくなっており、安価で耐久性に優れた水素吸蔵合金は供しえない。 Similar to Patent Document 5, the technique disclosed in Patent Document 6 is an alloy in which Pr and Nd are indispensable, and the content of La is low, so that an inexpensive and highly durable hydrogen storage alloy cannot be provided.

また、特許文献7に開示の技術では、Laが含まれず、Ceは含有されているもののPr、Ndを比較的多く含有した合金になっており、安価で耐久性に優れた水素吸蔵合金は供しえない。 Further, in the technique disclosed in Patent Document 7, La is not contained, Ce is contained, but Pr and Nd are contained in a relatively large amount, and the hydrogen storage alloy is inexpensive and has excellent durability. I can't.

さらに、特許文献8に開示された技術は、Smを比較的多く含んだ合金となっており、Pr、Ndよりは安価な元素を使用しているものの、安価で耐久性に優れた水素吸蔵合金を供しえない。 Further, the technique disclosed in Patent Document 8 is an alloy containing a relatively large amount of Sm, and although it uses an element cheaper than Pr and Nd, it is an inexpensive and highly durable hydrogen storage alloy. Cannot be offered.

特許文献9に開示された技術は、La、Smを比較的多く含んだ合金となっており、Pr、Ndよりは安価な元素を主体に使用しているものの、安価で耐久性に優れた水素吸蔵合金を供しえない。特に、実施例にはZrを必須としており、B/A比は3.6が開示されているのみである。また、La含有量増加で低下した水素平衡圧を電池で使用可能なレベルに上げるとしているが、安価なLaリッチ組成に設定すると不十分な場合が多い。 The technology disclosed in Patent Document 9 is an alloy containing a relatively large amount of La and Sm, and although it mainly uses elements that are cheaper than Pr and Nd, it is inexpensive and has excellent durability. Cannot provide storage alloy. In particular, Zr is essential in the examples, and the B / A ratio of 3.6 is only disclosed. Further, it is said that the hydrogen equilibrium pressure lowered by the increase in La content is raised to a level that can be used in a battery, but it is often insufficient to set an inexpensive La-rich composition.

特許文献10に開示された技術は、合金の濃度むらの大小に着目、初期の放電容量とサイクル寿命のバランスを見出すためになされたものである。具体的には、La0.7Mg0.3(Ni0.8Co0.16Cr0.01Mn0.02Al0.013.1なる組成で、75μm以下になるように篩を通し、アルカリ水溶液に浸漬、表面積当たりの飽和磁化増加分を0.5~5.0(emu/m)変化させてサイクル特性の向上を図っている。しかしながら、このような合金は微粉化され難い分、その比表面積が小さいため、初期の放電容量が小さくなる。一方、濃度むらの多い水素吸蔵合金は水素の吸蔵・放出に伴う微粉化が起こりやすく、電解液との接触により腐食される。その結果、このような合金を搭載した二次電池は充放電サイクル初期に高い放電容量が得られるものの、充放電サイクル寿命が短くなるという課題が新たに発生する。このように、特許文献10に記載の合金では放電容量、サイクル寿命特性が不十分であり、実用するにはさらに特性向上が必要であった。 The technique disclosed in Patent Document 10 is made to find a balance between the initial discharge capacity and the cycle life by paying attention to the magnitude of the concentration unevenness of the alloy. Specifically, a sieve with a composition of La 0.7 Mg 0.3 (Ni 0.8 Co 0.16 Cr 0.01 Mn 0.02 Al 0.01 ) 3.1 so as to be 75 μm or less. Through it, it is immersed in an alkaline aqueous solution, and the amount of increase in saturation magnetization per surface area is changed by 0.5 to 5.0 (emu / m 2 ) to improve the cycle characteristics. However, since such an alloy is difficult to be micronized and its specific surface area is small, the initial discharge capacity is small. On the other hand, hydrogen storage alloys with a large concentration unevenness tend to be micronized due to the storage and release of hydrogen, and are corroded by contact with the electrolytic solution. As a result, although the secondary battery equipped with such an alloy can obtain a high discharge capacity at the initial stage of the charge / discharge cycle, there is a new problem that the charge / discharge cycle life is shortened. As described above, the alloy described in Patent Document 10 has insufficient discharge capacity and cycle life characteristics, and further improvement of the characteristics is required for practical use.

一方、非特許文献1ではLaの一部をCe置換した希士類-Mg-Ni合金が示されており、この合金の試作評価では、電気化学特性を総合的に見て、Ceの置換量x=0.1の合金が最適な組成と結論づけているが、まだ実用化には供していない。 On the other hand, Non-Patent Document 1 shows a rare-Mg-Ni alloy in which a part of La is replaced with Ce. In the trial evaluation of this alloy, the amount of replacement of Ce is comprehensively considered. It is concluded that the alloy with x = 0.1 has the optimum composition, but it has not been put into practical use yet.

また、非特許文献2では結論として、Ceを含んだ希土類-Mg-Ni系合金は、水素吸蔵放出量が少なく、さらに水素吸蔵放出を繰り返すと微粉化しやすいことから、電池での劣化が大きいことが明らかとなったとしている。 Further, in Non-Patent Document 2, it is concluded that the rare earth-Mg-Ni alloy containing Ce has a small amount of hydrogen storage and release, and is easily pulverized when hydrogen storage and release are repeated, so that the deterioration in the battery is large. Is said to have become clear.

さらに、非特許文献3では、結論として、La0.60Sm0.15Mg0.25Ni3.4合金の電気化学特性を報告しているが、サイクル特性は十分ではなく、140回の充放電サイクルで初期容量の80%にまで低下している。 Furthermore, Non-Patent Document 3 reports, in conclusion, the electrochemical characteristics of the La 0.60 Sm 0.15 Mg 0.25 Ni 3.4 alloy, but the cycle characteristics are not sufficient and it is filled 140 times. It has dropped to 80% of the initial capacity in the discharge cycle.

すなわち、希土類-Mg-Ni系水素吸蔵合金では、水素吸蔵放出を繰り返すことにより合金に割れが生じて、微粉化が促進するとともに、新生面が生じるため耐食性が低いと合金表面が反応して、希土類水酸化物を生成したりして、電解液を消耗し、結果として電池の内部抵抗が高くなり、放電容量が低下することで、電池寿命となる。 That is, in a rare earth-Mg-Ni hydrogen storage alloy, repeated hydrogen storage and discharge causes cracks in the alloy, which promotes pulverization and a new surface, so if the corrosion resistance is low, the alloy surface reacts and the rare earth Hydrogen oxide is generated and the electrolytic solution is consumed, and as a result, the internal resistance of the battery increases and the discharge capacity decreases, so that the battery life is reached.

本発明は、従来技術が抱えるこれらの問題点に鑑みてなされたものであって、安価であるとともに、要求される高耐久性を実現するために必要な特性を持ち合わせたアルカリ蓄電池用水素吸蔵合金を提供することを目的とする。また、それを具体的に実用に供する希土類-Mg-Ni系合金組成を提供するものである。 The present invention has been made in view of these problems of the prior art, and is an inexpensive hydrogen storage alloy for an alkaline storage battery having the characteristics necessary for achieving the required high durability. The purpose is to provide. Further, the present invention provides a rare earth-Mg-Ni alloy composition that specifically puts it into practical use.

上記目的を達成するため、鋭意研究を重ねた結果、アルカリ蓄電池の負極用の水素吸蔵合金として、下記の条件を備える合金を見出した。
すなわち、本発明にかかるアルカリ蓄電池用水素吸蔵合金は、主相がA型結晶構造を有する水素吸蔵合金であって、150μm以上2mm以下の範囲に粒度調整した水素吸蔵合金に対して、繰り返し水素吸蔵・放出後の体積平均粒径MVが75μm以上で、かつ、80℃で水素圧を1MPaまで加圧した時の水素吸蔵量(H/M;Hは水素原子数、Mは金属原子数)が0.9以上である、ここで、水素吸蔵は、80℃で水素圧を3MPaまで加圧して1時間保持し、水素放出は、真空排気し、80℃で0.01MPaまで減圧して1時間保持し、これを5回繰り返した後に体積平均粒径MVを測定する、ことを特徴とする。
As a result of diligent research to achieve the above object, an alloy having the following conditions was found as a hydrogen storage alloy for the negative electrode of an alkaline storage battery.
That is, the hydrogen storage alloy for an alkaline storage battery according to the present invention is a hydrogen storage alloy having an A2B7 type crystal structure as a main phase, and has a particle size adjusted to a range of 150 μm or more and 2 mm or less. Hydrogen storage amount (H / M; H is the number of hydrogen atoms, M is the metal atom) when the volume average particle size MV after repeated hydrogen storage and release is 75 μm or more and the hydrogen pressure is pressurized to 1 MPa at 80 ° C. The number) is 0.9 or more. Here, the hydrogen storage pressurizes the hydrogen pressure to 3 MPa at 80 ° C. and holds it for 1 hour, and the hydrogen release is vacuum exhausted and reduced to 0.01 MPa at 80 ° C. It is characterized in that it is held for 1 hour, and this is repeated 5 times, and then the volume average particle size MV is measured.

また、本発明にかかるアルカリ蓄電池用水素吸蔵合金は、水素吸蔵放出特性において、水素吸蔵後の放出時のプラトー傾きが、下記(A)式を満足する範囲にあることが好ましい。
0.8≦log[(P0.7/P0.3)/0.4]≦3.0 ・・・(A)
ここで、P0.7は、水素吸蔵量(H/M)=0.7の時の水素圧[MPa]、
P0.3は、水素吸蔵量(H/M)=0.3の時の水素圧[MPa]
を表す。
Further, the hydrogen storage alloy for an alkaline storage battery according to the present invention preferably has a plateau inclination at the time of release after hydrogen storage in a range satisfying the following formula (A) in terms of hydrogen storage and release characteristics.
0.8 ≤ log [(P0.7 / P0.3) /0.4]≤3.0 ... (A)
Here, P0.7 is the hydrogen pressure [MPa] when the hydrogen storage amount (H / M) = 0.7.
P0.3 is the hydrogen pressure [MPa] when the hydrogen storage amount (H / M) = 0.3.
Represents.

また、本発明にかかるアルカリ蓄電池用水素吸蔵合金は、7.15mol/Lの水酸化カリウム水溶液に80℃で8時間浸漬した後、25℃で10kOeの磁場を印加して測定した飽和磁化が60emu/m以下であることが好ましい。 Further, the hydrogen storage alloy for an alkaline storage battery according to the present invention has a saturation magnetization of 60 emu measured by immersing it in a 7.15 mol / L potassium hydroxide aqueous solution at 80 ° C. for 8 hours and then applying a magnetic field of 10 kOe at 25 ° C. It is preferably / m 2 or less.

さらに、本発明にかかるアルカリ蓄電池用水素吸蔵合金は、下記一般式(1)式で表されることが好ましい。
(La1-a-bCeSm1-cMgNi ・・・(1)
ここで、上記(1)式中のM、Tおよび添字a、b、c、d、eおよびfは、
M:Al、Zn、Sn、Siから選ばれる少なくとも1種、
T:Cr、Mo、Vから選ばれる少なくとも1種、
0<a≦0.10、
0≦b≦0.20、
0<a+b≦0.22
0.18≦c≦0.32、
0.03≦e≦0.16、
0≦f≦0.03、
3.2≦d+e+f<3.50
の条件を満たす。
Further, the hydrogen storage alloy for an alkaline storage battery according to the present invention is preferably represented by the following general formula (1).
(La 1-a-b Ce a Sm b ) 1-c Mg c Nid Me T f ... (1)
Here, M, T and the subscripts a, b, c, d, e and f in the above equation (1) are
M: At least one selected from Al, Zn, Sn, Si,
T: At least one selected from Cr, Mo, V,
0 <a≤0.10,
0 ≦ b ≦ 0.20,
0 <a + b ≦ 0.22
0.18 ≤ c ≤ 0.32,
0.03 ≤ e ≤ 0.16,
0 ≦ f ≦ 0.03,
3.2 ≦ d + e + f <3.50
Satisfy the conditions of.

また、本発明にかかるアルカリ蓄電池用水素吸蔵合金はAlを含み、7.15mol/Lの水酸化カリウム水溶液に80℃で8時間浸漬した後のAlの溶出量が、水酸化カリウム水溶液中への浸漬処理前の合金中のAl量の3.3mass%以下であることが好ましい。 Further, the hydrogen storage alloy for an alkaline storage battery according to the present invention contains Al, and the amount of Al eluted after being immersed in a 7.15 mol / L potassium hydroxide aqueous solution at 80 ° C. for 8 hours is the amount of Al eluted into the potassium hydroxide aqueous solution. The amount of Al in the alloy before the dipping treatment is preferably 3.3 mass% or less.

本発明のアルカリ蓄電池用水素吸蔵合金は、耐久性、放電容量に優れており、これを用いたニッケル水素二次電池は高出力密度を有し、充放電サイクル寿命も優れている。そのため、各種用途、例えば民生用途、工業用途、車載用途などに利用できる。 The hydrogen storage alloy for an alkaline storage battery of the present invention is excellent in durability and discharge capacity, and the nickel hydrogen secondary battery using the hydrogen storage alloy has a high output density and an excellent charge / discharge cycle life. Therefore, it can be used for various purposes such as consumer use, industrial use, and in-vehicle use.

本発明の水素吸蔵合金を用いたアルカリ蓄電池を例示する部分切欠斜視図である。It is a partial cut-out perspective view which illustrates the alkaline storage battery using the hydrogen storage alloy of this invention. 水素吸蔵放出特性(PCT特性)の一例と、水素吸蔵量H/M=0.3とH/M=0.7の時の水素圧を示すグラフである。It is an example of a hydrogen storage release characteristic (PCT characteristic), and is a graph which shows the hydrogen pressure at the time of the hydrogen storage amount H / M = 0.3 and H / M = 0.7.

本発明の水素吸蔵合金を用いたアルカリ蓄電池について、電池の一例を示す部分切欠斜視図である図1に基づいて説明する。アルカリ蓄電池10は、水酸化ニッケル(Ni(OH))を主正極活物質とするニッケル正極1と、本発明にかかる水素吸蔵合金(MH)を負極活物質とする水素吸蔵合金負極2と、セパレータ3とからなる電極群を、アルカリ電解液を充填した電解質層(図示せず)とともに筐体4内に備えた蓄電池である。 The alkaline storage battery using the hydrogen storage alloy of the present invention will be described with reference to FIG. 1, which is a partially cutaway perspective view showing an example of the battery. The alkaline storage battery 10 includes a nickel positive electrode 1 using nickel hydroxide (Ni (OH) 2 ) as the main positive electrode active material, a hydrogen storage alloy negative electrode 2 using the hydrogen storage alloy (MH) according to the present invention as the negative electrode active material, and the negative electrode 2. A storage battery in which an electrode group composed of a separator 3 is provided in a housing 4 together with an electrolyte layer (not shown) filled with an alkaline electrolytic solution.

この電池10は、いわゆるニッケル-金属水素化物電池(Ni-MH電池)に該当し、以下の反応が生じる。 The battery 10 corresponds to a so-called nickel-metal hydride battery (Ni-MH battery), and the following reaction occurs.

正極: NiOOH+HO+e-=Ni(OH)+OH-
負極: MH+OH-=M+HO+e-
Positive electrode: NiOOH + H 2 O + e-= Ni ( OH ) 2 + OH-
Negative electrode : MH + OH-= M + H 2 O + e-

[水素吸蔵合金]
以下、本発明にかかる、アルカリ蓄電池の負極に用いる水素吸蔵合金について説明する。
[Hydrogen storage alloy]
Hereinafter, the hydrogen storage alloy used for the negative electrode of the alkaline storage battery according to the present invention will be described.

ニッケル水素電池の特性を向上させるにあたり、放電容量は合金組成で決まる部分が多い。一方、耐久性に関しては水素吸蔵放出に伴う合金の微粉化の程度、あるいはアルカリ水溶液中への合金成分の溶出などに左右される。これは、合金組成と熱処理に基づき生成する合金相の割合や合金相の性質による。高耐久性の要求を満足する水素吸蔵合金の開発を進めるにあたり、鋭意研究した結果、水素吸蔵・放出の繰り返しによる合金の割れ性を評価する際に、150μm以上2mm以下にふるいわけすることにより、この合金を用いて80℃で3MPaまで水素を加圧し、水素吸蔵、その後真空排気により水素を放出、これを5回繰り返した後の粒度分布を評価、体積平均粒径(MV)を代表値として表すことで、特に耐久性に優れた水素吸蔵合金を見出すに至った。詳細な条件は、以下の通りである。 In improving the characteristics of nickel-metal hydride batteries, the discharge capacity is largely determined by the alloy composition. On the other hand, the durability depends on the degree of micronization of the alloy due to hydrogen storage and release, or the elution of alloy components into an alkaline aqueous solution. This depends on the alloy composition, the proportion of the alloy phase produced based on the heat treatment, and the properties of the alloy phase. As a result of diligent research in advancing the development of hydrogen storage alloys that satisfy the requirements for high durability, when evaluating the crackability of the alloy due to repeated hydrogen storage and release, we screened it to 150 μm or more and 2 mm or less. Using this alloy, hydrogen is pressurized to 3 MPa at 80 ° C., hydrogen is stored, and then hydrogen is released by vacuum exhaust. The particle size distribution after repeating this 5 times is evaluated, and the volume average particle size (MV) is used as a representative value. By expressing it, we came to find a hydrogen storage alloy with particularly excellent durability. The detailed conditions are as follows.

PCT(Pressure-Composition-Temperature)評価装置の測定ホルダーに水素吸蔵合金7gを充填、80℃で1時間真空排気(0.01MPa以下)を行った後、温度をキープして水素圧0.01~3MPaの範囲で水素吸蔵・放出測定(PCT特性評価)を行う。この後、1時間真空排気(0.01MPa)を行い、3MPaまで水素ガスを導入して1時間保持して、合金に水素をほぼフルに吸蔵させ、1時間真空排気(0.01MPa)して水素を放出させる。これを3回繰り返す。最後に1サイクル目と同様に水素圧0.01~3MPaの範囲で水素吸蔵・放出測定(PCT特性評価)を行う。1回目と5回目の水素吸蔵・放出と2~4回目の水素吸蔵・放出の違いは処理時間であり、2~4回目の水素吸蔵・放出は一気に3MPaまで水素圧をかけるため、所要時間が短い。このように水素吸蔵・放出サイクルを合計5回行った後、水素吸蔵合金粉を取り出し、粒度分布測定を行う。繰り返し水素吸蔵・放出後の体積平均粒径MVの範囲は、75μm以上であり、好ましくは80μmである。この範囲であれば、実際に電池に組み込んだ時の充放電に伴う水素吸蔵合金の微粉化が進んでおらず、アルカリ溶液中での良好な耐食性と相まって、耐久性に優れていることが判る。
なお、体積平均粒径MVはレーザー回折粒度分布測定装置で測定すればよく、測定装置としては、例えばマイクロトラック・ベル社製MT3300EXII型などを用いることができる。
Fill the measurement holder of the PCT (Pressure-Composition-Temperature) evaluation device with 7 g of hydrogen storage alloy, perform vacuum exhaust (0.01 MPa or less) at 80 ° C for 1 hour, and then keep the temperature to keep the hydrogen pressure from 0.01. Hydrogen storage / release measurement (PCT characteristic evaluation) is performed in the range of 3 MPa. After that, vacuum exhaust (0.01 MPa) is performed for 1 hour, hydrogen gas is introduced up to 3 MPa and held for 1 hour, the alloy is occluded almost completely with hydrogen, and vacuum exhaust (0.01 MPa) is performed for 1 hour. Release hydrogen. This is repeated 3 times. Finally, hydrogen storage / release measurement (PCT characteristic evaluation) is performed in the range of hydrogen pressure of 0.01 to 3 MPa in the same manner as in the first cycle. The difference between the 1st and 5th hydrogen storage / release and the 2nd to 4th hydrogen storage / release is the processing time, and the 2nd to 4th hydrogen storage / release applies hydrogen pressure up to 3 MPa at once, so the required time is short. After performing the hydrogen storage / release cycle a total of 5 times in this way, the hydrogen storage alloy powder is taken out and the particle size distribution is measured. The range of the volume average particle size MV after repeated storage and release of hydrogen is 75 μm or more, preferably 80 μm. Within this range, it can be seen that the hydrogen storage alloy has not been micronized due to charging and discharging when it is actually incorporated into a battery, and is excellent in durability in combination with good corrosion resistance in an alkaline solution. ..
The volume average particle size MV may be measured by a laser diffraction particle size distribution measuring device, and as the measuring device, for example, MT3300EXII type manufactured by Microtrac Bell can be used.

水素吸蔵合金の割れは、水素吸蔵・放出に伴う結晶格子の膨張・収縮による歪みに起因すると考えられる。従って、水素吸蔵量が少ないと格子の膨張・収縮は少なくなり、結果として微粉化しにくい。しかし、一方で水素吸蔵量が少ないと電池材としての放電容量が小さくなり、一定の電池容量を得るには、電池の大型化や高コスト化につながるため、好ましくない。従って、上記繰り返し水素吸蔵・放出後の体積平均粒径MVを実現するのに必要な条件として、80℃でのPCT測定から得られる1MPaでの水素吸蔵量の指標H/M(水素Hと金属Mの原子比率)の値を0.90以上とする。好ましくは0.91以上である。この範囲であれば、十分な放電容量を保持し、高耐久性の水素吸蔵合金が得られているといえる。 It is considered that the cracking of the hydrogen storage alloy is caused by the strain due to the expansion and contraction of the crystal lattice due to the hydrogen storage and release. Therefore, when the hydrogen storage amount is small, the expansion / contraction of the lattice is small, and as a result, it is difficult to atomize. However, on the other hand, if the hydrogen storage amount is small, the discharge capacity as a battery material becomes small, and it is not preferable to obtain a constant battery capacity because it leads to an increase in size and cost of the battery. Therefore, as a condition necessary to realize the volume average particle size MV after repeated hydrogen storage and release, the index H / M (hydrogen H and metal) of the hydrogen storage amount at 1 MPa obtained from the PCT measurement at 80 ° C. The value of (atomic ratio of M) is 0.90 or more. It is preferably 0.91 or more. Within this range, it can be said that a hydrogen storage alloy having sufficient discharge capacity and high durability is obtained.

また、80℃で1MPa水素加圧時の水素吸蔵量(H/M;Hは水素原子数、Mは金属原子数)を0.9以上とし、水素吸蔵後の放出時のプラトー傾きを、水素吸蔵量H/M=0.3の時の水素圧P0.3(MPa)と、H/M=0.7の時の水素圧P0.7(MPa)をもとに算出した。すなわち、log[(P0.7/P0.3)/0.4]で算出した値が0.8以上3.0以下であることが好ましい。プラトーの傾きが0.8より小さいと、水素吸蔵時の格子の膨張が一方向に起こりやすく、言い換えると異方的に伸び縮みしやすいため、生じたひずみで割れが促進されるおそれがある。一方、3.0を超えたプラトーの傾きになると、水素圧をかけても水素吸蔵量が増えにくくなり、水素吸蔵量が減ってしまうおそれがある。さらに、好ましくは、0.90以上、2.95以下である。 Further, the hydrogen storage amount (H / M; H is the number of hydrogen atoms and M is the number of metal atoms) at 80 ° C. and 1 MPa hydrogen pressurization is set to 0.9 or more, and the plateau inclination at the time of release after hydrogen storage is set to hydrogen. It was calculated based on the hydrogen pressure P0.3 (MPa) when the storage amount H / M = 0.3 and the hydrogen pressure P0.7 (MPa) when H / M = 0.7. That is, it is preferable that the value calculated by log [(P0.7 / P0.3) /0.4] is 0.8 or more and 3.0 or less. If the slope of the plateau is smaller than 0.8, the lattice tends to expand in one direction during hydrogen storage, in other words, it tends to expand and contract anisotropically, and the generated strain may promote cracking. On the other hand, if the plateau tilt exceeds 3.0, it becomes difficult to increase the hydrogen storage amount even if hydrogen pressure is applied, and there is a possibility that the hydrogen storage amount will decrease. Further, it is preferably 0.90 or more and 2.95 or less.

一方、水素吸蔵合金をアルカリ水溶液中に浸漬した時の合金成分の溶出度合いは耐食性に影響し、その結果として耐久性の良好な合金を実現することになる。このため、種々の条件で評価を重ねた結果、体積平均粒径MVが約35μmの合金粉に対して、アルカリ水溶液浸漬後の磁化を測定して、耐食性と結びつけた。具体的には、80℃で8時間、7.15mol/Lの水酸化カリウム水溶液に浸漬、洗浄乾燥後、得られたサンプルについて、試料振動型磁力計(VSM)を用いて温度25℃、磁場10kOeで飽和磁化を測定し、60emu/m以下である場合に耐久性に優れた合金が得られることを見出した。好ましくは55emu/m以下である。 On the other hand, the degree of elution of the alloy component when the hydrogen storage alloy is immersed in the alkaline aqueous solution affects the corrosion resistance, and as a result, an alloy having good durability is realized. Therefore, as a result of repeated evaluations under various conditions, the magnetization of the alloy powder having a volume average particle size MV of about 35 μm after being immersed in the alkaline aqueous solution was measured and linked to the corrosion resistance. Specifically, the sample obtained after being immersed in a 7.15 mol / L potassium hydroxide aqueous solution at 80 ° C. for 8 hours, washed and dried, was subjected to a sample vibration type magnetometer (VSM) at a temperature of 25 ° C. and a magnetic field. Saturation magnetization was measured at 10 kOe, and it was found that an alloy having excellent durability can be obtained when the saturation magnetization is 60 emu / m 2 or less. It is preferably 55 emu / m 2 or less.

なお、VSMで測定した試料の粒度分布を測定し、その結果に基づき算出される比表面積CS値(m/ml)と水素吸蔵合金の密度(8.31g/ml)の値から比表面積(m/g)を算出し、表面積当たりの飽和磁化(emu/m)を評価基準としている。これは飽和磁化の値が粒度分布の影響を受けにくくするためである。 The specific surface area (m 2 / ml) calculated based on the measurement of the particle size distribution of the sample measured by VSM and the specific surface area (8.31 g / ml) of the hydrogen storage alloy. m 2 / g) is calculated, and the saturation magnetization per surface area (emu / m 2 ) is used as the evaluation standard. This is because the value of saturation magnetization is less affected by the particle size distribution.

また、種々の条件で評価を重ねた結果、Alを含む水素吸蔵合金では、Alの溶出量と、耐食性に関係が深いことを突き止めた。具体的には、体積平均粒径MVが約35μmの合金粉に対して、上記磁化測定と同様に、80℃で8時間、7.15mol/Lの水酸化カリウム水溶液に浸漬後、アルカリ水溶液中に溶出したAl量が、水酸化カリウム水溶液への浸漬処理前の合金成分中のAl量に対して、3.3mass%以下のとき、耐久性に優れた水素吸蔵合金が得られることを見出した。好ましくは3.2mass%以下である。これは、Alのアルカリ水溶液への溶出量が合金の腐食量に関係しており、これを抑制する合金組織制御、合金設計が必要となる。希土類元素ではLaが多い組成が好ましい。 In addition, as a result of repeated evaluations under various conditions, it was found that in the hydrogen storage alloy containing Al, the elution amount of Al and the corrosion resistance are closely related. Specifically, an alloy powder having a volume average particle size of about 35 μm is immersed in a 7.15 mol / L potassium hydroxide aqueous solution at 80 ° C. for 8 hours in the same manner as in the above magnetization measurement, and then in an alkaline aqueous solution. It was found that a hydrogen storage alloy having excellent durability can be obtained when the amount of Al eluted in is 3.3 mass% or less with respect to the amount of Al in the alloy component before the immersion treatment in the potassium hydroxide aqueous solution. .. It is preferably 3.2 mass% or less. This is because the amount of Al eluted into the alkaline aqueous solution is related to the amount of corrosion of the alloy, and it is necessary to control the alloy structure and design the alloy to suppress this. For rare earth elements, a composition with a large amount of La is preferable.

上記した本発明にかかる水素吸蔵合金としては、主相がA型結晶構造からなる合金であり、具体的には六方晶系(2H)であるCeNi相が多いほうが好ましい。一方、菱面体晶(3R)のGdCo相が共存しても問題なく、少なくとも合わせて40mass%以上であることが好ましい。また、AB型結晶構造(六方晶系であるCeNi相あるいは菱面体晶系であるPuNi相)、A19型結晶構造(六方晶系であるGdCo19相あるいは菱面体晶系であるPrCo19相)が副相として含まれていてもよい。さらには、AB型結晶構造(MgZn相)やAB型結晶構造(CaCu相)は含まれないことが、アルカリ蓄電池に用いて、放電容量、サイクル寿命特性の面から好ましいが、特性を低下させない程度、例えば5mass%以下程度、含まれていてもよい。 As the hydrogen storage alloy according to the present invention described above, it is preferable that the main phase is an alloy having an A 2 B 7 type crystal structure, and specifically, a hexagonal (2H) Ce 2 Ni 7 phase is present. On the other hand, there is no problem even if the Gd 2 Co 7 phase of rhombohedral crystal (3R) coexists, and it is preferable that the total is at least 40 mass% or more. In addition, AB 3 type crystal structure (CeNi 3 phase which is hexagonal system or PuNi 3 phase which is rhombic crystal system), A5 B 19 type crystal structure (Gd 5 Co 19 phase or rhombic crystal system which is hexagonal system). The system Pr 5 Co 19 phase) may be included as a subphase. Furthermore, it is preferable that the AB 2 type crystal structure (MgZn 2 phase) and the AB 5 type crystal structure (CaCu 5 phase) are not included in the alkaline storage battery from the viewpoint of discharge capacity and cycle life characteristics. It may be contained to such an extent that it does not decrease, for example, about 5 mass% or less.

本発明にかかる水素吸蔵合金は、下記一般式(1)式を満たすことが好ましい。
(La1-a-bCeSm1-cMgNi ・・・(1)
ここで、上記(1)式中のM、Tおよび添字a、b、c、d、eおよびfは、
M:Al、Zn、Sn、Siから選ばれる少なくとも1種、
T:Cr、Mo、Vから選ばれる少なくとも1種、
0<a≦0.10、
0≦b≦0.20、
0<a+b≦0.22
0.18≦c≦0.32、
0.03≦e≦0.16、
0≦f≦0.03、
3.2≦d+e+f<3.50
の条件を満たす。
The hydrogen storage alloy according to the present invention preferably satisfies the following general formula (1).
(La 1-a-b Ce a Sm b ) 1-c Mg c Nid Me T f ... (1)
Here, M, T and the subscripts a, b, c, d, e and f in the above equation (1) are
M: At least one selected from Al, Zn, Sn, Si,
T: At least one selected from Cr, Mo, V,
0 <a≤0.10,
0 ≦ b ≦ 0.20,
0 <a + b ≦ 0.22
0.18 ≤ c ≤ 0.32,
0.03 ≤ e ≤ 0.16,
0 ≦ f ≦ 0.03,
3.2 ≦ d + e + f <3.50
Satisfy the conditions of.

この一般式(1)で表される合金は、水素吸蔵・放出の繰り返しによる割れが抑制され、かつアルカリ水溶液中で構成元素の溶出が抑制されており、結果として耐食性がよく、アルカリ蓄電池の負極用合金として用いたとき、電池に高い放電容量およびサイクル寿命特性を付与するので、アルカリ蓄電池の小型化・軽量化や高耐久性の達成に寄与する。 The alloy represented by the general formula (1) suppresses cracking due to repeated hydrogen storage and discharge, and suppresses elution of constituent elements in an alkaline aqueous solution. As a result, it has good corrosion resistance and is a negative electrode of an alkaline storage battery. When used as an alloy, it imparts high discharge capacity and cycle life characteristics to the battery, which contributes to the miniaturization and weight reduction of alkaline storage batteries and the achievement of high durability.

以下、本発明の水素吸蔵合金の成分組成を限定する理由について説明する。
希土類元素:La1-a-bCeSm
(ただし、0<a≦0.10、0≦b≦0.20、0<a+b≦0.22)
本発明の水素吸蔵合金は、主相のA型構造、副相のA19型構造やAB型構造、AB型構造、AB型構造のA成分の元素として、希土類元素を含有する。希土類元素としては、水素吸蔵能力をもたらす基本成分として、LaおよびCeの2つの元素を原則として必須とする。また、LaとCeは原子半径が異なるため、この成分比率によって、水素平衡圧を制御することができ、電池に必要な水素平衡圧を任意に設定できる。希土類元素に占めるCeの原子比率a値で、0超え0.10以下の範囲であることが必要である。a値が0.10を超えると水素吸蔵放出にともなう割れが促進され、繰り返し水素吸蔵・放出後の好ましい体積平均粒径MVの範囲から外れる。一方、a値が0、つまり、Ceを含まない場合には、十分な水素平衡圧の制御が困難となり、電池特性、例えば低温での放電特性などに悪影響を与える。この範囲であれば、電池に適した水素平衡圧に設定しやすい。好ましくは、Ceの原子比率a値が、0.005以上0.09以下の範囲である。
Hereinafter, the reason for limiting the component composition of the hydrogen storage alloy of the present invention will be described.
Rare earth elements: La 1-ab Ce a Smb
(However, 0 <a≤0.10, 0≤b≤0.20, 0 <a+b≤0.22)
The hydrogen storage alloy of the present invention is a rare earth element as an element of the A component of the main phase A 2 B 7 type structure, the sub phase A 5 B 19 type structure, the AB 3 type structure, the AB 2 type structure, and the AB 5 type structure. Contains elements. As a rare earth element, two elements, La and Ce, are indispensable in principle as basic components that bring about hydrogen storage capacity. Further, since La and Ce have different atomic radii, the hydrogen equilibrium pressure can be controlled by this component ratio, and the hydrogen equilibrium pressure required for the battery can be arbitrarily set. It is necessary that the atomic ratio a value of Ce in the rare earth element is in the range of more than 0 and 0.10 or less. When the a value exceeds 0.10, cracking due to hydrogen storage and release is promoted, and the volume average particle size MV after repeated hydrogen storage and release is out of the range. On the other hand, when the a value is 0, that is, when Ce is not included, it becomes difficult to sufficiently control the hydrogen equilibrium pressure, which adversely affects the battery characteristics, for example, the discharge characteristics at a low temperature. Within this range, it is easy to set the hydrogen equilibrium pressure suitable for the battery. Preferably, the atomic ratio a value of Ce is in the range of 0.005 or more and 0.09 or less.

LaおよびCe以外の希土類元素としてSmを任意に含有することができる。SmはLa、Ceと同様に主相のA型構造、副相のA19型構造やAB型構造、AB型構造、AB型構造のA成分の元素として、希土類サイトを占める元素であり、これらの元素と同様に水素吸蔵能力をもたらす成分である。SmはCeに比べると平衡圧をあげる効果は低いが、CeとともにLaを置換することで耐久性が向上する。希土類元素中に占めるSmの原子比率を表すb値の上限は0.20であり、それを超えるとCe量とのバランスでサイクル寿命特性が低下してくる。好ましくは、b≦0.18である。 Sm can be arbitrarily contained as a rare earth element other than La and Ce. Similar to La and Ce, Sm is a rare earth element as an element of A component of A 2 B 7 type structure of the main phase, A 5 B 19 type structure of the sub phase, AB 3 type structure, AB 2 type structure, and AB 5 type structure. It is an element that occupies the site, and like these elements, it is a component that brings about hydrogen storage capacity. Although Sm has a lower effect of increasing the equilibrium pressure than Ce, the durability is improved by substituting La together with Ce. The upper limit of the b value representing the atomic ratio of Sm in the rare earth element is 0.20, and if it exceeds that, the cycle life characteristic deteriorates in balance with the amount of Ce. Preferably, b ≦ 0.18.

Laを置換するCeとSmの合計は、0<a+b≦0.22の範囲である。a+bが0.22を超えると割れの抑制が十分でなくなる。好ましくは0.005≦a+b≦0.20である。 The sum of Ce and Sm that replace La is in the range of 0 <a + b ≦ 0.22. If a + b exceeds 0.22, the suppression of cracking becomes insufficient. It is preferably 0.005 ≦ a + b ≦ 0.20.

Laが多い組成では放電容量が高くなり、他の元素と組み合わせたときに、さらに放電容量特性が向上する。また、希土類元素としてのPrやNdは積極的に活用しないが、不可避不純物レベルで含有していてもよい。 A composition having a large amount of La increases the discharge capacity, and when combined with other elements, the discharge capacity characteristics are further improved. Further, although Pr and Nd as rare earth elements are not positively utilized, they may be contained at the level of unavoidable impurities.

Mg:Mg(ただし、0.18≦c≦0.32)
Mgは、主相のA型構造、副相のA19型構造やAB型構造、AB型構造、AB型構造のA成分の元素として、本発明では必須の元素であり、放電容量の向上およびサイクル寿命特性の向上に寄与する。A成分中のMgの原子比率を表すc値は、0.18以上0.32以下の範囲とする。c値が0.18未満では水素放出能力が低下するため、放電容量が低下してしまう。一方、0.32を超えると特に水素吸蔵放出に伴う割れが促進し、サイクル寿命特性すなわち耐久性が低下する。好ましくは、c値は0.19以上0.30以下の範囲である。
Mg: Mg c (however, 0.18 ≤ c ≤ 0.32)
Mg is an essential element in the present invention as an element of the A component of the main phase A 2 B 7 type structure, the sub phase A 5 B 19 type structure, the AB 3 type structure, the AB 2 type structure, and the AB 5 type structure. This contributes to the improvement of discharge capacity and cycle life characteristics. The c value representing the atomic ratio of Mg in the A component shall be in the range of 0.18 or more and 0.32 or less. If the c value is less than 0.18, the hydrogen release capacity is lowered, so that the discharge capacity is lowered. On the other hand, if it exceeds 0.32, cracking due to hydrogen storage and release is particularly promoted, and the cycle life characteristic, that is, durability is deteriorated. Preferably, the c value is in the range of 0.19 or more and 0.30 or less.

Ni:Ni
Niは、主相のA型構造、副相のA19型構造やAB型構造、AB型構造、AB型構造のB成分の主たる元素である。その原子比率d値は後述する。
Ni: Ni d
Ni is the main element of the B component of the A 2 B 7 type structure of the main phase, the A 5 B 19 type structure of the sub phase, the AB 3 type structure, the AB 2 type structure, and the AB 5 type structure. The atomic ratio d value will be described later.

M:M(ただし、0.03≦e≦0.16)
MはAl、Sn、Zn、Siから選ばれる少なくとも1種であり、主相のA型構造、副相のA19型構造やAB型構造、AB型構造、AB型構造のB成分の元素として含有する元素である。電池電圧に関係する水素平衡圧の調整に有効であるとともに、耐食性が向上でき、微粒の水素吸蔵合金の耐久性向上、すなわちサイクル寿命特性に効果がある。上記効果を確実に発現させるためには、A成分に対するMの原子比率を表すe値は、0.03以上0.16以下の範囲とする。e値が、0.03未満では耐食性が十分ではなくなり、結果として飽和磁化の増大を招き、サイクル寿命が十分でなくなる。一方、e値が、0.16を超えると放電容量が低下してしまう。好ましいe値は、0.035以上0.15以下の範囲である。また、M元素の中で、Alが存在することが好ましく、Alの原子比率は、eの範囲のうち、0.03以上が好ましい。
M: Me (however, 0.03 ≤ e ≤ 0.16)
M is at least one selected from Al, Sn, Zn, and Si, and has an A2B7 type structure of the main phase, an A5B19 type structure of the subphase , an AB3 type structure, an AB2 type structure, and an AB5 . It is an element contained as an element of the B component of the mold structure. It is effective in adjusting the hydrogen equilibrium pressure related to the battery voltage, can improve the corrosion resistance, and is effective in improving the durability of the fine hydrogen storage alloy, that is, the cycle life characteristic. In order to surely exhibit the above effect, the e value representing the atomic ratio of M to the component A shall be in the range of 0.03 or more and 0.16 or less. If the e value is less than 0.03, the corrosion resistance becomes insufficient, resulting in an increase in saturation magnetization, and the cycle life becomes insufficient. On the other hand, if the e value exceeds 0.16, the discharge capacity will decrease. The preferred e value is in the range of 0.035 or more and 0.15 or less. Further, it is preferable that Al is present in the M element, and the atomic ratio of Al is preferably 0.03 or more in the range of e.

T:T(ただし、0≦f≦0.03)
TはCr、Mo、Vから選ばれる少なくとも1種であり、Mと同様に主相のA型構造、副相のA19型構造やAB型構造、AB型構造、AB型構造のB成分の元素として含有する元素である。電池電圧に関係する水素平衡圧の調整に有効であるとともに、M元素との相乗効果で耐食性が高まり、耐久性が向上する。特に、微粒の水素吸蔵合金の耐久性向上、すなわちサイクル寿命特性に効果がある。上記効果を確実に発現させるためには、A成分に対するTの原子比率を表すf値は、0.03以下とする。f値が0.03を超えると過剰なTによって水素の吸蔵放出に伴う割れが誘起され、結果として耐久性が低下して、サイクル寿命が十分でなくなる。好ましいf値は0.025以下の範囲であり、特にM元素の量が少ない発明の範囲ではT元素、特にCrが存在することが好ましい。また、CrとMoあるいはVの組み合わせが好ましい。
T: T f (however, 0 ≦ f ≦ 0.03)
T is at least one selected from Cr, Mo, and V, and like M, it has an A2B7 type structure of the main phase, an A5B19 type structure of the subphase , an AB3 type structure, and an AB2 type structure. It is an element contained as an element of the B component of the AB5 type structure. It is effective in adjusting the hydrogen equilibrium pressure related to the battery voltage, and the synergistic effect with the M element enhances the corrosion resistance and the durability. In particular, it is effective in improving the durability of fine hydrogen storage alloys, that is, in cycle life characteristics. In order to surely exhibit the above effect, the f value representing the atomic ratio of T to the component A is 0.03 or less. When the f value exceeds 0.03, the excess T induces cracking due to the occlusion and release of hydrogen, and as a result, the durability is lowered and the cycle life is not sufficient. The preferable f value is in the range of 0.025 or less, and it is particularly preferable that the T element, particularly Cr, is present in the range of the invention in which the amount of the M element is small. Further, a combination of Cr and Mo or V is preferable.

A成分とB成分の比率:3.2≦d+e+f<3.50
主相のA型構造、副相のA19型構造やAB型構造、AB型構造、AB型構造からなるA成分に対するB成分(Ni、MおよびT)のモル比である化学量論比、すなわち、一般式で表されるd+e+fの値は、3.2以上3.50未満の範囲であることが好ましい。3.2未満では、副相としてAB相が徐々に増えてしまい、特に放電容量が低下するとともに、サイクル寿命も低下する。一方、3.50以上ではAB相が増え、水素吸蔵放出に伴う割れが促進されるようになり、結果として耐久性、すなわちサイクル寿命が低下してしまう。好ましくは3.25以上3.48以下の範囲である。
Ratio of A component and B component: 3.2 ≤ d + e + f <3.50
Mol of B component (Ni, M and T) with respect to A component consisting of A 2 B 7 type structure of main phase, A 5 B 19 type structure of sub phase, AB 3 type structure, AB 2 type structure, AB 5 type structure The chemical quantitative ratio, that is, the value of d + e + f represented by the general formula, is preferably in the range of 3.2 or more and less than 3.50. If it is less than 3.2, the number of AB2 phases as subphases will gradually increase, and in particular, the discharge capacity will decrease and the cycle life will also decrease. On the other hand, when it is 3.50 or more, the number of AB5 phases increases, cracking due to hydrogen storage and release is promoted, and as a result, durability, that is, cycle life is lowered. It is preferably in the range of 3.25 or more and 3.48 or less.

[水素吸蔵合金の製造方法]
次に、本発明の水素吸蔵合金の製造方法について説明する。
本発明の水素吸蔵合金は、希土類元素(Ce、Sm、Laなど)やマグネシウム(Mg)、ニッケル(Ni)、その他アルミニウム(Al)、クロム(Cr)などのNiに対する置換元素を所定のモル比となるように秤量した後、これらの原料を、高周波誘導炉に設置したアルミナるつぼに投入してアルゴンガス等の不活性ガス雰囲気下で溶解した後、鋳型に鋳込んで水素吸蔵合金のインゴットを作製する。あるいは、ストリップキャスト法を用いて、200~500μm厚程度のフレーク状試料を直接作製してもよい。
[Manufacturing method of hydrogen storage alloy]
Next, a method for producing the hydrogen storage alloy of the present invention will be described.
The hydrogen storage alloy of the present invention contains a predetermined molar ratio of substitution elements for Ni such as rare earth elements (Ce, Sm, La, etc.), magnesium (Mg), nickel (Ni), and other aluminum (Al), chromium (Cr). After weighing, these raw materials are put into an alumina pot installed in a high-frequency induction furnace, melted in an inert gas atmosphere such as argon gas, and then cast into a mold to form a hydrogen storage alloy ingot. To make. Alternatively, a flake-shaped sample having a thickness of about 200 to 500 μm may be directly prepared by using a strip casting method.

なお、本発明の水素吸蔵合金は成分として、融点が低く高蒸気圧のMgを含有しているため、全合金成分の原料を一度に溶解すると、Mgが蒸発してしまい、目標とする化学組成の合金を得ることが困難となる場合がある。そこで、本発明の水素吸蔵合金を溶解法により製造するに当たっては、まず、Mgを除いた他の合金成分を溶解した後、その溶湯内に金属MgおよびMg合金などのMg原料を投入するのが好ましい。また、この溶解工程は、アルゴンまたはヘリウム等の不活性ガス雰囲気下で行うのが望ましく、具体的には、アルゴンガスを80vol%以上含有した不活性ガスを0.05~0.2MPaに調整した減圧・加圧雰囲気下で行うのが好ましい。 Since the hydrogen storage alloy of the present invention contains Mg having a low melting point and a high vapor pressure as a component, if the raw materials of all the alloy components are melted at once, the Mg evaporates and the target chemical composition is obtained. It may be difficult to obtain the alloy of. Therefore, in producing the hydrogen storage alloy of the present invention by the melting method, first, after melting the other alloy components excluding Mg, it is necessary to put the Mg raw materials such as metallic Mg and Mg alloy into the molten metal. preferable. Further, this melting step is preferably performed in an atmosphere of an inert gas such as argon or helium. Specifically, the inert gas containing 80 vol% or more of argon gas was adjusted to 0.05 to 0.2 MPa. It is preferably performed under a reduced pressure / pressurized atmosphere.

上記条件にて溶解した合金は、その後、水冷の鋳型に鋳造し、凝固させて水素吸蔵合金のインゴットとするのが好ましい。次いで、得られた各水素吸蔵合金のインゴットについて、DSC(示差走査熱量計)を用いて融点(T)を測定する。これは、本発明の水素吸蔵合金は、上記鋳造後のインゴットを、アルゴンまたはヘリウム等の不活性ガスまたは窒素ガスのいずれか、もしくは、それらの混合ガス雰囲気下で、700℃以上合金の融点(T)以下の温度で3~50時間保持する熱処理を施すことが好ましいからである。この熱処理により、A型の結晶構造を含む主相の水素吸蔵合金中における比率を40mass%以上とし、AB相やAB相を減少あるいは消滅させることができる。得られた水素吸蔵合金の主相の結晶構造がA7型構造であることは、Cu-Kα線を用いたX線回折測定、SEM観察などにより確認することができる。具体的には、六方晶系のCeNi型構造が主であることが好ましいが、菱面体晶系のGdCo型構造が共存していても問題ない。 It is preferable that the alloy melted under the above conditions is then cast in a water-cooled mold and solidified to form an ingot of a hydrogen storage alloy. Next, the melting point ( Tm ) of each of the obtained ingots of the hydrogen storage alloy is measured using a DSC (Differential Scanning Calorimeter). This is because the hydrogen storage alloy of the present invention makes the cast ingot the melting point of the alloy at 700 ° C. or higher under either an inert gas such as argon or helium or a nitrogen gas, or a mixed gas atmosphere thereof. This is because it is preferable to perform a heat treatment for holding the temperature at a temperature of T m ) or less for 3 to 50 hours. By this heat treatment, the ratio of the main phase including the A 2 B 7 type crystal structure in the hydrogen storage alloy can be set to 40 mass% or more, and the AB 2 phase and the AB 5 phase can be reduced or eliminated. The crystal structure of the main phase of the obtained hydrogen storage alloy can be confirmed by X - ray diffraction measurement using Cu Kα rays, SEM observation, and the like. Specifically, it is preferable that the hexagonal Ce 2 Ni 7 type structure is mainly used, but there is no problem even if the rhombohedral Gd 2 Co 7 type structure coexists.

上記熱処理温度が700℃未満では、元素の拡散が不十分であるため、副相が残留してしまい、電池の放電容量の低下やサイクル寿命特性の劣化を招いてしまうおそれがある。一方、熱処理温度が合金の融点Tより-20℃以上(T-20℃以上)となると、主相の結晶粒の粗大化や、Mg成分の蒸発が生じる結果、微粉化や化学組成の変化による水素吸蔵量の低下が起こってしまうおそれもある。したがって、熱処理温度は好ましくは750℃~(T-30℃)の範囲である。さらに好ましくは、770℃~(T-50℃)の範囲である。 If the heat treatment temperature is less than 700 ° C., the diffusion of the elements is insufficient, so that the secondary phase remains, which may lead to a decrease in the discharge capacity of the battery and a deterioration in the cycle life characteristics. On the other hand, when the heat treatment temperature becomes -20 ° C or higher ( Tm -20 ° C or higher) from the melting point Tm of the alloy, the crystal grains of the main phase become coarse and the Mg component evaporates, resulting in pulverization and chemical composition. There is a possibility that the hydrogen storage amount will decrease due to the change. Therefore, the heat treatment temperature is preferably in the range of 750 ° C to ( Tm -30 ° C). More preferably, it is in the range of 770 ° C to ( Tm -50 ° C).

また、熱処理の保持時間が3時間以下では、安定的に主相の比率を40mass%以上とすることができないおそれがある。また、主相の化学成分の均質化が不十分となるため、水素吸蔵・放出時の膨張・収縮が不均一となり、発生する歪みや欠陥量が増大してサイクル寿命特性にも悪影響を与えるおそれがある。なお、上記熱処理の保持時間は4時間以上とするのが好ましく、主相の均質化や結晶性向上の観点からは、5時間以上とするのがより好ましい。ただし、保持時間が50時間を超えると、Mgの蒸発量が多くなって化学組成が変化し、その結果、AB型の副相が生成してくるおそれがある。さらに、製造コストの上昇や、蒸発したMg微粉末による粉塵爆発を招くおそれもあるため好ましくない。 Further, if the heat treatment holding time is 3 hours or less, the ratio of the main phase may not be stably set to 40 mass% or more. In addition, since the homogenization of the chemical components of the main phase is insufficient, the expansion and contraction during hydrogen storage and release become non-uniform, and the strain and defect amount generated may increase, which may adversely affect the cycle life characteristics. There is. The holding time of the heat treatment is preferably 4 hours or more, and more preferably 5 hours or more from the viewpoint of homogenization of the main phase and improvement of crystallinity. However, if the holding time exceeds 50 hours, the amount of evaporation of Mg increases and the chemical composition changes, and as a result, AB5 type subphase may be generated. Further, it is not preferable because it may increase the manufacturing cost and cause a dust explosion due to the evaporated Mg fine powder.

熱処理した合金は、乾式法または湿式法で微粉化する。乾式法で微粉化する場合は、たとえばハンマーミルやACMパルベライザーなどを用いて粉砕することで平均粒径D50が20~100μmの粉末を得ることができる。一方、湿式法で微粉化する場合は、ビーズミルやアトライターなどを用いて粉砕する。特に平均粒径D50が20μm以下の微粉を得る場合には、湿式粉砕の方が安全に作製できるため好ましい。粒径は用途によって適正な範囲、たとえばD50=8~100μmに設定すればよい。
ここで、上記した合金粒子の平均粒径D50は、繰り返し水素吸蔵・放出後の体積平均粒径MVの測定と同様にレーザー回折・散乱式粒度分布測定装置で測定した値を用いることとし、測定装置としては、例えばマイクロトラック・ベル社製 MT3300EXII型などを用いることができる。
The heat-treated alloy is micronized by a dry method or a wet method. When pulverized by a dry method, a powder having an average particle size D50 of 20 to 100 μm can be obtained by pulverizing using, for example, a hammer mill or an ACM palverizer. On the other hand, when micronized by the wet method, it is pulverized using a bead mill or an attritor. In particular, when fine powder having an average particle size D50 of 20 μm or less is obtained, wet pulverization is preferable because it can be produced safely. The particle size may be set in an appropriate range depending on the application, for example, D50 = 8 to 100 μm.
Here, the average particle size D50 of the alloy particles described above is measured by using the value measured by the laser diffraction / scattering type particle size distribution measuring device in the same manner as the measurement of the volume average particle size MV after repeated hydrogen storage / release. As the apparatus, for example, MT3300EXII type manufactured by Microtrac Bell can be used.

なお、上記微粉化した合金粒子は、その後、KOHやNaOHなどのアルカリ水溶液を用いたアルカリ処理や、硝酸や硫酸、塩酸水溶液を用いた酸処理を行う表面処理を施してもよい。これらの表面処理を施すことで、合金粒子表面の少なくとも一部にNiからなる層(アルカリ処理層または酸処理層)を形成し、合金腐食の進行を抑制することができるとともに、耐久性を高めることができることから、電池のサイクル寿命特性や広い温度範囲での放電特性を向上することができる。特に、酸処理の場合には、合金表面のダメージを少なくしてNiを析出させることが可能であることから、塩酸を用いて行うことが好ましい。また、湿式法で合金を粉砕する場合には、表面処理を同時に行うこともできる。 The finely divided alloy particles may then be subjected to surface treatment such as alkali treatment using an alkaline aqueous solution such as KOH or NaOH, or acid treatment using an aqueous solution of nitric acid, sulfuric acid or hydrochloric acid. By applying these surface treatments, a layer made of Ni (alkali-treated layer or acid-treated layer) can be formed on at least a part of the surface of the alloy particles, the progress of alloy corrosion can be suppressed, and the durability is enhanced. Therefore, it is possible to improve the cycle life characteristics of the battery and the discharge characteristics in a wide temperature range. In particular, in the case of acid treatment, it is possible to precipitate Ni with less damage to the alloy surface, so it is preferable to use hydrochloric acid. Further, when the alloy is pulverized by a wet method, surface treatment can be performed at the same time.

以下に本発明を実施例に基づき説明する。
下記の表1-1ないし1-3に示した成分組成を有するNo.1~58の水素吸蔵合金およびこれを負極活物質とする評価用セルを、以下に説明する要領で作製し、その特性を評価する実験を行った。なお、表1-1ないし1-3に示したNo.1~26および36~58の合金は、本発明の条件に適合する合金例(発明例)、No.27~35は、本発明の条件を満たさない合金例(比較例)である。また、比較例のNo.27の合金は、合金の各種特性やセルの特性を評価するための基準合金に用いた。
Hereinafter, the present invention will be described based on examples.
No. 1 having the component composition shown in Tables 1-1 to 1-3 below. The hydrogen storage alloys 1 to 58 and the evaluation cells using the hydrogen storage alloy as the negative electrode active material were prepared as described below, and an experiment was conducted to evaluate their characteristics. No. 1 shown in Tables 1-1 to 1-3. The alloys 1 to 26 and 36 to 58 are alloy examples (invention examples) conforming to the conditions of the present invention, No. 27 to 35 are alloy examples (comparative examples) that do not satisfy the conditions of the present invention. In addition, No. of Comparative Example. The 27 alloys were used as reference alloys for evaluating various characteristics of the alloy and the characteristics of the cell.

(負極活物質の作製)
表1-1ないし1-3に示したNo.1~58の合金の原料(Sm、La、Ce、Mg、Ni、Al、Cr、Zn、Sn、Si、VおよびMoはそれぞれ純度99%以上)を、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:100vol%、0.1MPa)で溶解し、鋳造してインゴットとした。次いで、これらの合金インゴットを、アルゴン雰囲気下(Ar:90vol%、0.1MPa)で、各合金の融点T-50℃の温度(900~1130℃)で10時間保持する熱処理を施した後、粗粉砕した。本発明の発明例のNo.1~26および36~58の合金は、熱処理後、粉砕した粉末をX線回折測定し、いずれも主相がA型結晶構造になっていることを確認している。また、比較例のNo.27はCaCu相単相、No.28~35はそれぞれ主相がA相あるいはAB型から選ばれたどちらかの結晶構造になっていることを確認している。
(Preparation of negative electrode active material)
No. 1 shown in Tables 1-1 to 1-3. Raw materials for alloys 1 to 58 (Sm, La, Ce, Mg, Ni, Al, Cr, Zn, Sn, Si, V and Mo each have a purity of 99% or more) are used in an argon atmosphere using a high frequency induction heating furnace. It was melted at (Ar: 100 vol%, 0.1 MPa) and cast into an ingot. Next, these alloy ingots are subjected to a heat treatment in which they are held in an argon atmosphere (Ar: 90 vol%, 0.1 MPa) at a temperature (900 to 1130 ° C.) of the melting point Tm -50 ° C. of each alloy for 10 hours. , Coarsely crushed. No. of the invention example of the present invention. After the heat treatment, the crushed powders of the alloys 1 to 26 and 36 to 58 were subjected to X - ray diffraction measurement, and it was confirmed that the main phase of each of them had an A2B7 type crystal structure. In addition, No. of Comparative Example. 27 is CaCu 5 -phase single-phase, No. It has been confirmed that the main phases of 28 to 35 each have a crystal structure selected from either A2B7 phase or AB3 type.

<繰り返し水素吸蔵・放出に伴う割れ性評価>
水素吸蔵・放出繰り返しによる割れ性評価は以下のとおりである。
水素吸蔵合金塊を粉砕して150μmのふるい上に残り、かつ2mm以下となるように粒度調整した。PCT(Pressure-Composition-Temperature)評価装置の測定ホルダーに水素吸蔵合金7gを充填、80℃で1時間真空排気(0.01MPa以下)を行った後、温度をキープして水素圧0.01~3MPaの範囲で水素吸蔵・放出測定(PCT特性評価)を行う。この後、1時間真空排気(0.01MPa以下)を行い、3MPaまで水素ガスを導入して1時間保持して、合金に水素をほぼフルに吸蔵させ、1時間真空排気(0.01MPa以下)して水素を放出させる。これを3回繰り返す。最後に1サイクル目と同様に水素圧0.01~3MPaの範囲で水素吸蔵・放出測定(PCT特性評価)を行う。この水素吸蔵・放出サイクルを5回行った後、水素吸蔵合金粉を取り出し、粒度分布測定を行った。その繰り返し水素吸蔵・放出後の体積平均粒径MVの値を表1-1ないし1-3に示す。
<Evaluation of crackability due to repeated storage and release of hydrogen>
The crackability evaluation due to repeated hydrogen storage and release is as follows.
The hydrogen storage alloy ingot was pulverized and the particle size was adjusted so that it remained on a sieve of 150 μm and had a particle size of 2 mm or less. Fill the measurement holder of the PCT (Pressure-Composition-Temperature) evaluation device with 7 g of hydrogen storage alloy, perform vacuum exhaust (0.01 MPa or less) at 80 ° C for 1 hour, and then keep the temperature to keep the hydrogen pressure from 0.01. Hydrogen storage / release measurement (PCT characteristic evaluation) is performed in the range of 3 MPa. After that, vacuum exhaust (0.01 MPa or less) is performed for 1 hour, hydrogen gas is introduced up to 3 MPa and held for 1 hour to allow the alloy to occlude hydrogen almost completely, and vacuum exhaust (0.01 MPa or less) for 1 hour. And release hydrogen. This is repeated 3 times. Finally, hydrogen storage / release measurement (PCT characteristic evaluation) is performed in the range of hydrogen pressure of 0.01 to 3 MPa in the same manner as in the first cycle. After performing this hydrogen storage / release cycle 5 times, the hydrogen storage alloy powder was taken out and the particle size distribution was measured. The values of the volume average particle size MV after the repeated storage and release of hydrogen are shown in Tables 1-1 to 1-3.

<飽和磁化>
アルカリ水溶液浸漬後の飽和磁化測定は下記の通りの手順で行う。
まず、80℃の7.15mol/L水酸化カリウム水溶液50gと体積平均径(MV)35μmに調整した水素吸蔵合金20gをガラス製ビーカーに入れる。次に、マグネチックスターラーで攪拌しながら、液温80℃を保持し8時間浸漬する。時間経過後、水洗浄を行い、洗浄水がpH12以下になるまで繰り返し、70℃で6時間真空乾燥させる。得られた試料から約200mgをはかりとり、測定容器内に固定し、試料振動型磁力計(VSM)を用いて、25℃で磁場10kOeを加えて、飽和磁化(emu/g)を測定する。一方、上記アルカリ水溶液に浸漬した試料について粒度分布を測定、その結果に基づき算出される比表面積CS値(m/ml)と水素吸蔵合金の密度(8.31g/ml)の値から比表面積(m/g)を算出し、表面積当たりの飽和磁化(emu/m)を評価基準として、表1-1ないし1-3に磁化量として示す。この処理は、飽和磁化を粒度分布に依存させないためである。
<Saturation magnetization>
Saturation magnetization measurement after immersion in an alkaline aqueous solution is performed according to the following procedure.
First, 50 g of a 7.15 mol / L potassium hydroxide aqueous solution at 80 ° C. and 20 g of a hydrogen storage alloy adjusted to a volume average diameter (MV) of 35 μm are placed in a glass beaker. Next, the liquid temperature is maintained at 80 ° C. and the mixture is immersed for 8 hours while stirring with a magnetic stirrer. After a lapse of time, wash with water, repeat until the pH of the washing water becomes 12 or less, and vacuum dry at 70 ° C. for 6 hours. Approximately 200 mg is weighed from the obtained sample, fixed in a measuring container, and a magnetic field of 10 kOe is applied at 25 ° C. using a sample vibration type magnetometer (VSM) to measure saturation magnetization (emu / g). On the other hand, the specific surface area CS value (m 2 / ml) and the density of the hydrogen storage alloy (8.31 g / ml) calculated based on the measurement of the particle size distribution of the sample immersed in the alkaline aqueous solution are used. (M 2 / g) is calculated, and the saturation magnetization per surface area (emu / m 2 ) is used as an evaluation standard, and Tables 1-1 to 1-3 show the amount of magnetization. This process does not make the saturation magnetization dependent on the particle size distribution.

<溶出Al量>
アルカリ水溶液浸漬によるAl溶出量の測定は以下の手順で行う。
上記の磁化測定で行った水酸化カリウム水溶液への水素吸蔵合金の8時間浸漬後、濾過した水酸化カリウム水溶液を取り出し、ICPにて溶液に含まれているAl量を測定する。そのAl濃度とアルカリ水溶液量から、溶出したAl量の質量を計算し、処理前のAl濃度とサンプル量から求めた合金中Al量の質量とを比較し、質量百分率で溶出Al量を評価し、表1-1ないし1-3中にAl量として示す。
<Amount of eluted Al>
The Al elution amount by immersion in an alkaline aqueous solution is measured by the following procedure.
After immersing the hydrogen storage alloy in the potassium hydroxide aqueous solution performed in the above magnetization measurement for 8 hours, the filtered potassium hydroxide aqueous solution is taken out, and the amount of Al contained in the solution is measured by ICP. The mass of the eluted Al amount is calculated from the Al concentration and the amount of the alkaline aqueous solution, the Al concentration before the treatment is compared with the mass of the Al amount in the alloy obtained from the sample amount, and the eluted Al amount is evaluated by the mass percentage. , It is shown as the amount of Al in Tables 1-1 to 1-3.

<PCT特性評価>
PCT特性評価は以下の手順で実施する。
水素吸蔵合金塊を粉砕して、上記と同様150μm以上2mm以下にふるいにて粒度調整して、PCT測定装置に充填し、80℃の下で1時間真空排気(0.01MPa以下)を行う。次に、温度を維持して3MPaの水素ガスを加圧して3.5時間保持し、水素吸蔵合金に水素を吸蔵させ、その後1時間真空排気して水素を放出させて活性化処理とする。その後、水素圧0.01~1MPaの範囲で水素吸蔵・放出測定(PCT特性評価)を行う。表1-1ないし1-3中に1MPa加圧時の水素吸蔵量をH/Mとして、また、プラトー傾きとして、log[(P0.7/P0.3)/0.4]の計算値を示す。
<PCT characterization>
The PCT characteristic evaluation is carried out by the following procedure.
The hydrogen storage alloy ingot is crushed, the particle size is adjusted by sieving to 150 μm or more and 2 mm or less in the same manner as above, the mixture is filled in a PCT measuring device, and vacuum exhaust (0.01 MPa or less) is performed at 80 ° C. for 1 hour. Next, the temperature is maintained, hydrogen gas of 3 MPa is pressurized and held for 3.5 hours, hydrogen is occluded in the hydrogen storage alloy, and then vacuum exhausted for 1 hour to release hydrogen for activation treatment. Then, hydrogen storage / release measurement (PCT characteristic evaluation) is performed in the range of hydrogen pressure of 0.01 to 1 MPa. In Tables 1-1 to 1-3, the calculated value of log [(P0.7 / P0.3) /0.4] is used as the hydrogen storage amount at 1 MPa pressurization as H / M and as the plateau slope. show.

電池用の負極活物質として、作成した水素吸蔵合金を、ハンマーミルで、質量基準のD50で35μmになるまで微粉砕して、セル評価用の試料(負極活物質)とした。 As a negative electrode active material for a battery, the prepared hydrogen storage alloy was finely pulverized with a hammer mill to a mass-based D50 of 35 μm to obtain a sample for cell evaluation (negative electrode active material).

(評価用セルの作製)
<負極>
上記で調整した負極活物質と、導電助剤のNi粉末と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))とを、重量比で、負極活物質:Ni粉末:SBR:CMC=95.5:3.0:1.0:0.5となるように混合し、混練してペースト状の組成物とした。このペースト状の組成物を、パンチングメタルに塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、負極を得た。
(Preparation of evaluation cell)
<Negative electrode>
The negative electrode active material adjusted above, the Ni powder of the conductive auxiliary agent, and the two types of binders (styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC)) are mixed in a weight ratio of the negative electrode active material: Ni powder: SBR: CMC = 95.5: 3.0: 1.0: 0.5 was mixed and kneaded to obtain a paste-like composition. This paste-like composition was applied to a punching metal, dried at 80 ° C., and then roll-pressed with a load of 15 kN to obtain a negative electrode.

<正極>
水酸化ニッケル(Ni(OH))と、導電助剤の金属コバルト(Co)と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))とを、質量比で、Ni(OH):Co:SBR:CMC=95.5:2.0:2.0:0.5となるように混合し、混練してペースト状の組成物とした。このペースト状の組成物を、多孔質ニッケルに塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、正極を得た。
<Positive electrode>
Nickel hydroxide (Ni (OH) 2 ), metallic cobalt (Co) as a conductive aid, and two types of binders (styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC)) are mixed in a mass ratio of Ni. (OH) 2 : Co: SBR: CMC = 95.5: 2.0: 2.0: 0.5 was mixed and kneaded to obtain a paste-like composition. This paste-like composition was applied to porous nickel, dried at 80 ° C., and then roll-pressed with a load of 15 kN to obtain a positive electrode.

<電解液>
電解液は、純水に、水酸化カリウム(KOH)を濃度が6mol/Lとなるよう混合したアルカリ水溶液を用いた。
<Electrolytic solution>
As the electrolytic solution, an alkaline aqueous solution in which potassium hydroxide (KOH) was mixed with pure water so as to have a concentration of 6 mol / L was used.

<評価用セル>
アクリル製の筐体内に、上記の正極を対極、上記の負極を作用極として配設した後、上記電解液を注入して、Hg/HgO電極を参照極としたセルを作製し、評価試験に供した。この際、作用極と対極の容量比は、作用極:対極=1:3となるように調整した。なお、正極と負極の間には、ポリエチレン製の不織布を設置し、セパレータとしている。
<Evaluation cell>
After arranging the positive electrode as the counter electrode and the negative electrode as the working electrode in the acrylic housing, the electrolytic solution is injected to prepare a cell using the Hg / HgO electrode as the reference electrode for evaluation test. Served. At this time, the volume ratio of the working electrode and the counter electrode was adjusted so that the working electrode: the counter electrode = 1: 3. A polyethylene non-woven fabric is installed between the positive electrode and the negative electrode to serve as a separator.

(セルの特性評価)
上記のようにして得た合金No.1~58にかかる評価用セルの評価試験は、以下の要領で行った。
(Cell characteristic evaluation)
Alloy No. obtained as described above. The evaluation test of the evaluation cells from 1 to 58 was performed as follows.

(1)電極の放電容量
下記の手順で作用極の電極の放電容量の確認を行った。作用極の活物質あたり80mA/gの電流値で定電流充電を10時間行った後、作用極の活物質あたり40mA/gの電流値で定電流放電を行った。放電の終了条件は、作用極電位-0.5Vとした。上記の充放電を10回繰り返し、放電容量の最大値を、その作用極の電極の放電容量とした。なお、10回の充放電により作用極の放電容量が飽和し、安定したことを確認している。評価温度は25℃である。
測定した放電容量は、表1-2に示した合金No.27の放電容量を基準容量とし、それに対する比率を下記(2)式で算出し、この比率が1.15より大きいものを、合金No.27より放電容量が大きく、優れていると評価した。
放電容量=(評価合金の放電容量)/(合金No.27の放電容量)・・・(2)
(1) Electrode discharge capacity The discharge capacity of the electrode of the working electrode was confirmed by the following procedure. After constant current charging at a current value of 80 mA / g per active material of the working electrode for 10 hours, constant current discharge was performed at a current value of 40 mA / g per active material of the working electrode. The end condition of the discharge was set to the working potential of −0.5 V. The above charging and discharging were repeated 10 times, and the maximum value of the discharging capacity was taken as the discharging capacity of the electrode of the working electrode. It has been confirmed that the discharge capacity of the working electrode is saturated and stable by charging and discharging 10 times. The evaluation temperature is 25 ° C.
The measured discharge capacity is the alloy No. shown in Table 1-2. Using the discharge capacity of 27 as the reference capacity, the ratio to it is calculated by the following equation (2), and the alloy No. 1 having this ratio larger than 1.15 is used. The discharge capacity was larger than that of 27, and it was evaluated to be excellent.
Discharge capacity = (Discharge capacity of evaluation alloy) / (Discharge capacity of alloy No. 27) ... (2)

(2)サイクル寿命特性
上記(1)電極の放電容量で作用極の電極の放電容量が確認されたセルを用いて、下記の手順で作用極のサイクル寿命特性を求めた。この評価温度は45℃である。
上記(1)電極の放電容量で確認された作用極の電極の放電容量を、1時間で充電または放電を完了させる際に必要な電流値を1Cとしたとき、作用極の充電率が30-70%の範囲において、C/2の電流値で定電流充電および定電流放電を行うことを1サイクルとし、これを300サイクル繰り返して行い、300サイクル後の放電容量を測定し、下記(3)式で容量維持率を求めた。
容量維持率=(300サイクル目の放電容量)/(1サイクル目の放電容量) ・・・(3)
サイクル寿命特性の評価は、表1-2に示した合金No.27の300サイクル後の容量維持率を基準容量維持率とし、それに対する比率を下記(4)式で算出し、この比率が1.15より大きいものを、合金No.27よりサイクル寿命特性が大きく、優れていると評価した。
サイクル寿命特性=(測定合金の300サイクル後の容量維持率)/(合金No.27の300サイクル後の容量維持率)・・・(4)
(2) Cycle life characteristics Using the cell in which the discharge capacity of the electrode of the working electrode was confirmed by the discharge capacity of the above (1) electrode, the cycle life characteristics of the working electrode were determined by the following procedure. This evaluation temperature is 45 ° C.
When the discharge capacity of the electrode of the working electrode confirmed by the discharge capacity of the above (1) electrode is 1C and the current value required to complete charging or discharging in 1 hour is 1C, the charging rate of the working electrode is 30-. In the range of 70%, constant current charging and constant current discharging with a current value of C / 2 are regarded as one cycle, and this is repeated for 300 cycles, and the discharge capacity after 300 cycles is measured. The capacity retention rate was calculated by the formula.
Capacity retention rate = (Discharge capacity in the 300th cycle) / (Discharge capacity in the 1st cycle) ... (3)
The evaluation of the cycle life characteristics is based on the alloy No. 1 shown in Table 1-2. The capacity retention rate after 300 cycles of 27 is used as the reference capacity retention rate, and the ratio to the standard capacity retention rate is calculated by the following equation (4). It was evaluated as having a larger cycle life characteristic than 27 and being excellent.
Cycle life characteristics = (Capacity retention rate after 300 cycles of measured alloy) / (Capacity retention rate of alloy No. 27 after 300 cycles) ... (4)

Figure 2022052729000002
Figure 2022052729000002

Figure 2022052729000003
Figure 2022052729000003

Figure 2022052729000004
Figure 2022052729000004

表1-1ないし1-3から明らかなように、発明例のNo.1~26および36~58の中で選択した合金は合金No.27に対して、各種パラメータの特性が良好で、結果として電池評価で良好な放電容量、サイクル寿命特性がバランスよく向上していることが明らかである。具体的には、放電容量は基準合金の1.15倍以上、サイクル寿命特性は1.15倍以上を示す。これに対して、比較例のNo.27~4で選択した合金は、これらの評価値のいずれかまたは両方が上記条件を満足していないことがわかる。また、本発明の合金はいずれもSmを減らしたLaリッチ組成であり、高価で変動リスクを伴うCoを含まず、低コスト合金であることは明らかである。 As is clear from Tables 1-1 to 1-3, No. 1 of the invention examples. The alloys selected from 1 to 26 and 36 to 58 are No. 1 and No. It is clear that the characteristics of various parameters are good with respect to 27, and as a result, the good discharge capacity and cycle life characteristics are improved in a well-balanced manner in the battery evaluation. Specifically, the discharge capacity is 1.15 times or more that of the reference alloy, and the cycle life characteristic is 1.15 times or more. On the other hand, No. of the comparative example. It can be seen that the alloys selected in 27 to 4 do not satisfy the above conditions in either or both of these evaluation values. Further, it is clear that all of the alloys of the present invention have a La-rich composition with reduced Sm, are expensive and do not contain Co with a fluctuation risk, and are low-cost alloys.

本発明の水素吸蔵合金は、放電容量およびサイクル寿命特性のいずれも従来使用されていたAB型の水素吸蔵合金より優れているので、アルカリ一次電池代替の民生用途から各種工業用途、車載用途までの幅広いアルカリ蓄電池の負極用合金として好適である。 Since the hydrogen storage alloy of the present invention is superior in both discharge capacity and cycle life characteristics to the AB5 type hydrogen storage alloy that has been conventionally used, it can be used for various industrial applications and in-vehicle applications as a substitute for alkaline primary batteries. Suitable as an alloy for the negative electrode of a wide range of alkaline storage batteries.

1:正極
2:負極
3:セパレータ
4:筐体(電池ケース)
10:アルカリ蓄電池
1: Positive electrode 2: Negative electrode 3: Separator 4: Housing (battery case)
10: Alkaline storage battery

Claims (5)

主相がA型結晶構造を有する水素吸蔵合金であって、
150μm以上2mm以下の範囲に粒度調整した水素吸蔵合金に対して、繰り返し水素吸蔵・放出後の体積平均粒径MVが75μm以上で、かつ、80℃で水素圧を1MPaまで加圧した時の水素吸蔵量(H/M;Hは水素原子数、Mは金属原子数)が0.9以上である、
ここで、水素吸蔵は、80℃で水素圧を3MPaまで加圧して1時間保持し、水素放出は、真空排気し、80℃で0.01MPa以下まで減圧して1時間保持し、これを5回繰り返した後に体積平均粒径MVを測定する、
ことを特徴とするアルカリ蓄電池用水素吸蔵合金。
The main phase is a hydrogen storage alloy having an A2B7 type crystal structure.
Hydrogen when the volume average particle size MV after repeated hydrogen storage and release is 75 μm or more and the hydrogen pressure is pressurized to 1 MPa at 80 ° C. for the hydrogen storage alloy whose particle size is adjusted to the range of 150 μm or more and 2 mm or less. The storage capacity (H / M; H is the number of hydrogen atoms and M is the number of metal atoms) is 0.9 or more.
Here, the hydrogen storage is performed by pressurizing the hydrogen pressure to 3 MPa at 80 ° C. and holding it for 1 hour, and the hydrogen release is vacuum exhausted and reduced to 0.01 MPa or less at 80 ° C. and held for 1 hour. After repeating this time, measure the volume average particle size MV,
A hydrogen storage alloy for alkaline storage batteries.
水素吸蔵放出特性において、水素吸蔵後の放出時のプラトー傾きが、下記(A)式を満足する範囲にあることを特徴とする請求項1に記載のアルカリ蓄電池用水素吸蔵合金。
0.8≦log[(P0.7/P0.3)/0.4]≦3.0 ・・・(A)
ここで、P0.7は、水素吸蔵量(H/M)=0.7の時の水素圧[MPa]、
P0.3は、水素吸蔵量(H/M)=0.3の時の水素圧[MPa]
を表す。
The hydrogen storage alloy for an alkaline storage battery according to claim 1, wherein the plateau inclination at the time of release after hydrogen storage is in a range satisfying the following formula (A) in terms of hydrogen storage and release characteristics.
0.8 ≤ log [(P0.7 / P0.3) /0.4]≤3.0 ... (A)
Here, P0.7 is the hydrogen pressure [MPa] when the hydrogen storage amount (H / M) = 0.7.
P0.3 is the hydrogen pressure [MPa] when the hydrogen storage amount (H / M) = 0.3.
Represents.
前記水素吸蔵合金は、7.15mol/Lの水酸化カリウム水溶液に80℃で8時間浸漬した後、25℃で10kOeの磁場を印加して測定した飽和磁化が60emu/m以下であることを特徴とする請求項1または2に記載のアルカリ蓄電池用水素吸蔵合金。 The hydrogen storage alloy was immersed in a 7.15 mol / L potassium hydroxide aqueous solution at 80 ° C. for 8 hours, and then a magnetic field of 10 kOe was applied at 25 ° C. to measure the saturation magnetization of 60 emu / m 2 or less. The hydrogen storage alloy for an alkaline storage battery according to claim 1 or 2, wherein the hydrogen storage alloy is characterized. 前記水素吸蔵合金は、下記一般式(1)式で表されることを特徴とする請求項1~3のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。
(La1-a-bCeSm1-cMgNi ・・・(1)
ここで、上記(1)式中のM、Tおよび添字a、b、c、d、eおよびfは、
M:Al、Zn、Sn、Siから選ばれる少なくとも1種、
T:Cr、Mo、Vから選ばれる少なくとも1種、
0<a≦0.10、
0≦b≦0.20、
0<a+b≦0.22
0.18≦c≦0.32、
0.03≦e≦0.16、
0≦f≦0.03、
3.2≦d+e+f<3.50
の条件を満たす。
The hydrogen storage alloy for an alkaline storage battery according to any one of claims 1 to 3, wherein the hydrogen storage alloy is represented by the following general formula (1).
(La 1-a-b Ce a Sm b ) 1-c Mg c Nid Me T f ... (1)
Here, M, T and the subscripts a, b, c, d, e and f in the above equation (1) are
M: At least one selected from Al, Zn, Sn, Si,
T: At least one selected from Cr, Mo, V,
0 <a≤0.10,
0 ≦ b ≦ 0.20,
0 <a + b ≦ 0.22
0.18 ≤ c ≤ 0.32,
0.03 ≤ e ≤ 0.16,
0 ≦ f ≦ 0.03,
3.2 ≦ d + e + f <3.50
Satisfy the conditions of.
前記水素吸蔵合金はAlを含み、7.15mol/Lの水酸化カリウム水溶液に80℃で8時間浸漬した後のAlの溶出量が、水酸化カリウム水溶液中への浸漬処理前の合金中のAl量の3.3mass%以下であることを特徴とする請求項1~4のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。 The hydrogen storage alloy contains Al, and the amount of Al eluted after being immersed in a 7.15 mol / L potassium hydroxide aqueous solution at 80 ° C. for 8 hours is the Al in the alloy before the immersion treatment in the potassium hydroxide aqueous solution. The hydrogen storage alloy for an alkaline storage battery according to any one of claims 1 to 4, wherein the amount is 3.3 mass% or less.
JP2021142517A 2020-09-23 2021-09-01 Hydrogen storage alloy for alkaline batteries Active JP7461655B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020158352 2020-09-23
JP2020158352 2020-09-23

Publications (2)

Publication Number Publication Date
JP2022052729A true JP2022052729A (en) 2022-04-04
JP7461655B2 JP7461655B2 (en) 2024-04-04

Family

ID=80948892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021142517A Active JP7461655B2 (en) 2020-09-23 2021-09-01 Hydrogen storage alloy for alkaline batteries

Country Status (1)

Country Link
JP (1) JP7461655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047726A1 (en) * 2021-09-24 2023-03-30 日本重化学工業株式会社 Hydrogen occlusion alloy for alkaline storage battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221057A (en) 2002-12-25 2004-08-05 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2005190863A (en) 2003-12-26 2005-07-14 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery, and alkaline storage battery
JP2008210554A (en) 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP2011127185A (en) 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
EP2589448B1 (en) 2010-06-24 2019-08-28 Santoku Corporation PROCESS FOR PRODUCTION OF (RARE EARTH)-Mg-Ni-BASED HYDROGEN STORAGE ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047726A1 (en) * 2021-09-24 2023-03-30 日本重化学工業株式会社 Hydrogen occlusion alloy for alkaline storage battery
JP7451000B2 (en) 2021-09-24 2024-03-18 日本重化学工業株式会社 Hydrogen storage alloy for alkaline storage batteries

Also Published As

Publication number Publication date
JP7461655B2 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
JP5581588B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP5718006B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery
WO2007018292A1 (en) Hydrogen-storage alloy, hydrogen-storage alloy electrode, secondary cell, and process for producing hydrogen-storage alloy
JP2007291474A (en) Hydrogen storage alloy and nickel-hydride secondary battery
JP3965209B2 (en) Low Co hydrogen storage alloy
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP3201247B2 (en) Sealed alkaline storage battery
JP7461655B2 (en) Hydrogen storage alloy for alkaline batteries
JP7430648B2 (en) Hydrogen storage material, negative electrode, and nickel-metal hydride secondary battery
JP6736065B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same
EP1075032A1 (en) Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery
JP2001348636A (en) Hydrogen storage alloy and its production method
JP5703468B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery
JP2002080925A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JP7158684B2 (en) HYDROGEN STORAGE ALLOY FOR ALKALINE STORAGE BATTERY AND ALKALINE STORAGE BATTERY AND VEHICLE USING SAME FOR NEGATIVE
JP7451000B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP7251864B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2013100585A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery using the same
CN114946051B (en) Hydrogen storage alloy for alkaline storage battery
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP2022052728A (en) Hydrogen storage alloy for alkaline storage battery
JP5573083B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
CN117940595A (en) Hydrogen storage alloy for alkaline storage battery
US20220190327A1 (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same as negative electrode, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7461655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150