JP3201247B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JP3201247B2
JP3201247B2 JP01854696A JP1854696A JP3201247B2 JP 3201247 B2 JP3201247 B2 JP 3201247B2 JP 01854696 A JP01854696 A JP 01854696A JP 1854696 A JP1854696 A JP 1854696A JP 3201247 B2 JP3201247 B2 JP 3201247B2
Authority
JP
Japan
Prior art keywords
alloy
storage battery
alkaline storage
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01854696A
Other languages
Japanese (ja)
Other versions
JPH09213319A (en
Inventor
慶子 古池
孝 海老原
亜矢子 田中
浩次 湯浅
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP01854696A priority Critical patent/JP3201247B2/en
Publication of JPH09213319A publication Critical patent/JPH09213319A/en
Application granted granted Critical
Publication of JP3201247B2 publication Critical patent/JP3201247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学的に水素
を吸蔵、放出する水素吸蔵合金を負極に用いた密閉型ア
ルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery using a hydrogen storage alloy for electrochemically storing and releasing hydrogen as a negative electrode.

【0002】[0002]

【従来の技術】ニッケル−カドミウム蓄電池に代わる高
容量アルカリ蓄電池として、水素吸蔵合金を負極に用い
たニッケル−水素蓄電池が注目されている。この水素吸
蔵合金は、現在では希土類系の混合物であるMm(ミッ
シュメタル)とNi、Al,Mn,Coとの5元系の水
素吸蔵合金がよく用いられている。
2. Description of the Related Art As a high-capacity alkaline storage battery replacing a nickel-cadmium storage battery, a nickel-hydrogen storage battery using a hydrogen storage alloy for a negative electrode has attracted attention. As the hydrogen storage alloy, a quinary hydrogen storage alloy of Mm (misch metal), which is a rare earth-based mixture, and Ni, Al, Mn, and Co is often used.

【0003】このMm−Ni−Mn−Al−Co合金は
La系のそれに比べて比較的安価な材料で負極を構成で
き、サイクル寿命が長く、過充電時の発生ガスによる内
圧上昇が少ない密閉形ニッケル水素蓄電池を得ることが
できることから、電極材料として広く用いられている。
[0003] This Mm-Ni-Mn-Al-Co alloy can form a negative electrode with a relatively inexpensive material as compared with the La-based alloy, has a long cycle life, and has a small internal pressure rise due to gas generated during overcharge. Since a nickel-metal hydride storage battery can be obtained, it is widely used as an electrode material.

【0004】現在用いられているMm−Ni−Mn−A
l−Co合金は、合金の微粉化を抑制してサイクル寿命
を長くしているが、一般的にこの微粉化抑制のためには
多量のCo(原子比で0.6〜1.0)を必要とするこ
とが知られている。
[0004] Currently used Mm-Ni-Mn-A
The l-Co alloy suppresses the pulverization of the alloy and prolongs the cycle life. Generally, however, a large amount of Co (at an atomic ratio of 0.6 to 1.0) is used to suppress the pulverization. It is known to need.

【0005】[0005]

【発明が解決しようとする課題】そのため、合金の低コ
スト化を図ろうと、材料的に高価なCo量を減少する
と、合金の微粉化による電池の短寿命化などが起こって
電池性能を低下させる要因になり、密閉型アルカリ蓄電
池の負極用水素吸蔵合金としては改善すべき点がある。
Therefore, in order to reduce the cost of the alloy, if the amount of Co, which is materially expensive, is reduced, the life of the battery is shortened due to the pulverization of the alloy, and the battery performance deteriorates. As a factor, there is a point to be improved as a hydrogen storage alloy for a negative electrode of a sealed alkaline storage battery.

【0006】なお、一部にはCo量を減らしてNi量を
増やすことで電池としてのサイクル寿命を改善する提案
(特開平7−99055号公報)もあるが、その効果は
現在のところ確認できていない。
There is a proposal for improving the cycle life of a battery by reducing the amount of Co and increasing the amount of Ni (Japanese Patent Laid-Open No. 7-99055), but the effect can be confirmed at present. Not.

【0007】本発明は上記課題を解決するもので、Mm
−Ni−Mn−Al−Co系合金の組成を変化させ、こ
れにさらに少量の1元素を加えることで、Coが少量に
もかかわらず、合金の微粉化による負極の劣化を抑制
し、電池のサイクル寿命が長くかつコストの面でも有利
であり、さらに従来の合金以上に水素の吸蔵スピードを
向上させることにより負極の充電効率を高め、過充電時
の発生ガスによる内圧上昇の少ない密閉型ニッケル水素
蓄電池を提供することを目的とする。
[0007] The present invention solves the above-mentioned problems, and Mm
By changing the composition of the -Ni-Mn-Al-Co-based alloy and adding a small amount of one element to it, despite the small amount of Co, the deterioration of the negative electrode due to the pulverization of the alloy is suppressed, A sealed nickel-metal hydride that has a long cycle life and is advantageous in terms of cost.It also increases the hydrogen absorption speed more than conventional alloys, thereby increasing the charge efficiency of the negative electrode and reducing internal pressure rise due to gas generated during overcharge. It is intended to provide a storage battery.

【0008】[0008]

【課題を解決するための手段】本発明の電池の負極を構
成する水素吸蔵合金は、一般式MmNiaMnbAlc
de(但しMmは希土類元素の混合物、MはFe,C
r,Cuのうちから選ばれた少なくとも1種類の元素で
あり、3.8≦a≦4.1、0.05<d<0.5,
0.05<e<0.3,5.1≦a+b+c+d+e≦
5.4)で表され、20℃の温度下で10KOeの磁場
をかけた際の単位重量当りの磁化が0.27〜9.5e
mu/gのものである。好ましくは粉末としての平均粒
子径が15μm〜100μmであり、10μm以下の合
金粒子の割合が体積積算で全体の35%以下であるもの
である。これにより、合金中のCo含有量が少なくて
も、長寿命特性を有するニッケル水素蓄電池が提供でき
る。
The hydrogen storage alloy constituting the negative electrode of the battery of the present invention has a general formula of MmNi a Mn b Al c C
o d M e (where Mm is a mixture of rare earth elements, M is Fe, C
at least one element selected from the group consisting of r and Cu, 3.8 ≦ a ≦ 4.1, 0.05 <d <0.5,
0.05 <e <0.3, 5.1 ≦ a + b + c + d + e ≦
5.4), the magnetization per unit weight when a magnetic field of 10 KOe is applied at a temperature of 20 ° C. is 0.27 to 9.5 e.
mu / g. Preferably, the average particle diameter of the powder is 15 μm to 100 μm, and the ratio of alloy particles having a particle size of 10 μm or less is 35% or less of the total by volume. Thereby, even if the Co content in the alloy is small, a nickel-metal hydride storage battery having a long life characteristic can be provided.

【0009】本発明者らは種々検討したところ、水素吸
蔵合金中のCo量を削減してなおかつ合金の微粉化を抑
制するためには、AB5型合金組成を非化学量論組成
(Bサイトリッチ)にすることが、効果的であることを
見出した。そして開放型電池での試験の結果、非化学量
論組成の合金は微粉化が抑制でき長寿命の電池を得るこ
とができたが、密閉型ニッケル水素蓄電池を作成したと
ころ、電池内圧が高く、この内圧上昇による安全弁の作
動により電解液量の減少を来たし、電池のサイクル寿命
特性の低下を引き起こした。
[0009] The present inventors have made various investigations, in order to suppress the pulverization of yet alloys by reducing the Co content in the hydrogen storage alloy, a non-stoichiometric composition of the AB 5 type alloy composition (B site Rich) is effective. And, as a result of the test on the open type battery, the alloy of non-stoichiometric composition was able to suppress the pulverization and obtain a long-life battery, but when the sealed nickel-metal hydride storage battery was created, the internal pressure of the battery was high, The operation of the safety valve due to the increase in the internal pressure caused a decrease in the amount of the electrolyte, which caused a decrease in the cycle life characteristics of the battery.

【0010】[0010]

【発明の実施の形態】本発明の請求項1に記載の発明
は、一般式MmNiaMnbAlcCode(但しMmは
希土類元素の混合物、MはFe,Cr,Cuのうちから
選ばれた少なくとも1種類の元素、3.8≦a≦4.
1、0.05<d<0.5,0.05<e<0.3、
5.1≦a+b+c+d+e≦5.4)により、合金の
Co量を削減しても合金の微粉化を抑制し、長寿命化を
図ることができる。水素吸蔵合金から合金組織が壊れた
金属が強磁性体として現れるのは、前記組成中のNi,
Co,Fe,Crであり、合金組織が破壊されると、こ
れらの金属が主に合金表面に現れる。これらの4元素は
金属や酸化物の状態で水素吸蔵合金の耐食性を向上させ
る。またNi,Co、Cuは負極の充放電電位で、アル
カリ中では金属状態で存在するため水素触媒の働きも兼
ねており、水素の吸蔵スピードが向上し、負極としての
充電効率も高まって、過充電時の発生ガスによる内圧上
昇の小さい密閉型アルカリ蓄電池を得ることができる。
なお、20℃の温度下で10KOeの磁場をかけたとき
の水素吸蔵合金における単位重量当りの磁化が0.27
emu/g以下であると、合金の水素吸蔵反応速度が低
下し、電池内圧上昇の原因になる。また9.5emu/
g以上であると、合金組織が破壊されすぎて合金容量が
減少し、その結果負極容量も減少するため電池内圧上昇
の原因となる。従って、水素吸蔵合金としては、10K
Oeの磁場をかけた際の磁化は0.27〜9.5emu
/gを有するものが好ましい。
DETAILED DESCRIPTION OF THE INVENTION According to a first aspect of the present invention have the general formula MmNi a Mn b Al c Co d M e ( where Mm is a mixture of rare earth elements, M is Fe, Cr, from among Cu At least one selected element, 3.8 ≦ a ≦ 4.
1, 0.05 <d <0.5, 0.05 <e <0.3,
By 5.1 ≦ a + b + c + d + e ≦ 5.4), even if the amount of Co in the alloy is reduced, pulverization of the alloy can be suppressed, and the life can be extended. The metal whose alloy structure has been broken from the hydrogen storage alloy appears as a ferromagnetic material because of the Ni,
These are Co, Fe, and Cr, and when the alloy structure is destroyed, these metals mainly appear on the alloy surface. These four elements improve the corrosion resistance of the hydrogen storage alloy in the form of metal or oxide. Ni, Co, and Cu are the charge / discharge potentials of the negative electrode. Since they exist in a metal state in an alkali, they also function as a hydrogen catalyst, so that the speed of absorbing hydrogen is improved, and the charging efficiency of the negative electrode is increased. A sealed alkaline storage battery with a small increase in internal pressure due to gas generated during charging can be obtained.
When a magnetic field of 10 KOe was applied at a temperature of 20 ° C., the magnetization per unit weight of the hydrogen storage alloy was 0.27.
If it is less than emu / g, the rate of hydrogen storage reaction of the alloy will decrease, causing an increase in battery internal pressure. 9.5 emu /
If the amount is more than g, the alloy structure is excessively destroyed and the capacity of the alloy is reduced. As a result, the capacity of the negative electrode is also reduced, which causes an increase in the internal pressure of the battery. Therefore, as a hydrogen storage alloy, 10K
The magnetization when applying a magnetic field of Oe is 0.27 to 9.5 emu.
/ G is preferable.

【0011】本発明の請求項2に記載の発明は、前記合
金の平均粒子径が15μm〜100μmであり、10μ
m以下の合金粒子の割合が体積積算で全体の35%以下
に制御したもので、水素吸蔵放出反応にほとんど関与し
ない10μm以下の合金粒子の量を制限し、反応性、耐
微粉化に好ましい水素吸蔵合金の平均粒子径としたもの
である。なお、平均粒子が15μm以下、及び10μm
以下の合金粒子の割合が体積積算で35%以上であれ
ば、微粒子が多すぎて合金容量が減少し、負極の充填密
度も減少してしまう。また平均粒子径が100μm以上
であると、合金の比表面積が減少し反応速度が低下して
しまう。
According to a second aspect of the present invention, the alloy has an average particle size of 15 μm to 100 μm,
m is controlled to 35% or less of the total by volume, and the amount of alloy particles of 10 μm or less that hardly participates in the hydrogen storage / release reaction is limited, and hydrogen suitable for reactivity and pulverization resistance is preferred. It is the average particle diameter of the storage alloy. Incidentally, the average particle is 15 μm or less, and 10 μm
If the ratio of the following alloy particles is 35% or more by volume integration, the amount of fine particles is too large, the alloy capacity is reduced, and the packing density of the negative electrode is also reduced. On the other hand, when the average particle diameter is 100 μm or more, the specific surface area of the alloy decreases and the reaction rate decreases.

【0012】以下、本発明の実施の形態について説明す
る。 (実施の形態)本発明の水素吸蔵合金負極の作成方法に
ついて述べる。上記組成の各金属試料を秤量、混合し、
誘導加熱による高周波溶解炉を用いて加熱溶解させて得
た溶湯を水冷式鋳型に流し込み、水素吸蔵合金を得た。
この水素吸蔵合金を粗粉砕後、さらに湿式ボールミルで
上記水素吸蔵合金粒子径の範囲に入るよう制御し、微粉
末を得た。
Hereinafter, embodiments of the present invention will be described. (Embodiment) A method for producing a hydrogen storage alloy negative electrode according to the present invention will be described. Weigh and mix each metal sample of the above composition,
The molten metal obtained by heating and melting using a high-frequency melting furnace by induction heating was poured into a water-cooled mold to obtain a hydrogen storage alloy.
After coarsely pulverizing this hydrogen storage alloy, it was further controlled by a wet ball mill so as to fall within the above-mentioned range of the particle diameter of the hydrogen storage alloy to obtain a fine powder.

【0013】合金粉末の作成方法としては、上記粒子径
分布を有するものであればよく、ガスアトマイズ法など
の他の手段を用いても良い。
As a method for preparing the alloy powder, any method having the above-described particle size distribution may be used, and other means such as a gas atomizing method may be used.

【0014】但し、合金の価格面、特性面からは、合金
組成として請求項1に記載した範囲内のものであれば、
どの様な組成でも良い。更に好ましくはCo量として
は、Mmに対して0.2〜0.4原子が良好である。ま
た、Ni,Al,Co,Mの総量は、MがFe,Cr,
Cuのうちのいずれの場合も、原子比でMmの1に対し
て5.2〜5.3であるのが更に好ましい。
However, from the viewpoint of price and properties of the alloy, if the alloy composition falls within the range described in claim 1,
Any composition may be used. More preferably, the amount of Co is preferably 0.2 to 0.4 atoms with respect to Mm. The total amount of Ni, Al, Co, and M is such that M is Fe, Cr,
In any case of Cu, the atomic ratio is more preferably 5.2 to 5.3 with respect to 1 of Mm.

【0015】次に、20℃で合金に10KOeの磁場を
かけた際の合金重量当りの磁化を0.27〜9.5em
u/gにコントロールする方法について述べる。この方
法には、アルカリ水溶液に粉砕された水素吸蔵合金粉末
を浸漬する方法、この浸漬溶液を高温で処理する方法や
撹拌処理する方法がある。いずれの方法でもその後、合
金を純水で水洗し、吸引ろ過して乾燥させる。
Next, when a magnetic field of 10 KOe is applied to the alloy at 20 ° C., the magnetization per alloy weight is 0.27 to 9.5 em.
A method of controlling the ratio to u / g will be described. This method includes a method of immersing the pulverized hydrogen storage alloy powder in an aqueous alkaline solution, a method of treating the immersion solution at a high temperature, and a method of stirring. After that, the alloy is washed with pure water, suction filtered and dried.

【0016】なお、この調整処理を、処理液比重が1.
25〜1.5で、処理温度を60〜100℃に保ち、液
を撹拌しながら行うと、ほぼ、所望の範囲に磁化量をコ
ントロールできる。また、他の方法として、フッ酸、塩
酸等の酸性溶液処理も有効である。更に、上記処理中に
ニッケル塩を添加すると更に良好な特性が得られる。
In this adjustment process, the specific gravity of the processing solution is 1.
When the treatment temperature is maintained at 25 to 1.5 and the liquid is stirred while the treatment temperature is maintained at 60 to 100 ° C., the amount of magnetization can be controlled to a substantially desired range. As another method, treatment with an acidic solution such as hydrofluoric acid or hydrochloric acid is also effective. Further, better properties can be obtained by adding a nickel salt during the above treatment.

【0017】磁化の測定には、振動試料型磁力計を用
い、合金重量当たりの磁化を測定した。また合金粒子径
の測定には、レーザー回折式粒度分布計を用いた。
For the measurement of magnetization, a magnetization per magnet weight was measured using a vibrating sample magnetometer. A laser diffraction particle size distribution meter was used for the measurement of the alloy particle diameter.

【0018】次に、処理後の前記水素吸蔵合金粉末に、
結着剤、導電剤などを添加してペーストを作成し、これ
をパンチングメタルからなる支持体に塗着し、固定し
た。なお、水素吸蔵合金電極の作成方法としては、この
他に合金粉末を焼結する焼結式と、発泡体、繊維などの
多孔性支持体に、合金粉末を充填する方法がある。ま
た、結着剤としてはカルボキシメチルセルロース(CM
C)や、スチレン−ブタジエン共重合体、ポリエチレン
(PE)、ポリテトラフルオロエチレン(PTFE)な
どが用いられる。この結着剤の添加量は、総じて水素吸
蔵合金粉末に対して0.5〜1.0重量%が好ましい。
また導電剤としては、カーボンブラックなどが挙げら
れ、これらの添加量は水素吸蔵合金粉末に対して、0.
2〜1.0重量%が好ましい。
Next, the hydrogen storage alloy powder after the treatment is
A paste was prepared by adding a binder, a conductive agent, and the like, and the paste was applied to a support made of punched metal and fixed. Other methods of preparing the hydrogen storage alloy electrode include a sintering method of sintering the alloy powder and a method of filling the porous support such as a foam or a fiber with the alloy powder. Also, carboxymethylcellulose (CM
C), styrene-butadiene copolymer, polyethylene (PE), polytetrafluoroethylene (PTFE) and the like are used. The addition amount of the binder is preferably 0.5 to 1.0% by weight based on the hydrogen storage alloy powder as a whole.
Examples of the conductive agent include carbon black and the like.
2 to 1.0% by weight is preferred.

【0019】[0019]

【実施例】以下、本発明の実施例について、ニッケル水
素蓄電池を例にとり詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail by taking a nickel-metal hydride storage battery as an example.

【0020】(開放型電池の作成)前記組成の合金粉末
100gに対してカルボキシルメチルセルロースを0.
15重量%、カーボンブラックを0.3重量%、スチレ
ンブタジエン共重合体を0.7重量%加え、これにさら
に分散剤として純水を添加してペーストを作成した。こ
のペーストをパンチングメタルに塗布、乾燥したあと所
望の厚みにプレスした。これらの負極電極を所定の寸法
に切断し、容量2750mAhの負極とした。このとき
合金活物質重量は約9.5gであり、この負極と容量1
700mAhの公知の発泡メタル式ニッケル正極をセパ
レータを介して重ね合わせ、充電時にそれぞれの極板か
ら活物質が脱落しない様にアクリル板で左右両方からお
さえ、ついで充分な量の比重1.3のKOH水溶液に浸
漬して開放型アルカリ蓄電池を構成した。
(Preparation of Open Battery) Carboxymethylcellulose was added to 100 g of the alloy powder having the above composition in an amount of 0.1 g.
A paste was prepared by adding 15% by weight, 0.3% by weight of carbon black, and 0.7% by weight of a styrene-butadiene copolymer, and further adding pure water as a dispersant. This paste was applied to a punching metal, dried and pressed to a desired thickness. These negative electrodes were cut into predetermined dimensions to obtain negative electrodes having a capacity of 2750 mAh. At this time, the weight of the alloy active material was about 9.5 g.
A publicly known foamed metal nickel positive electrode of 700 mAh is overlapped with a separator interposed therebetween, and at the time of charging, an acrylic plate is used to hold the active material from both the left and right sides so that the active material does not fall off. An open-type alkaline storage battery was constructed by immersion in an aqueous solution.

【0021】(密閉型電池の作成)開放型電池の負極と
同様の処方で負極を作成した。この負極と容量1700
mAhの公知の発泡メタル式ニッケル正極をセパレータ
を介して渦巻状に構成し、ケースに挿入した。ついで、
比重1.3のKOH水溶液2.35mlを注液した後、
封口して4/5Aサイズの密閉型アルカリ蓄電池を構成
した。
(Preparation of Sealed Battery) A negative electrode was prepared in the same manner as the negative electrode of the open battery. This negative electrode and capacity 1700
A known foam metal nickel positive electrode of mAh was formed in a spiral shape through a separator, and inserted into the case. Then
After injecting 2.35 ml of a KOH aqueous solution having a specific gravity of 1.3,
The sealed alkaline storage battery having a size of 4/5 A was sealed.

【0022】以下に示す実施例では上記の開放型電池、
密閉型電池ともに作成した。 (実施例1)希土類元素の混合物(組成比:La 60
%,Ce 28%,Nd 9%,Pr 0.3%,およ
びその他の希土類元素 2.7%)と、Ni,Mn,A
l,Co,Cuを合金組成でMmNi4.0Mn0.4Al
0.3Co0.4Cu0.1になるように各金属試料を秤量、混
合し、その混合物をるつぼ内に入れて高周波溶解炉に固
定し、10-4〜10-5Torrまで真空状態にした後、
Arガス雰囲気中で加熱溶解した後、水冷式銅鋳型に流
し込み合金を得た。
In the following embodiment, the above-mentioned open-type battery,
Both sealed batteries were made. Example 1 Mixture of rare earth elements (composition ratio: La 60)
%, Ce 28%, Nd 9%, Pr 0.3%, and other rare earth elements 2.7%), Ni, Mn, A
l, Co, Cu in alloy composition MmNi 4.0 Mn 0.4 Al
After weighing and mixing each metal sample so as to obtain 0.3 Co 0.4 Cu 0.1 , the mixture was put in a crucible, fixed in a high-frequency melting furnace, and evacuated to 10 -4 to 10 -5 Torr,
After heating and melting in an Ar gas atmosphere, the alloy was poured into a water-cooled copper mold to obtain an alloy.

【0023】前記合金を粗粉砕後、湿式ボールミルで平
均粒子径35μm、10μm以下の合金粒子の割合が体
積積算で全体の10%になるように粉砕して分級した
後、比重1.3、液温80℃のKOH水溶液中に浸漬
し、撹拌処理した。この後、水洗し脱水、乾燥した。こ
の合金粉末で負極を作成し、開放型アルカリ蓄電池と密
閉型アルカリ蓄電池を作成した。これをAとする。
After coarsely pulverizing the above alloy, it is pulverized and classified by a wet ball mill so that the ratio of alloy particles having an average particle diameter of 35 μm and 10 μm or less becomes 10% of the whole by volume integration, and then the specific gravity is 1.3. It was immersed in an aqueous KOH solution at a temperature of 80 ° C. and stirred. Thereafter, it was washed with water, dehydrated and dried. A negative electrode was prepared from this alloy powder, and an open-type alkaline storage battery and a sealed-type alkaline storage battery were prepared. This is A.

【0024】(実施例2)実施例1と同組成の合金を粗
粉砕後、湿式ボールミルで平均粒子径35μm、10μ
m以下の合金粒子の割合が体積積算で全体の10%にな
るように粉砕し分級した後、脱水、乾燥した。この合金
粉末で負極を作成し、開放型アルカリ蓄電池と密閉型ア
ルカリ蓄電池を作成した。これをBとする。
Example 2 An alloy having the same composition as in Example 1 was coarsely pulverized and then subjected to wet ball milling to obtain an average particle diameter of 35 μm and 10 μm.
After pulverizing and classifying so that the ratio of alloy particles having a particle size of m or less becomes 10% of the total by volume, dehydration and drying were performed. A negative electrode was prepared from this alloy powder, and an open-type alkaline storage battery and a sealed-type alkaline storage battery were prepared. This is B.

【0025】(実施例3)実施例1と同組成の合金を粗
粉砕後、湿式ボールミルで平均粒子径120μm、10
μm以下の合金粒子の割合が体積積算で全体の5%にな
るように粉砕し分級した後、比重1.3、液温80℃の
KOH水溶液中に浸漬し、撹拌処理した。この後、水洗
し脱水、乾燥した。この合金粉末で負極を作成し、開放
型アルカリ蓄電池と密閉型アルカリ蓄電池を作成した。
これをCとする。
Example 3 An alloy having the same composition as in Example 1 was roughly pulverized, and then subjected to wet ball milling to obtain an average particle diameter of 120 μm.
After pulverizing and classifying so that the ratio of the alloy particles having a size of μm or less becomes 5% of the whole by volume integration, the alloy particles were immersed in a KOH aqueous solution having a specific gravity of 1.3 and a liquid temperature of 80 ° C., followed by stirring. Thereafter, it was washed with water, dehydrated and dried. A negative electrode was prepared from this alloy powder, and an open-type alkaline storage battery and a sealed-type alkaline storage battery were prepared.
This is C.

【0026】(実施例4)実施例1と同組成の合金を粗
粉砕後、湿式ボールミルで平均粒子径120μm、10
μm以下の合金粒子の割合が体積積算で全体の5%にな
るように粉砕し分級した後、脱水、乾燥した。この合金
粉末で負極を作成し、開放型アルカリ蓄電池と密閉型ア
ルカリ蓄電池を作成した。これをDとする。
Example 4 An alloy having the same composition as in Example 1 was coarsely pulverized and then subjected to wet ball milling to obtain an average particle diameter of 120 μm.
After pulverizing and classifying so that the ratio of the alloy particles having a particle size of μm or less becomes 5% of the whole by volume integration, the powder was dehydrated and dried. A negative electrode was prepared from this alloy powder, and an open-type alkaline storage battery and a sealed-type alkaline storage battery were prepared. This is D.

【0027】(実施例5)実施例1と同組成の合金を粗
粉砕後、湿式ボールミルで平均粒子径12μm、10μ
m以下の合金粒子の割合が体積積算で全体の45%にな
るように粉砕し分級した後、比重1.3、液温100℃
のKOH水溶液中に浸漬し、撹拌処理した。この後、水
洗し脱水、乾燥した。この合金粉末で負極を作成し、開
放型アルカリ蓄電池と密閉型アルカリ蓄電池を作成し
た。これをEとする。
Example 5 An alloy having the same composition as in Example 1 was coarsely pulverized and then subjected to wet ball milling to obtain an average particle diameter of 12 μm and 10 μm.
After crushing and classifying so that the ratio of alloy particles having a particle size of m or less becomes 45% of the whole by volume integration, specific gravity is 1.3 and liquid temperature is 100 ° C.
Was immersed in an aqueous KOH solution and stirred. Thereafter, it was washed with water, dehydrated and dried. A negative electrode was prepared from this alloy powder, and an open-type alkaline storage battery and a sealed-type alkaline storage battery were prepared. This is E.

【0028】(実施例6)実施例1と同組成の合金を粗
粉砕後、湿式ボールミルで平均粒子径16μm、10μ
m以下の合金粒子の割合が体積積算で全体の30%にな
るように粉砕し分級した後、比重1.3、液温100℃
のKOH水溶液中に浸漬し、撹拌処理した。この後、実
施例1と同様に処理した合金粉末で負極を作成し、開放
型アルカリ蓄電池と密閉型アルカリ蓄電池を作成した。
これをFとする。
Example 6 An alloy having the same composition as in Example 1 was coarsely pulverized and then subjected to wet ball milling to obtain an average particle diameter of 16 μm and 10 μm.
After crushing and classifying so that the ratio of alloy particles having a particle size of m or less becomes 30% of the total by volume, specific gravity is 1.3 and liquid temperature is 100 ° C.
Was immersed in an aqueous KOH solution and stirred. Thereafter, a negative electrode was prepared from the alloy powder treated in the same manner as in Example 1, and an open-type alkaline storage battery and a sealed-type alkaline storage battery were prepared.
This is F.

【0029】(実施例7)実施例1と同組成の合金を粗
粉砕後、湿式ボールミルで平均粒子径12μm、10μ
m以下の合金粒子の割合が体積積算で全体の45%にな
るように粉砕し分級した後、比重1.3、液温100℃
のKOH水溶液中に浸漬し、撹拌処理した。この後、実
施例1と同様に処理した合金粉末で負極を作成し、開放
型アルカリ蓄電池と密閉型アルカリ蓄電池を作成した。
これをGとする。
Example 7 An alloy having the same composition as in Example 1 was coarsely pulverized and then subjected to wet ball milling to obtain an average particle diameter of 12 μm and 10 μm.
After crushing and classifying so that the ratio of alloy particles having a particle size of m or less becomes 45% of the whole by volume integration, specific gravity is 1.3 and liquid temperature is 100 ° C.
Was immersed in an aqueous KOH solution and stirred. Thereafter, a negative electrode was prepared from the alloy powder treated in the same manner as in Example 1, and an open-type alkaline storage battery and a sealed-type alkaline storage battery were prepared.
This is G.

【0030】(実施例8)希土類元素の混合物(組成
比:La 60%,Ce 28%,Nd 9%,Pr
0.3%,およびその他の希土類元素 2.7%)と、
Ni,Mn,Al,Co,Cuを合金組成でMmNi
4.1Mn0.5Al0.3Co0.1Cu0.2になるように各金属
試料を秤量、混合し、その混合物をるつぼ内に入れて高
周波溶解炉に固定し、10-4〜10-5Torrまで真空
状態にした後、Arガス雰囲気中で加熱溶解した後、水
冷式銅鋳型に流し込み合金を得た。
Example 8 Mixture of rare earth elements (composition ratio: La 60%, Ce 28%, Nd 9%, Pr
0.3% and other rare earth elements 2.7%),
Ni, Mn, Al, Co, Cu are alloyed with MmNi
4.1 Each metal sample was weighed and mixed so as to be 4.1 Mn 0.5 Al 0.3 Co 0.1 Cu 0.2 , the mixture was placed in a crucible, fixed in a high-frequency melting furnace, and evacuated to 10 -4 to 10 -5 Torr. Then, after heating and melting in an Ar gas atmosphere, the alloy was poured into a water-cooled copper mold to obtain an alloy.

【0031】上記合金を実施例1と同様な方法で処理し
て負極を作成し、開放型アルカリ蓄電池と密閉型アルカ
リ蓄電池を作成した。これをHとする。
The above alloy was treated in the same manner as in Example 1 to form a negative electrode, and an open-type alkaline storage battery and a sealed-type alkaline storage battery were prepared. This is H.

【0032】(実施例9)希土類元素の混合物(組成
比:La 60%,Ce 28%,Nd 9%,Pr
0.3%,およびその他の希土類元素 2.7%)と、
Ni,Mn,Al,Co,Cuを合金組成でMmNi
3.7Mn0.4Al0.3Co0.4Cu0.1になるように各金属
試料を秤量、混合し、その混合物をるつぼ内に入れて高
周波溶解炉に固定し、10-4〜10-5Torrまで真空
状態にした後、Arガス雰囲気中で加熱溶解した後、水
冷式銅鋳型に流し込み合金を得た。
Example 9 A mixture of rare earth elements (composition ratio: La 60%, Ce 28%, Nd 9%, Pr
0.3% and other rare earth elements 2.7%),
Ni, Mn, Al, Co, Cu are alloyed with MmNi
3.7 Mn 0.4 Al 0.3 Co 0.4 Cu 0.1 Each metal sample was weighed and mixed, and the mixture was put in a crucible, fixed in a high frequency melting furnace, and evacuated to 10 -4 to 10 -5 Torr. Then, after heating and melting in an Ar gas atmosphere, the alloy was poured into a water-cooled copper mold to obtain an alloy.

【0033】上記合金を実施例1と同様な方法で処理し
て負極を作成し、開放型アルカリ蓄電池と密閉型アルカ
リ蓄電池を作成した。これをIとする。
The alloy was treated in the same manner as in Example 1 to form a negative electrode, and an open alkaline storage battery and a sealed alkaline storage battery were prepared. This is I.

【0034】以上のA〜Iの9種類合計18タイプの電
池を作成した。 (サイクル寿命の測定)これらの電池について、開放型
アルカリ蓄電池及び密閉型アルカリ蓄電池の両方とも2
0℃で電流値1CmAで72分間充電し、電流値1Cm
Aで1.0Vまで放電するサイクル寿命測定を行った。
(表1)には放電容量が初期放電容量の80%まで劣化
したときのサイクル数を示した。
A total of 18 batteries of nine types A to I were prepared. (Measurement of cycle life) For these batteries, both the open-type alkaline storage battery and the closed-type alkaline storage battery
The battery was charged at 0 ° C. at a current value of 1 CmA for 72 minutes, and a current value of 1 Cm
A cycle life measurement of discharging to 1.0 V at A was performed.
Table 1 shows the number of cycles when the discharge capacity was reduced to 80% of the initial discharge capacity.

【0035】(電池内圧の測定)(表1)の電池のう
ち、密閉型アルカリ蓄電池について、20℃の雰囲気下
で電流値1CmAで72分間充電したときの電池内圧を
測定した。
(Measurement of Battery Internal Pressure) Of the batteries in Table 1, the internal pressure of the sealed alkaline storage battery was measured at a current value of 1 CmA for 72 minutes in an atmosphere of 20 ° C.

【0036】[0036]

【表1】 [Table 1]

【0037】(表1)の結果より、合金の組成がIのよ
うにa+b+c+d+e<5.0では、開放型、密閉型
のどちらの電池構造をとっても寿命劣化が大きかった。
この原因ははっきりとはわかっていないが、充放電サイ
クル後の負極を電子顕微鏡などで観察した結果、合金の
微粉化が著しく、また腐食も進行していることが判明し
たことから、合金の容量劣化に起因していることがわか
った。また、組成が実施例A〜Hの様にa+b+c+d
+e>5.1であれば、開放型アルカリ蓄電池の結果、
及び寿命評価後の負極板の解析結果より、サイクル寿命
特性は満足しており、合金の微粉化が抑制できているこ
とがわかった。しかし、密閉型アルカリ蓄電池の結果よ
り、10KOeの磁場をかけたときの合金の単位重量当
りの磁化量が0.27以下であると(例B,D)、合金
の反応速度が遅いため、過充電時の負極のガス吸収が遅
れて電池内圧が上昇し、充放電サイクルに伴う内圧上昇
により安全弁が作動し、ガスとともに電解液が外部に漏
れ出て電解液量の減少をきたし、電池のサイクル寿命の
低下を引き起こした。また、磁化量が9.5以上(例
F,G)であると、合金組織が破壊されすぎて水素の吸
蔵、放出に関与する合金容量が減少し、負極容量も減少
して電池内圧上昇の原因となった。このため、20℃で
10KOeの磁場をかけたときの合金の単位重量当りの
磁化は0.27〜9.5emu/gが好ましかった。ま
た合金の平均粒子径が15μm以下(例E,G)である
と、水素の吸蔵放出に関与しないと考えられる10μm
以下の合金の割合が相対的に増加した。そのため、合金
容量または負極容量が減少し、内圧上昇によるサイクル
寿命低下を引き起こした。また、平均粒子径が100μ
m以上(例C,D)であると、合金の比表面積が減少し
て合金表面の反応活性点が減少するため、反応速度が遅
くなり、これによる内圧上昇を引き起こした。
From the results shown in Table 1, when the composition of the alloy was a + b + c + d + e <5.0, as in I, the life was significantly deteriorated in both the open and closed battery structures.
Although the cause is not clearly understood, observation of the negative electrode after the charge / discharge cycle with an electron microscope and other means revealed that the alloy was significantly pulverized and that corrosion was progressing. It was found that it was caused by deterioration. The composition is a + b + c + d as in Examples A to H.
If + e> 5.1, the result of the open alkaline storage battery is:
From the analysis result of the negative electrode plate after the life evaluation, it was found that the cycle life characteristics were satisfied, and that the pulverization of the alloy was suppressed. However, according to the results of the sealed alkaline storage battery, if the amount of magnetization per unit weight of the alloy is 0.27 or less when a magnetic field of 10 KOe is applied (Examples B and D), the reaction rate of the alloy is low, and The internal pressure of the battery rises due to the delay of gas absorption of the negative electrode during charging, and the safety valve operates due to the internal pressure rise associated with the charge / discharge cycle, and the electrolyte leaks out together with the gas to reduce the amount of the electrolyte. Caused a shortened life. On the other hand, if the magnetization amount is 9.5 or more (Examples F and G), the alloy structure is excessively destroyed, the alloy capacity involved in hydrogen absorption and desorption decreases, the anode capacity also decreases, and the internal pressure of the battery increases. Caused. Therefore, the magnetization per unit weight of the alloy when a magnetic field of 10 KOe was applied at 20 ° C. was preferably 0.27 to 9.5 emu / g. When the average particle diameter of the alloy is 15 μm or less (Examples E and G), the average particle diameter of 10 μm is considered not to be involved in hydrogen storage and release.
The proportions of the following alloys increased relatively. Therefore, the capacity of the alloy or the capacity of the negative electrode decreased, and the cycle life was shortened due to an increase in the internal pressure. In addition, the average particle diameter is 100μ
If it is not less than m (Examples C and D), the specific surface area of the alloy is reduced and the number of reactive active sites on the alloy surface is reduced, so that the reaction rate is slowed and the internal pressure is increased.

【0038】これらの結果より、総括するに合金の平均
粒子径は15〜100μmで、10μm以下の合金粒子
の割合が体積積算で全体の35%以下が好ましかった。
From these results, the average particle size of the alloy is generally 15 to 100 μm, and the ratio of alloy particles having a particle size of 10 μm or less is preferably 35% or less of the total volume.

【0039】以上の結果は、合金中の元素CuをFe、
又はCrに置換しても同様な結果が得られた。更に、C
u、Fe、Crのうちの少なくとも2元素を同時に添加
しても、その総添加量が1原子のMmに対して0.05
〜0.3原子であれば同様な効果を示した。
The above results show that the element Cu in the alloy is replaced with Fe,
Alternatively, similar results were obtained even when the substitution was made with Cr. Further, C
Even if at least two elements of u, Fe and Cr are added at the same time, the total amount of addition is 0.05 to Mm of one atom.
The same effect was obtained when the number of atoms was 0.3 atoms.

【0040】[0040]

【発明の効果】このようにMm−Ni−Mn−Al−C
o−M系の合金組成を制御し、さらに合金粉末の磁化
量、合金粒子径をも制御することで、Coが少量にもか
かわらず、合金の微粉化による負極の劣化を抑制でき
る。これにより電池としてのサイクル寿命が長くかつコ
ストの面でも有利で、従来の合金以上に水素の吸蔵スピ
ードが向上することにより負極の充電効率が高まり、過
充電時の発生ガスによる内圧上昇の少ない密閉型ニッケ
ル水素蓄電池が得られる。
As described above, Mm-Ni-Mn-Al-C
By controlling the composition of the oM-based alloy, and further controlling the magnetization amount and the alloy particle diameter of the alloy powder, it is possible to suppress the deterioration of the negative electrode due to the pulverization of the alloy despite the small amount of Co. As a result, the cycle life of the battery is long and the cost is also advantageous, and the hydrogen absorption speed is higher than that of the conventional alloy, so that the charging efficiency of the negative electrode is increased and the internal pressure rise due to the gas generated during overcharge is tight. A nickel-metal hydride storage battery is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯浅 浩次 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−290777(JP,A) 特開 平4−137361(JP,A) 特開 平4−292860(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 C22C 19/00 - 19/07 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koji Yuasa 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-6-290777 (JP, A) JP-A-4-137361 (JP, A) JP-A-4-292860 (JP, A) (58) Fields investigated (Int. 7 , DB name) H01M 4/38 C22C 19/00-19/07

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式MmNiaMnbAlcCode(但
し式中Mmは希土類元素の混合物、MはFe,Cr,C
uのうちから選ばれた少なくとも1種類の元素であり、
3.8≦a≦4.1、0.05<d<0.5,0.05
<e<0.3,5.1≦a+b+c+d+e≦5.4)
で表される水素吸蔵合金粉末を負極に用いたアルカリ蓄
電池であって、水素吸蔵合金粉末は20℃で10KOe
の磁場をかけた際に単位重量当りの磁化が0.27〜
9.5emu/gであることを特徴とする密閉型アルカ
リ蓄電池。
1. A mixture of the general formula MmNi a Mn b Al c Co d M e ( where Shikichu Mm is a rare earth element, M is Fe, Cr, C
at least one element selected from u
3.8 ≦ a ≦ 4.1, 0.05 <d <0.5, 0.05
<E <0.3, 5.1 ≦ a + b + c + d + e ≦ 5.4)
An alkaline storage battery using a hydrogen storage alloy powder represented by the following formula for a negative electrode, wherein the hydrogen storage alloy powder is 10 KOe at 20 ° C.
The magnetization per unit weight is 0.27-
9.5 emu / g, a sealed alkaline storage battery.
【請求項2】前記水素吸蔵合金粉末の平均粒子径が15
μm〜100μmであって、10μm以下の合金粒子の
割合が体積積算で全体の35%以下である請求項1記載
の密閉型アルカリ蓄電池。
2. The hydrogen storage alloy powder having an average particle size of 15
2. The sealed alkaline storage battery according to claim 1, wherein the proportion of the alloy particles having a size of μm to 100 μm and 10 μm or less is 35% or less of the whole by volume integration.
JP01854696A 1996-02-05 1996-02-05 Sealed alkaline storage battery Expired - Lifetime JP3201247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01854696A JP3201247B2 (en) 1996-02-05 1996-02-05 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01854696A JP3201247B2 (en) 1996-02-05 1996-02-05 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09213319A JPH09213319A (en) 1997-08-15
JP3201247B2 true JP3201247B2 (en) 2001-08-20

Family

ID=11974641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01854696A Expired - Lifetime JP3201247B2 (en) 1996-02-05 1996-02-05 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3201247B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066573A1 (en) * 1998-06-18 1999-12-23 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkaline storage battery and method for production thereof, and hydrogen absorbing alloy electrode for alkaline storage battery and method for production thereof
EP1100132A4 (en) 1998-06-26 2007-05-30 Sanyo Electric Co Hydrogen absorbing alloy for alkaline storage battery and method for preparing the same
JP3493516B2 (en) * 1998-12-15 2004-02-03 三井金属鉱業株式会社 Hydrogen storage alloy and method for producing the same
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2001266861A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Manufacturing method of hydrogen storage alloy electrode
JP4504507B2 (en) 2000-04-10 2010-07-14 三井金属鉱業株式会社 Hydrogen storage alloy and method for producing the same
JP3881823B2 (en) * 2000-06-09 2007-02-14 三井金属鉱業株式会社 Hydrogen storage alloy and method for producing the same
KR100445709B1 (en) * 2002-02-23 2004-08-25 주식회사 알덱스 Material with high performance and large capacity for secondary battery
CN1833039A (en) 2003-08-08 2006-09-13 三井金属矿业株式会社 Low co hydrogen storage alloys
WO2007034892A1 (en) * 2005-09-21 2007-03-29 Mitsui Mining & Smelting Co., Ltd. LOW-Co HYDROGEN ABSORBING ALLOY
WO2007040277A1 (en) * 2005-10-06 2007-04-12 Mitsui Mining & Smelting Co., Ltd. LOW-Co HYDROGEN ABSORBING ALLOY
JP3992075B1 (en) 2007-01-30 2007-10-17 中央電気工業株式会社 Hydrogen storage alloy and electrode for nickel-hydrogen battery
JP7261059B2 (en) * 2019-03-29 2023-04-19 Fdk株式会社 Negative electrode for nickel-metal hydride secondary battery, method for manufacturing this negative electrode, nickel-hydrogen secondary battery using this negative electrode, and hydrogen-absorbing alloy powder
CN114678513B (en) * 2022-03-26 2024-02-09 天能集团(河南)能源科技有限公司 Negative plate alloy and configuration process thereof

Also Published As

Publication number Publication date
JPH09213319A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
EP0293660A2 (en) Hydrogen storage electrodes
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3201247B2 (en) Sealed alkaline storage battery
US20070105018A1 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JPH1140189A (en) Nickel-hydrogen storage battery
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
EP1075032A1 (en) Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery
EP1227165B1 (en) Hydrogen-occluding alloy and process for producing the same
JP7461655B2 (en) Hydrogen storage alloy for alkaline batteries
JP5250203B2 (en) Nickel metal hydride storage battery
JP7251864B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
US5753054A (en) Hydrogen storage alloy and electrode therefrom
WO2020195543A1 (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same in negative electrode, and vehicle
JP2002080925A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP7451000B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2020158824A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same as negative electrode and vehicle
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JP3198896B2 (en) Nickel-metal hydride battery
JP2004218017A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

EXPY Cancellation because of completion of term