JP2011127185A - Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery - Google Patents

Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery Download PDF

Info

Publication number
JP2011127185A
JP2011127185A JP2009287358A JP2009287358A JP2011127185A JP 2011127185 A JP2011127185 A JP 2011127185A JP 2009287358 A JP2009287358 A JP 2009287358A JP 2009287358 A JP2009287358 A JP 2009287358A JP 2011127185 A JP2011127185 A JP 2011127185A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
secondary battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009287358A
Other languages
Japanese (ja)
Other versions
JP2011127185A5 (en
Inventor
Hiroki Hayashi
宏樹 林
Takayuki Otsuki
孝之 大月
Masaru Kihara
勝 木原
Takahiro Endo
賢大 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Sanyo Electric Co Ltd
Original Assignee
Santoku Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp, Sanyo Electric Co Ltd filed Critical Santoku Corp
Priority to JP2009287358A priority Critical patent/JP2011127185A/en
Publication of JP2011127185A publication Critical patent/JP2011127185A/en
Publication of JP2011127185A5 publication Critical patent/JP2011127185A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Mg and Al-containing hydrogen storage alloy maintaining high capacity and also having high cycle properties, and a method for producing the same. <P>SOLUTION: The hydrogen storage alloy has a composition expressed by R<SB>a</SB>Mg<SB>b</SB>Ni<SB>c</SB>Al<SB>d</SB>M<SB>e</SB>(R denotes at least one kind selected from rare earth elements including Y, and Zr, Hf and Ca; M denotes at least one kind selected from the elements other than the R, Mg, Ni and Al, 0.75≤a≤0.85, 0.15≤b≤0.25, 3.30≤c≤3.65, 0.15≤d≤0.25, 0≤e≤0.20, a+b+=1, 0.33≤b+d≤0.45, and 3.45≤c+d+e≤3.80). The total of the ratio occupied by a phase having a high Mg concentration and a phase having a high Al concentration than that of the host phase confirmed by a host phase confirmed by a COMP image of 500 magnifications by the EPMA of the cross-sectional structure in the alloy and the element mapping image of Mg and Al produced by a strip casting process is ≤5.0% in the whole. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ニッケル水素二次電池、それに用いる負極、希土類、Mg、NiおよびAlを主要構成元素とする水素吸蔵合金およびその製造方法に関する。   The present invention relates to a nickel metal hydride secondary battery, a negative electrode used therefor, a hydrogen storage alloy containing rare earth, Mg, Ni and Al as main constituent elements and a method for producing the same.

水素吸蔵合金を含有する負極を用いたニッケル水素二次電池は、ニッケルカドミウム二次電池に比べ高エネルギー密度で、有害なCdを使用しないことから環境への負荷も小さい。ニッケル水素二次電池は、デジタルカメラや電動工具等の携帯機器、さらには、電気自動車又はハイブリット型電気自動車にも使用されており、用途に合わせて様々な電池特性が求められている。   A nickel metal hydride secondary battery using a negative electrode containing a hydrogen storage alloy has a higher energy density than a nickel cadmium secondary battery, and does not use harmful Cd. Nickel metal hydride secondary batteries are also used in portable devices such as digital cameras and electric tools, as well as electric vehicles or hybrid electric vehicles, and various battery characteristics are required depending on the application.

ニッケル水素二次電池の負極材料として、CaCu5型結晶を主相とする希土類−Ni系金属間化合物であるLaNi5系水素吸蔵合金やTi、Zr、VおよびNiを構成元素として含有するラーベス相を主相とする水素吸蔵合金などが使用されている。
近年、希土類−Mg−Ni系水素吸蔵合金が実用化され、この合金を使用したニッケル水素二次電池は高容量であることが知られている。
As a negative electrode material for a nickel-metal hydride secondary battery, a LaNi 5 -based hydrogen storage alloy that is a rare earth-Ni-based intermetallic compound having a CaCu 5 -type crystal as a main phase, or a Laves phase containing Ti, Zr, V, and Ni as constituent elements A hydrogen storage alloy whose main phase is is used.
In recent years, rare earth-Mg-Ni-based hydrogen storage alloys have been put into practical use, and nickel-metal hydride secondary batteries using this alloy are known to have a high capacity.

特許文献1には、希土類−Mg−Ni系水素吸蔵合金において、析出相および粉体の平均粒子径や粒度分布を制御することで水素吸蔵量を向上させ、かつ経時的な可逆的水素吸蔵・放出量の低下を抑制した水素吸蔵合金が開示されている。   In Patent Document 1, in a rare earth-Mg—Ni-based hydrogen storage alloy, the hydrogen storage amount is improved by controlling the average particle size and particle size distribution of the precipitated phase and powder, and reversible hydrogen storage / A hydrogen storage alloy that suppresses a decrease in the release amount is disclosed.

特許文献2には、液体急冷法により製造したAlを含有する希土類−Mg−Ni系水素吸蔵合金が均質な組織を有し、この合金を使用したニッケル水素二次電池はサイクル寿命を向上させると共に、高容量であることが開示されている。   In Patent Document 2, a rare earth-Mg-Ni hydrogen storage alloy containing Al produced by a liquid quenching method has a homogeneous structure, and a nickel metal hydride secondary battery using this alloy improves cycle life. High capacity is disclosed.

特開2002−105564号公報JP 2002-105564 A 特開2008−84818号公報JP 2008-84818 A

しかしながら、特許文献1および特許文献2の水素吸蔵合金では、ニッケル水素二次電池に使用した場合の電池容量、サイクル特性に関わる水素吸蔵量、耐食性のそれぞれを高度に両立したものではない。Alを含有する希土類−Mg−Ni系水素吸蔵合金において、一般にMg量を増やすと水素吸蔵量が増加し、Al量を増やすと耐食性が向上する。しかし、Mg量、Al量を増やすと合金組織において偏析が生じ、熱処理を施しても均質化されず、結果、耐食性が低下する傾向にあり、水素吸蔵量、耐食性のそれぞれを高度に両立させ、優れたサイクル特性と高容量とを実現するニッケル水素二次電池を製造することは著しく困難であった。   However, the hydrogen storage alloys of Patent Document 1 and Patent Document 2 are not highly compatible with each of the battery capacity, the hydrogen storage amount related to cycle characteristics, and the corrosion resistance when used in nickel-hydrogen secondary batteries. In a rare earth-Mg—Ni-based hydrogen storage alloy containing Al, generally, increasing the amount of Mg increases the amount of hydrogen storage, and increasing the amount of Al improves corrosion resistance. However, when the amount of Mg and the amount of Al are increased, segregation occurs in the alloy structure and is not homogenized even when heat treatment is performed, and as a result, the corrosion resistance tends to decrease. It has been extremely difficult to manufacture a nickel metal hydride secondary battery that achieves excellent cycle characteristics and high capacity.

本発明の課題は、優れたサイクル特性と高容量とを示すニッケル水素二次電池、それに用いる負極を提供することにある。
本発明の別の課題は、優れたサイクル特性と高容量とを示すニッケル水素二次電池を実現するための水素吸蔵量と耐食性を高度に両立させた水素吸蔵合金および該合金を効率的に、且つ工業的にも有用に得ることが可能な製造方法を提供することにある。
An object of the present invention is to provide a nickel metal hydride secondary battery exhibiting excellent cycle characteristics and high capacity, and a negative electrode used therefor.
Another object of the present invention is to efficiently provide a hydrogen storage alloy that has both a high hydrogen storage capacity and corrosion resistance for realizing a nickel hydrogen secondary battery exhibiting excellent cycle characteristics and high capacity, and the alloy, Another object of the present invention is to provide a production method that can be obtained industrially.

本発明によれば、式(1)RaMgbNicAlde(式中のRはYを含む希土類元素、Zr、HfおよびCaから選ばれる少なくとも1種、MはR、Mg、Ni、Al以外の元素から選ばれる少なくとも1種を示す。aは0.75≦a≦0.85、bは0.15≦b≦0.25、cは3.30≦c≦3.65、dは0.15≦d≦0.25、eは0≦e≦0.20、a+b=1、0.33≦b+d≦0.45、3.45≦c+d+e≦3.80である。)で表される組成を有する水素吸蔵合金であって、ストリップキャスティング法により製造された、合金の断面組織のEPMAによる500倍のCOMP像およびMgとAlの元素マッピング像で確認される母相よりも、Mg濃度が高い相およびAl濃度が高い相の占める割合の合計が全体の5.0%以下であることを特徴とする水素吸蔵合金が提供される。 According to the present invention, the formula (1) R a Mg b Ni c Al d Me (wherein R is a rare earth element including Y, Zr, Hf and Ca, at least one selected from the group consisting of R, Mg, It represents at least one selected from elements other than Ni and Al, a is 0.75 ≦ a ≦ 0.85, b is 0.15 ≦ b ≦ 0.25, and c is 3.30 ≦ c ≦ 3.65. D is 0.15 ≦ d ≦ 0.25, e is 0 ≦ e ≦ 0.20, a + b = 1, 0.33 ≦ b + d ≦ 0.45, 3.45 ≦ c + d + e ≦ 3.80) Than the parent phase confirmed by the EPMA and the elemental mapping image of Mg and Al of the cross-sectional structure of the alloy manufactured by the strip casting method. , The total proportion of the phase with high Mg concentration and the phase with high Al concentration is Hydrogen storage alloy, wherein the body is 5.0% or less is provided.

また本発明によれば、上記式(1)で示される組成を構成する金属元素又は母合金を原料とし、該原料を加熱溶解し、融点より300℃以上高い合金溶融物とした後、該合金溶融物をストリップキャスティング法により冷却・凝固して合金を得、得られた合金を合金の融点より10〜100℃低い温度域で30分間〜10時間熱処理する請求項1記載の水素吸蔵合金の製造方法が提供される。
さらに本発明によれば、前記水素吸蔵合金を含有するニッケル水素二次電池用負極および前記負極を用いたニッケル水素二次電池が提供される。
Further, according to the present invention, the metal element or mother alloy constituting the composition represented by the above formula (1) is used as a raw material, the raw material is heated and melted to obtain an alloy melt higher than the melting point by 300 ° C., and then the alloy The production of a hydrogen storage alloy according to claim 1, wherein the melt is cooled and solidified by a strip casting method to obtain an alloy, and the obtained alloy is heat-treated at a temperature lower by 10 to 100 ° C than the melting point of the alloy for 30 minutes to 10 hours. A method is provided.
Furthermore, according to this invention, the nickel hydride secondary battery using the negative electrode for nickel hydride secondary batteries containing the said hydrogen storage alloy and the said negative electrode is provided.

本発明の水素吸蔵合金は、耐食性及び水素吸蔵量に優れ、これを用いて製造したニッケル水素二次電池用負極、この負極を用いて製造したニッケル水素二次電池は、高容量かつ寿命特性が良好である。   The hydrogen storage alloy of the present invention is excellent in corrosion resistance and hydrogen storage capacity. The negative electrode for a nickel metal hydride secondary battery manufactured using the same, and the nickel metal hydride secondary battery manufactured using the negative electrode have high capacity and life characteristics. It is good.

実施例1の水素吸蔵合金の断面組織のComp像の写しである。2 is a copy of a Comp image of a cross-sectional structure of the hydrogen storage alloy of Example 1. 実施例1の水素吸蔵合金の断面組織のMgマッピング像の写しである。2 is a copy of an Mg mapping image of a cross-sectional structure of the hydrogen storage alloy of Example 1; 実施例1の水素吸蔵合金の断面組織のAlマッピング像の写しである。2 is a copy of an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Example 1. 実施例4の水素吸蔵合金の断面組織のComp像の写しである。6 is a copy of a Comp image of a cross-sectional structure of the hydrogen storage alloy of Example 4. 実施例4の水素吸蔵合金の断面組織のMgマッピング像の写しである。6 is a copy of an Mg mapping image of a cross-sectional structure of the hydrogen storage alloy of Example 4; 実施例4の水素吸蔵合金の断面組織のAlマッピング像の写しである。6 is a copy of an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Example 4. 比較例8の水素吸蔵合金の断面組織のComp像の写しである。10 is a copy of a Comp image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 8. 比較例8の水素吸蔵合金の断面組織のMgマッピング像の写しである。10 is a copy of an Mg mapping image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 8. 比較例8の水素吸蔵合金の断面組織のAlマッピング像の写しである。10 is a copy of an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 8. 比較例9の水素吸蔵合金の断面組織のComp像の写しである。10 is a copy of a Comp image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 9. 比較例9の水素吸蔵合金の断面組織のMgマッピング像の写しである。It is a copy of Mg mapping image of the cross-sectional structure of the hydrogen storage alloy of Comparative Example 9. 比較例9の水素吸蔵合金の断面組織のAlマッピング像の写しである。10 is a copy of an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 9. 比較例10の水素吸蔵合金の断面組織のComp像の写しである。10 is a copy of a Comp image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 10. 比較例10の水素吸蔵合金の断面組織のMgマッピング像の写しである。It is a copy of Mg mapping image of the cross-sectional structure of the hydrogen storage alloy of Comparative Example 10. 比較例10の水素吸蔵合金の断面組織のAlマッピング像の写しである。It is a copy of Al mapping image of the cross-sectional structure of the hydrogen storage alloy of Comparative Example 10. 比較例11の水素吸蔵合金の断面組織のComp像の写しである。10 is a copy of a Comp image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 11. 比較例11の水素吸蔵合金の断面組織のMgマッピング像の写しである。It is a copy of Mg mapping image of the cross-sectional structure of the hydrogen storage alloy of Comparative Example 11. 比較例11の水素吸蔵合金の断面組織のAlマッピング像の写しである。It is a copy of Al mapping image of the cross-sectional structure of the hydrogen storage alloy of Comparative Example 11.

本発明の水素吸蔵合金は、式(1)RaMgbNicAldeで表される組成を有する。
Rは、Yを含む希土類元素、Zr、HfおよびCaから選ばれる少なくとも1種の元素である。aは、Rの含有量を表す。aは0.75≦a≦0.85である。Rとして、La、Nd、Pr、Sm、Zrが好ましく用いられる。Laは合金の水素吸蔵放出時の平衡圧を低くする傾向にあり、Nd、Pr、Sm、Zrは高くする傾向にある。
The hydrogen storage alloy of the present invention has a composition represented by the formula (1) R a Mg b Ni c Al d M e.
R is at least one element selected from rare earth elements including Y, Zr, Hf, and Ca. a represents the content of R. a is 0.75 ≦ a ≦ 0.85. R is preferably La, Nd, Pr, Sm, or Zr. La tends to lower the equilibrium pressure at the time of hydrogen occlusion and release of the alloy, and Nd, Pr, Sm, and Zr tend to increase.

bは、Mgの含有量を表す。bは0.15≦b≦0.25である。この範囲よりMg量が少ない場合、十分な水素吸蔵量が得られない。逆にMg量が多い場合、十分な耐食性が得られない。上述の通り、Mgは水素吸蔵量を増加させ、また合金の水素吸蔵放出時の平衡圧を高くする傾向にある。好ましくは0.18≦b≦0.20である。   b represents the Mg content. b is 0.15 ≦ b ≦ 0.25. When the amount of Mg is less than this range, a sufficient hydrogen storage amount cannot be obtained. Conversely, when the amount of Mg is large, sufficient corrosion resistance cannot be obtained. As described above, Mg tends to increase the hydrogen storage amount and increase the equilibrium pressure at the time of hydrogen storage / release of the alloy. Preferably 0.18 ≦ b ≦ 0.20.

cは、Niの含有量を表す。cは3.30≦c≦3.65である。この範囲よりNi量が少ない場合、微粉化が進行しやすい。逆にNi量が多い場合、十分な水素吸蔵量が得られない。好ましくは3.35≦c≦3.55である。   c represents the content of Ni. c is 3.30 ≦ c ≦ 3.65. When the amount of Ni is less than this range, pulverization tends to proceed. Conversely, when the amount of Ni is large, a sufficient hydrogen storage amount cannot be obtained. Preferably, 3.35 ≦ c ≦ 3.55.

dは、Alの含有量を表す。dは0.15≦d≦0.25である。Alの含有量は平衡圧に影響する。この範囲よりAl量が少ない場合、十分な耐食性が得られない。逆にAl量が多い場合、十分な水素吸蔵量が得られず、Alの偏析により十分な耐食性も得られない。またAlは合金の水素吸蔵放出時の平衡圧を低くする傾向にある。好ましくは0.15≦d≦0.22である。   d represents the content of Al. d is 0.15 ≦ d ≦ 0.25. The Al content affects the equilibrium pressure. When the amount of Al is less than this range, sufficient corrosion resistance cannot be obtained. On the contrary, when the amount of Al is large, a sufficient hydrogen storage amount cannot be obtained, and sufficient corrosion resistance cannot be obtained due to segregation of Al. Further, Al tends to lower the equilibrium pressure at the time of hydrogen storage and release of the alloy. Preferably, 0.15 ≦ d ≦ 0.22.

eは、M元素の含有量を表す。eは0≦e≦0.20である。M元素は必ずしも必要ではなく、電池の用途により特性の微調整が必要な場合に含有させる。M元素はR、Mg、Ni、Al以外の元素から選ばれる少なくとも1種を示す。具体的にはM元素として、Ti、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Cu、Zn、B、Ga、Sn、Sb等が挙げられ、好ましくは、M元素はTi、Nb、Mo、W、Mn、Fe、Co、Cu、B、Snから選ばれる少なくとも1種である。例えばFe、Cu、Sn、Ti、Nb、Mo、WまたはBを含有させると微粉化が抑制される、もしくは電解液へのAlの溶出が抑制される。   e represents the content of the M element. e is 0 ≦ e ≦ 0.20. The element M is not always necessary, and is contained when fine adjustment of characteristics is required depending on the use of the battery. M element shows at least 1 sort (s) chosen from elements other than R, Mg, Ni, and Al. Specific examples of the M element include Ti, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Cu, Zn, B, Ga, Sn, and Sb. Preferably, the M element is It is at least one selected from Ti, Nb, Mo, W, Mn, Fe, Co, Cu, B, and Sn. For example, when Fe, Cu, Sn, Ti, Nb, Mo, W, or B is contained, pulverization is suppressed, or elution of Al into the electrolytic solution is suppressed.

a+bは、RとMgの含有量の合計を表す。a+b=1である。また、b+dは、MgとAlの含有量の合計を表す。b+dは0.33≦b+d≦0.45である。この範囲外では高度に水素吸蔵量と耐食性を両立することは困難である。特にサイクル特性の良好なニッケル水素二次電池には0.33≦b+d≦0.40の合金が、また、RとしてLaおよびSmを含有する場合には0.33≦b+d≦0.42の合金が好ましく用いられる。さらに、特に高容量のニッケル水素二次電池には0.40<b+d≦0.45の合金が好ましく用いられる。   a + b represents the total content of R and Mg. a + b = 1. B + d represents the total content of Mg and Al. b + d is 0.33 ≦ b + d ≦ 0.45. Outside this range, it is difficult to achieve both high hydrogen storage capacity and corrosion resistance. Particularly for nickel-hydrogen secondary batteries with good cycle characteristics, an alloy of 0.33 ≦ b + d ≦ 0.40, and when R and La contain La and Sm, an alloy of 0.33 ≦ b + d ≦ 0.42 Is preferably used. Furthermore, an alloy of 0.40 <b + d ≦ 0.45 is preferably used particularly for a high-capacity nickel-hydrogen secondary battery.

c+d+eは、Ni、AlおよびM元素の含有量の合計を表す。c+d+eは、3.45≦c+d+e≦3.80である。この範囲外では高度に水素吸蔵量と耐食性を両立することは困難である。またNiおよびM元素の含有量の合計が大きいほど、合金の水素吸蔵放出時の平衡圧を高くする傾向にある。好ましくは3.50≦c+d+e≦3.70である。コストを考慮し、RとしてLaのみ使用するのが望ましいが、低下する平衡圧を調整するため、3.60≦c+d+e≦3.80とするのが好ましい。   c + d + e represents the total content of Ni, Al and M elements. c + d + e is 3.45 ≦ c + d + e ≦ 3.80. Outside this range, it is difficult to achieve both high hydrogen storage capacity and corrosion resistance. In addition, the higher the total content of Ni and M elements, the higher the equilibrium pressure during hydrogen storage and release of the alloy. Preferably 3.50 ≦ c + d + e ≦ 3.70. Considering cost, it is desirable to use only La as R, but it is preferable to satisfy 3.60 ≦ c + d + e ≦ 3.80 in order to adjust the decreasing equilibrium pressure.

本発明の水素吸蔵合金は、合金の断面組織のEPMAによる500倍のCOMP像およびMgとAlの元素マッピング像で確認される母相よりも、Mg濃度が高い相およびAl濃度が高い相の占める割合の合計が全体の5.0%以下である。好ましくは3.0%以下、さらに好ましくは1.0%以下である。下記に示す方法により水素吸蔵合金の断面組織をEPMAで観察し、上記母相よりもMg濃度が高い相およびAl濃度が高い相の占める割合を決定した。
水素吸蔵合金を鋳造時の抜熱方向にほぼ平行な断面の厚み中ほどを、EPMAにより500倍で、およそ160μm四方に相当する領域を観察する。まずCOMP像における2μm以上の偏析相について、MgおよびAlの元素マッピング像により該偏析相が母相よりMg濃度が高いものであるか、またはAl濃度が高いものであるかを確認し、COMP像におけるMg濃度が高い偏析相およびAl濃度の高い偏析相の面積率をそれぞれ算出する。ランダムに選択した5箇所の視野について面積率を算出し、その平均値を用いる。水素吸蔵合金粉末を観察する場合は、複数の粉末断面を上記と同等の面積になるように観察して行うことができる。
The hydrogen storage alloy of the present invention occupies a phase having a higher Mg concentration and a phase having a higher Al concentration than the matrix phase confirmed by a 500-fold COMP image and an element mapping image of Mg and Al of the cross-sectional structure of the alloy. The total ratio is 5.0% or less. Preferably it is 3.0% or less, More preferably, it is 1.0% or less. The cross-sectional structure of the hydrogen storage alloy was observed with EPMA by the method described below, and the ratio of the phase having a higher Mg concentration and the phase having a higher Al concentration than the parent phase was determined.
An area corresponding to about 160 μm square is observed by EPMA about the thickness of the cross section substantially parallel to the heat removal direction during casting of the hydrogen storage alloy. First, for a segregation phase of 2 μm or more in a COMP image, it is confirmed from the element mapping image of Mg and Al whether the segregation phase has a higher Mg concentration than the parent phase or a higher Al concentration. The area ratios of the segregation phase having a high Mg concentration and the segregation phase having a high Al concentration are respectively calculated. The area ratio is calculated for five randomly selected visual fields, and the average value is used. When observing the hydrogen storage alloy powder, a plurality of powder cross sections can be observed so as to have an area equivalent to the above.

本発明の水素吸蔵合金は、ストリップキャスティング法により製造される。ストリップキャスティング法としては、単ロール法、双ロール法、ディスク法等が採用できる。   The hydrogen storage alloy of the present invention is manufactured by a strip casting method. As the strip casting method, a single roll method, a twin roll method, a disc method or the like can be adopted.

本発明の水素吸蔵合金は、80℃で測定して得られた水素放出曲線におけるH/Mが0.4の平衡圧が0.03〜0.07MPaである。好ましくは0.04〜0.07MPaである。前記平衡圧の測定は、JIS H7201(1991)「水素吸蔵合金の圧力−組成等温線(PCT線)の測定方法」に準拠した。前記平衡圧が0.03MPaより低くなると電池の放電容量が低下する恐れがある。   The hydrogen storage alloy of the present invention has an equilibrium pressure of 0.03 to 0.07 MPa with an H / M of 0.4 in a hydrogen release curve obtained by measurement at 80 ° C. Preferably, it is 0.04 to 0.07 MPa. The measurement of the equilibrium pressure was based on JIS H7201 (1991) “Measurement Method of Pressure-Composition Isotherm (PCT Line) of Hydrogen Storage Alloy”. If the equilibrium pressure is lower than 0.03 MPa, the discharge capacity of the battery may be reduced.

本発明の水素吸蔵合金の製造方法は、式(1)で示される組成を構成する金属元素又は母合金を原料とし、該原料を加熱溶解し、融点より300℃以上高い合金溶融物とした後、該合金溶融物をストリップキャスティング法により冷却・凝固して合金を得、得られた合金を合金の融点より10〜100℃低い温度域で30分間〜10時間熱処理して行う。
まず、R、Mg、Ni、Alおよび必要によりMを含有する金属、母合金を上記組成の合金が得られるように配合した原料を準備する。ついで不活性ガス雰囲気下、配合した原料を加熱溶解して合金溶融物を得る。得られた合金溶融物を冷却・凝固する。ただし、上記組成の合金は、合金組織にMgとAlの偏析が生じやすい。Mg濃度が高い部分ではAl濃度が低く、Al濃度が高い部分ではMg濃度が低いという濃度分布を示す。均質な合金組織を形成するために、冷却凝固の過程は大きな冷却速度が得られる単ロール法、双ロール法、ディスク法によるストリップキャスティング法で行う。
また、冷却凝固する直前の合金溶融物の温度(注湯温度)は、融点以上であっても温度によって各成分の混合状態が異なるため重要であり、MgやAlの偏析をなくすためには融点より300℃以上高くする。さらに好ましくは350℃以上高くする。該温度の上限は特に限定されないが、通常融点より500℃高い温度である。合金溶融物は十分に混合することが必要であり、その点、合金溶融物が大きく対流する高周波溶解炉で行うことが好ましい。
The method for producing a hydrogen storage alloy of the present invention uses a metal element or a mother alloy constituting the composition represented by the formula (1) as a raw material, and heat-melts the raw material to obtain an alloy melt higher by 300 ° C. or higher than the melting point. The alloy melt is cooled and solidified by a strip casting method to obtain an alloy, and the obtained alloy is heat-treated at a temperature range 10 to 100 ° C. lower than the melting point of the alloy for 30 minutes to 10 hours.
First, a raw material is prepared by blending R, Mg, Ni, Al, and optionally a metal containing M and a master alloy so that an alloy having the above composition is obtained. Subsequently, the blended raw materials are heated and melted in an inert gas atmosphere to obtain an alloy melt. The obtained alloy melt is cooled and solidified. However, the alloy having the above composition tends to cause segregation of Mg and Al in the alloy structure. The concentration distribution is such that the Al concentration is low in the portion where the Mg concentration is high and the Mg concentration is low in the portion where the Al concentration is high. In order to form a homogeneous alloy structure, the cooling and solidification process is performed by a single-roll method, a twin-roll method, or a strip casting method using a disk method, which can obtain a large cooling rate.
In addition, the temperature of the alloy melt immediately before cooling solidification (pour temperature) is important because the mixing state of each component differs depending on the temperature even if the temperature is higher than the melting point. In order to eliminate the segregation of Mg and Al, the melting point is important. More than 300 ° C. More preferably, the temperature is increased by 350 ° C. or more. The upper limit of the temperature is not particularly limited, but is usually 500 ° C. higher than the melting point. The alloy melt needs to be sufficiently mixed, and in that respect, it is preferably performed in a high-frequency melting furnace in which the alloy melt is largely convected.

次いで、冷却凝固した合金を500℃以下まで速やかに冷却する。ストリップキャスティング法で冷却ロールから剥離した直後の合金は、800〜1000℃程度である。このような高温では拡散が生じ、特にAlの偏析が生じやすい。したがって、拡散速度が十分に小さくなる500℃以下まで速やかに冷却する。冷却は、合金が冷却ロールから剥離してから回収容器に投入されるまでの間、および/または該回収容器内でアルゴンガス等を吹き付けて行うか、合金を水冷式の冷却ドラムに投入して行うことができる。いずれの場合も溶解、鋳造と同じく不活性雰囲気下で行う。注湯から500℃に到達するまでの時間は、3時間以内が好ましく、さらに好ましくは1時間以内、最も好ましくは30分以内である。   Next, the cooled and solidified alloy is quickly cooled to 500 ° C. or lower. The alloy immediately after peeling from the cooling roll by the strip casting method is about 800 to 1000 ° C. Diffusion occurs at such a high temperature, and particularly segregation of Al tends to occur. Therefore, it cools rapidly to 500 degrees C or less in which a diffusion rate becomes small enough. Cooling is performed from the time when the alloy is peeled off from the cooling roll until it is put into the recovery container and / or by blowing argon gas or the like in the recovery container, or the alloy is put into a water-cooled cooling drum. It can be carried out. In either case, it is performed in an inert atmosphere as in the case of melting and casting. The time from the pouring to reaching 500 ° C. is preferably within 3 hours, more preferably within 1 hour, and most preferably within 30 minutes.

本発明の水素吸蔵合金の製造方法では、鋳造後に熱処理を行う。熱処理は不活性雰囲気下、上記で得られた合金の融点より10〜100℃低い温度域、好ましくは10〜50℃低い温度で行う。ストリップキャスティング法で得られた合金は、0.1〜1mm程度の厚さであることから、熱処理されやすく、通常の熱処理時間は30分〜10時間程度、好ましくは30分〜6時間程度である。   In the method for producing a hydrogen storage alloy of the present invention, heat treatment is performed after casting. The heat treatment is performed in an inert atmosphere at a temperature range 10 to 100 ° C. lower than the melting point of the alloy obtained above, preferably 10 to 50 ° C. Since the alloy obtained by the strip casting method has a thickness of about 0.1 to 1 mm, it is easily heat-treated, and the normal heat treatment time is about 30 minutes to 10 hours, preferably about 30 minutes to 6 hours. .

本発明のニッケル水素二次電池用負極は、本発明の水素吸蔵合金を有する。本発明の水素吸蔵合金は、粉砕粉として含有することが好ましい。粉砕は、既知の粉砕手段により、好ましくはMV(体積平均径)10〜80μm、さらに好ましくは25〜75μmに粉砕することができる。なお粉砕粉は、例えば、所望する特性に応じ、メッキ、高分子ポリマー等で表面被覆や、あるいは酸、アルカリ等の溶液による表面処理等、公知の処理を施すことができる。   The negative electrode for a nickel metal hydride secondary battery of the present invention has the hydrogen storage alloy of the present invention. The hydrogen storage alloy of the present invention is preferably contained as pulverized powder. The pulverization can be performed by a known pulverization means, preferably MV (volume average diameter) of 10 to 80 μm, more preferably 25 to 75 μm. The pulverized powder can be subjected to known treatments such as plating, surface coating with a polymer or the like, or surface treatment with a solution of acid, alkali, or the like according to desired characteristics.

本発明のニッケル水素二次電池用負極において水素吸蔵合金の含有量は、導電剤、結着剤等の集電体以外の負極を構成する材料の合計量に対して80質量%以上とすることが好ましく、さらに好ましくは95質量%以上である。
導電剤としては、既知のものが使用でき、黒鉛、カーボンブラック等(アセチレンブラック、ファーネスブラック等)の炭素質材料、銅、ニッケル、コバルトが挙げられる。
結着剤としては、既知のものが使用でき、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリテトラフルオロエチレン(PTFE)、4−フッ化エチレン−6−フッ化プロピレン共重合体(FEP)等が挙げられる。
In the negative electrode for nickel metal hydride secondary battery of the present invention, the content of the hydrogen storage alloy is 80% by mass or more based on the total amount of materials constituting the negative electrode other than the current collector such as a conductive agent and a binder. Is more preferable, and more preferably 95% by mass or more.
As the conductive agent, known ones can be used, and examples thereof include carbonaceous materials such as graphite and carbon black (acetylene black, furnace black, etc.), copper, nickel, and cobalt.
As the binder, known ones can be used, such as carboxymethyl cellulose, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, polyethylene oxide, polytetrafluoroethylene (PTFE), 4-fluoroethylene-6-fluoropropylene copolymer. (FEP) and the like.

集電体としては、例えばパンチングメタル、発泡メタル等を用いることができる。通常、ニッケル水素二次電池用負極は、いわゆるペースト式で作製されるため、パンチングメタルを用いる。ペースト式負極は、本発明の水素吸蔵合金(粉砕粉)と上述した結着剤と必要に応じて導電剤、酸化防止剤、界面活性剤、増粘剤等が添加され、水を溶媒として混合し、ペースト状とし、このペーストを集電体に塗布、充填、乾燥した後、ローラープレスなどを施すことにより作製される。   As the current collector, for example, punching metal, foam metal, or the like can be used. Usually, since the negative electrode for nickel metal hydride secondary batteries is produced by what is called a paste type, punching metal is used. The paste-type negative electrode is mixed with the hydrogen storage alloy (ground powder) of the present invention, the binder described above, and a conductive agent, an antioxidant, a surfactant, a thickener, etc., if necessary, and water as a solvent. The paste is made into a paste, and this paste is applied to a current collector, filled, dried, and then subjected to a roller press or the like.

本発明のニッケル水素二次電池用負極は、必要に応じ、表面に撥水層や導電層等を形成することができる。これらは公知の方法で行われ、例えば、前者はフッ素樹脂ディスパーション等を塗布、乾燥して行われ、後者はメッキ等により行われる。   The negative electrode for a nickel metal hydride secondary battery of the present invention can be formed with a water repellent layer, a conductive layer, or the like on the surface as necessary. These are performed by a known method. For example, the former is performed by applying and drying a fluororesin dispersion or the like, and the latter is performed by plating or the like.

本発明のニッケル水素二次電池は、本発明のニッケル水素二次電池用負極を用いる。それ以外の構成は、公知のものを用いることができる。
本発明のニッケル水素二次電池の形状は、円筒型、積層型、コイン型等、種々のものとすることができる。いずれの形状であっても、ニッケル水素二次電池は負極とセパレータと正極を積層した電極群をステンレス等からなる缶体に収納する。円筒形状の場合、通常、缶体を負極端子とするため、負極を外側にして電極群を渦巻き状に巻いて缶体に挿入することにより負極と負極端子は接続される。正極は通常、リードにより正極端子に接続される。
The nickel metal hydride secondary battery of the present invention uses the negative electrode for a nickel metal hydride secondary battery of the present invention. A publicly known thing can be used for the other composition.
The nickel metal hydride secondary battery of the present invention can have various shapes such as a cylindrical shape, a stacked shape, and a coin shape. Regardless of the shape, the nickel metal hydride secondary battery stores an electrode group in which a negative electrode, a separator, and a positive electrode are stacked in a can body made of stainless steel or the like. In the case of a cylindrical shape, since the can body is normally used as a negative electrode terminal, the negative electrode and the negative electrode terminal are connected by winding the electrode group spirally with the negative electrode outside and inserting the electrode group into the can body. The positive electrode is usually connected to the positive terminal by a lead.

セパレータは、ナイロン、ポリプロピレン、ポリエチレン製等の高分子繊維不織布、ポリエチレン、ポリプロピレン等の多孔質高分子膜などを用いることができる。   As the separator, a polymer fiber nonwoven fabric made of nylon, polypropylene, polyethylene or the like, a porous polymer film such as polyethylene, polypropylene, or the like can be used.

正極は、ニッケル酸化物を含むものであり、例えば非焼結式ニッケル電極などが用いられる。非焼結式ニッケル電極は、水酸化ニッケルと必要に応じて添加される水酸化コバルト、一酸化コバルト、金属コバルトなどを結着剤とともに、水を溶媒として混合し、ペースト状とし、このペーストを発泡メタル等の集電体に充填、乾燥した後、ローラープレスなどを施すことにより作製される。   The positive electrode contains nickel oxide, and for example, a non-sintered nickel electrode is used. A non-sintered nickel electrode is made by mixing nickel hydroxide and optionally added cobalt hydroxide, cobalt monoxide, metallic cobalt, etc. together with a binder and water as a solvent to form a paste. It is produced by filling a current collector such as foam metal and drying, and then applying a roller press or the like.

電極群が収納された容器内には、6〜8規定の水酸化カリウム溶液がアルカリ電解液として注入される。アルカリ電解液には、水酸化リチウム、水酸化ナトリウムなどが添加されているものも用いることができる。容器内には電池を密閉するためのガスケットや電池内の圧力が上昇した際に作動する安全弁等が通常設けられる。   A 6-8 N potassium hydroxide solution is injected as an alkaline electrolyte into the container in which the electrode group is housed. An alkaline electrolyte to which lithium hydroxide, sodium hydroxide or the like is added can also be used. The container is usually provided with a gasket for sealing the battery, a safety valve that operates when the pressure in the battery rises, and the like.

以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらに限定されない。
実施例1
La0.60Sm0.18Zr0.02Mg0.20Ni3.50Al0.21の組成の合金(融点約990℃)が得られるように適宜原料を秤量し、高周波溶解炉にてアルゴンガス雰囲気中で溶解し、合金溶融物とした。続いて、この溶融物の注湯温度を1,350℃として、銅製水冷ロールの単ロール鋳造装置を用いたストリップキャスティング法にて鋳造を行った。ロールから剥離した直後の鋳片の温度を赤外線熱画像計測装置で測定したところ810℃であった。鋳片は、鋳片が冷却ロールから剥離してから鋼鉄製の容器に回収されるまでの間に、アルゴンガスを吹き付けて冷却を行った。鋳片の厚みはおよそ0.3mmであった。得られた鋳片をアルゴンガス雰囲気中、合金融点より約40℃低い950℃で6時間熱処理を行った。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these.
Example 1
La 0.60 Sm 0.18 Zr 0.02 Mg 0.20 Ni 3.50 Al 0.21 Weighed the raw materials appropriately so as to obtain an alloy (melting point: about 990 ° C.), dissolved in an argon gas atmosphere in a high-frequency melting furnace, did. Subsequently, casting was performed by a strip casting method using a single roll casting apparatus of a copper water-cooled roll at a molten metal pouring temperature of 1,350 ° C. It was 810 degreeC when the temperature of the slab immediately after peeling from a roll was measured with the infrared thermal image measuring device. The slab was cooled by blowing argon gas between the time when the slab was peeled from the cooling roll and until it was collected in a steel container. The thickness of the slab was approximately 0.3 mm. The obtained slab was heat treated in an argon gas atmosphere at 950 ° C., which is about 40 ° C. lower than the melting point of the alloy, for 6 hours.

熱処理後の鋳片をEPMA(日本電子製、商品名JXA8800)により倍率500倍で観察した。得られたCOMP像とMgおよびAlの元素マッピング像をそれぞれ図1〜3に示す。Mg濃度が高い相が0.2%、Al濃度が高い相が0.0%であった。また、PCT測定自動高圧ジーベルツ装置(東洋紡エンジニアリング製)により測定して得られた80℃の水素放出曲線におけるH/Mが0.4の平衡圧は0.06MPaであった。   The slab after the heat treatment was observed with an EPMA (manufactured by JEOL Ltd., trade name JXA8800) at a magnification of 500 times. The obtained COMP image and element mapping images of Mg and Al are shown in FIGS. The phase with a high Mg concentration was 0.2% and the phase with a high Al concentration was 0.0%. In addition, the equilibrium pressure with an H / M of 0.4 in the hydrogen release curve at 80 ° C. obtained by measurement with a PCT measurement automatic high-pressure Siebelz apparatus (manufactured by Toyobo Engineering) was 0.06 MPa.

−特性評価試験−
得られた水素吸蔵合金の電気化学特性(放電容量)と電池特性(サイクル特性)とを下記の通り測定した。結果を表1に示す。
(放電容量)
得られた水素吸蔵合金をボールミルにて粉砕し、D50が約60μmの合金粉末を得た。合金粉末0.15gとカルボニルニッケル粉末0.45gを乳鉢でよく混合し、混合物を2000kgf/cm2で加圧プレスすることで直径10mmのペレットを作製した。次いで、ペレットをニッケル製金網の間に挟み込み、周辺をスポット溶接して圧接し、さらにニッケル製リードを前記金網にスポット溶接することで負極を作製した。得られた負極を対極の焼結式ニッケル電極と共に8N−KOH水溶液に浸漬し、25℃の温度下にて充放電サイクル試験を行った。
充放電は、充放電装置(計測器センター製、商品名BS2500−05R1)を使用し、水素吸蔵合金1g当り150mAの電流で2時間50分間充電し、10分間休止した後、水素吸蔵合金1g当り150mAの電流で酸化水銀電極に対して−0.7Vになるまで放電を行うサイクルを繰り返し、最大放電容量をこの水素吸蔵合金の放電容量とした。
-Characterization test-
The electrochemical characteristics (discharge capacity) and battery characteristics (cycle characteristics) of the obtained hydrogen storage alloy were measured as follows. The results are shown in Table 1.
(Discharge capacity)
The obtained hydrogen storage alloy was pulverized by a ball mill to obtain an alloy powder having a D50 of about 60 μm. The alloy powder 0.15 g and the carbonyl nickel powder 0.45 g were mixed well in a mortar, and the mixture was pressed under pressure at 2000 kgf / cm 2 to produce a 10 mm diameter pellet. Next, the pellet was sandwiched between nickel wire meshes, spot welded around the periphery, and nickel leads were spot welded to the wire mesh to produce a negative electrode. The obtained negative electrode was immersed in an 8N-KOH aqueous solution together with a sintered nickel electrode as a counter electrode, and a charge / discharge cycle test was performed at a temperature of 25 ° C.
Charging / discharging is performed using a charging / discharging device (trade name BS2500-05R1 manufactured by Keiki Keiki Center Co., Ltd.), charged for 2 hours and 50 minutes at a current of 150 mA per gram of hydrogen storage alloy, paused for 10 minutes, and then charged per gram of hydrogen storage alloy. The cycle in which discharge was performed at a current of 150 mA until −0.7 V with respect to the mercury oxide electrode was repeated, and the maximum discharge capacity was defined as the discharge capacity of the hydrogen storage alloy.

(サイクル特性)
1)負極板の作製
前述の合金粉末100質量部に対してポリアクリル酸ナトリウム0.4質量部、カルボキシメチルセルロース0.1質量部、および、ポリテトラフルオロエチレン分散液(分散媒:水、固形分60質量部)2.5質量部を加えた後、混練して負極合剤のスラリーを得た。
このスラリーを、Niめっきを施した厚さ60μmのFe製パンチングメタルの両面の全面に均等に、つまり、厚さが一定になるように塗着し、スラリーの乾燥を経て、このパンチングメタルをプレスして裁断し、AAサイズのニッケル水素二次電池用の負極板とした。
2)正極板の作製
金属Niに対して、Znが3質量%、Coが1質量%の比率となるように、硫酸ニッケル、硫酸亜鉛および硫酸コバルトの混合水溶液を調製し、この混合水溶液に攪拌しながら水酸化ナトリウム水溶液を徐々に添加した。この際、反応中のpHを13〜14に保持して水酸化ニッケル粒子を溶出させ、この水酸化ニッケル粒子を10倍量の純水にて3回洗浄したのち、脱水、乾燥した。
得られた水酸化ニッケル粒子に、40質量%のHPCディスパージョン液を混合して、正極合剤のスラリーを調製した。このスラリーを多孔質構造のニッケル基板に充填して乾燥させ、この基板を圧延、裁断してAAサイズのニッケル水素二次電池用の正極板とした。
3)ニッケル水素二次電池の組立て
上記のようにして得られた負極板及び正極板を、ポリプロピレンまたはナイロン製の不織布よりなるセパレータを介して渦巻状に巻回して電極群を形成し、この電極群を外装缶に収容したのち、この外装缶内に、リチウム、ナトリウムを含有した濃度30質量%の水酸化カリウム水溶液を注入して、容量2500mAhのAAサイズのニッケル水素二次電池を組立てた。
4)サイクル特性の測定
作製した電池を0.1Cの電流で16時間充電してから1.0Cの電流で終止電圧0.5Vまで放電する電池容量測定を繰り返し、電池が放電できなくなるまでのサイクル数を数えた。この結果を、比較例8の結果を100として表1に示す。
(Cycle characteristics)
1) Production of negative electrode plate 100 parts by mass of the aforementioned alloy powder 0.4 parts by mass of sodium polyacrylate, 0.1 part by mass of carboxymethyl cellulose, and polytetrafluoroethylene dispersion (dispersion medium: water, solid content) 60 parts by mass) After adding 2.5 parts by mass, the mixture was kneaded to obtain a slurry of a negative electrode mixture.
This slurry is applied evenly on both sides of the Ni-plated 60 μm thick Fe punching metal, that is, the thickness is constant, and after drying the slurry, the punching metal is pressed. Thus, a negative electrode plate for an AA size nickel metal hydride secondary battery was obtained.
2) Preparation of positive electrode plate A mixed aqueous solution of nickel sulfate, zinc sulfate and cobalt sulfate was prepared so that Zn was 3% by mass and Co was 1% by mass with respect to metal Ni, and this mixed aqueous solution was stirred. While adding sodium hydroxide aqueous solution gradually. At this time, the pH during the reaction was maintained at 13 to 14 to elute the nickel hydroxide particles, and the nickel hydroxide particles were washed three times with 10 times the amount of pure water, and then dehydrated and dried.
The obtained nickel hydroxide particles were mixed with a 40% by mass HPC dispersion liquid to prepare a slurry of a positive electrode mixture. This slurry was filled in a nickel substrate having a porous structure and dried, and the substrate was rolled and cut to obtain a positive electrode plate for an AA size nickel metal hydride secondary battery.
3) Assembling of the nickel metal hydride secondary battery The negative electrode plate and the positive electrode plate obtained as described above are spirally wound through a separator made of polypropylene or nylon nonwoven fabric to form an electrode group. After the group was accommodated in an outer can, a 30 wt% potassium hydroxide aqueous solution containing lithium and sodium was injected into the outer can to assemble an AA size nickel hydrogen secondary battery with a capacity of 2500 mAh.
4) Measurement of cycle characteristics The battery capacity measurement in which the prepared battery is charged at a current of 0.1 C for 16 hours and then discharged to a final voltage of 0.5 V at a current of 1.0 C is repeated until the battery cannot be discharged. I counted the number. The results are shown in Table 1 with the result of Comparative Example 8 being 100.

実施例2〜13、比較例1〜7
合金組成、注湯温度と合金融点との温度差を表1とした以外は、実施例1と同様にして鋳片を得た。熱処理はそれぞれの合金の融点より40℃低い温度で6時間行った。
得られた鋳片を実施例1と同様にして、Mg濃度が高い相およびAl濃度が高い相の面積率、80℃の水素放出曲線におけるH/Mが0.4の平衡圧、電気化学特性(放電容量)および電池特性(サイクル特性)を測定した。結果を表1に示す。また、実施例4で得られた水素吸蔵合金の断面組織のCOMP像とMgおよびAlの元素マッピング像をそれぞれ図4〜6に示す。
Examples 2-13, Comparative Examples 1-7
A slab was obtained in the same manner as in Example 1 except that the temperature difference between the alloy composition, the pouring temperature and the melting point of the alloy was changed to Table 1. The heat treatment was performed for 6 hours at a temperature 40 ° C. lower than the melting point of each alloy.
The obtained slab was treated in the same manner as in Example 1 in the same manner as in Example 1. The area ratio of the phase with high Mg concentration and the phase with high Al concentration, the equilibrium pressure with H / M of 0.4 in the hydrogen release curve at 80 ° C., and the electrochemical characteristics (Discharge capacity) and battery characteristics (cycle characteristics) were measured. The results are shown in Table 1. Moreover, the COMP image of the cross-sectional structure of the hydrogen storage alloy obtained in Example 4 and element mapping images of Mg and Al are shown in FIGS.

比較例8
表1に示す組成となる原料を用い、実施例1と同様にして合金溶融物を得た。続いて、この溶融物の注湯温度を1,300℃として、水冷式銅鋳型を使用し、厚さ5cmの合金鋳塊とした。得られた鋳塊をアルゴンガス雰囲気中、950℃で12時間熱処理を行った。合金鋳塊の断面の中心部を実施例1と同様にしてEPMAにより観察し、Mg濃度が高い相およびAl濃度が高い相の面積率を算出した。また、実施例1と同様にして80℃の水素放出曲線におけるH/Mが0.4の平衡圧、電気化学特性(放電容量)および電池特性(サイクル特性)を測定した。結果を表1に示す。また、得られた水素吸蔵合金の断面組織のCOMP像とMgおよびAlの元素マッピング像をそれぞれ図7〜9に示す。
Comparative Example 8
An alloy melt was obtained in the same manner as in Example 1 using the raw materials having the compositions shown in Table 1. Subsequently, the pouring temperature of the melt was set to 1,300 ° C., and a water-cooled copper mold was used to form an alloy ingot having a thickness of 5 cm. The obtained ingot was heat-treated at 950 ° C. for 12 hours in an argon gas atmosphere. The center part of the cross section of the alloy ingot was observed with EPMA in the same manner as in Example 1, and the area ratios of the phase with a high Mg concentration and the phase with a high Al concentration were calculated. In the same manner as in Example 1, the equilibrium pressure, electrochemical characteristics (discharge capacity), and battery characteristics (cycle characteristics) of H / M of 0.4 in the hydrogen release curve at 80 ° C. were measured. The results are shown in Table 1. Moreover, the COMP image of the cross-sectional structure of the obtained hydrogen storage alloy and the element mapping images of Mg and Al are shown in FIGS.

比較例9〜11
合金組成、注湯温度と合金融点との温度差を表1とした以外は、比較例8と同様にして鋳塊を得た。熱処理はそれぞれの合金の融点より40℃低い温度で12時間行った。
得られた鋳塊を実施例1と同様にして、Mg濃度が高い相およびAl濃度が高い相の面積率、80℃の水素放出曲線におけるH/Mが0.4の平衡圧、電気化学特性(放電容量)および電池特性(サイクル特性)を測定した。結果を表1に示す。また、比較例9〜11で得られた水素吸蔵合金の断面組織のCOMP像とMgおよびAlの元素マッピング像をそれぞれ図10〜12、13〜15および16〜18に示す。
Comparative Examples 9-11
An ingot was obtained in the same manner as in Comparative Example 8 except that the temperature difference between the alloy composition, the pouring temperature and the melting point of the alloy was changed to Table 1. The heat treatment was performed for 12 hours at a temperature 40 ° C. lower than the melting point of each alloy.
The obtained ingot was processed in the same manner as in Example 1, and the area ratio of the phase with high Mg concentration and the phase with high Al concentration, the equilibrium pressure with H / M of 0.4 in the hydrogen release curve at 80 ° C., and the electrochemical characteristics. (Discharge capacity) and battery characteristics (cycle characteristics) were measured. The results are shown in Table 1. In addition, FIGS. 10 to 12, 13 to 15, and 16 to 18 show the COMP images of the cross-sectional structures of the hydrogen storage alloys obtained in Comparative Examples 9 to 11 and element mapping images of Mg and Al, respectively.

Claims (11)

式(1)RaMgbNicAlde(式中のRはYを含む希土類元素、Zr、HfおよびCaから選ばれる少なくとも1種、MはR、Mg、Ni、Al以外の元素から選ばれる少なくとも1種を示す。aは0.75≦a≦0.85、bは0.15≦b≦0.25、cは3.30≦c≦3.65、dは0.15≦d≦0.25、eは0≦e≦0.20、a+b=1、0.33≦b+d≦0.45、3.45≦c+d+e≦3.80である。)で表される組成を有する水素吸蔵合金であって、ストリップキャスティング法で製造された、合金の断面組織のEPMAによる500倍のCOMP像およびMgとAlの元素マッピング像で確認される母相よりも、Mg濃度が高い相およびAl濃度が高い相の占める割合の合計が全体の5.0%以下である水素吸蔵合金。 Formula (1) R a Mg b Ni c Al d Me (wherein R is a rare earth element including Y, at least one selected from Zr, Hf and Ca, M is an element other than R, Mg, Ni, Al) A is 0.75 ≦ a ≦ 0.85, b is 0.15 ≦ b ≦ 0.25, c is 3.30 ≦ c ≦ 3.65, and d is 0.15. ≦ d ≦ 0.25, e is 0 ≦ e ≦ 0.20, a + b = 1, 0.33 ≦ b + d ≦ 0.45, 3.45 ≦ c + d + e ≦ 3.80). A hydrogen storage alloy having a Mg concentration higher than that of a mother phase confirmed by a COMP image and an element mapping image of Mg and Al of 500 times by EPMA of a cross-sectional structure of the alloy manufactured by a strip casting method. And the total proportion of phases with high Al concentration is 5.0% or less That the hydrogen-absorbing alloy. Mg濃度が高い相およびAl濃度が高い相の占める割合の合計が全体の3.0%以下であることを特徴とする請求項1記載の水素吸蔵合金。   2. The hydrogen storage alloy according to claim 1, wherein the total proportion of the phase having a high Mg concentration and the phase having a high Al concentration is 3.0% or less. 0.18≦b≦0.20である請求項1または2記載の水素吸蔵合金。   The hydrogen storage alloy according to claim 1 or 2, wherein 0.18≤b≤0.20. 0.15≦d≦0.22である請求項1〜3のいずれかに記載の水素吸蔵合金。 It is 0.15 <= d <= 0.22, The hydrogen storage alloy in any one of Claims 1-3. 0.40<b+d≦0.45である請求項1〜4のいずれかに記載の水素吸蔵合金。   It is 0.40 <b + d <= 0.45, The hydrogen storage alloy in any one of Claims 1-4. RがLaおよびSmを含有し、0.33≦b+d≦0.42であることを特徴とする請求項3または4記載の水素吸蔵合金。   5. The hydrogen storage alloy according to claim 3, wherein R contains La and Sm, and 0.33 ≦ b + d ≦ 0.42. RがLaのみであり、3.60≦c+d+e≦3.80であることを特徴とする請求項1〜5のいずれかに記載の水素吸蔵合金。   R is only La and it is 3.60 <= c + d + e <= 3.80, The hydrogen storage alloy in any one of Claims 1-5 characterized by the above-mentioned. 80℃で測定して得られた水素放出曲線におけるH/Mが0.4の平衡圧が、0.03〜0.07MPaであることを特徴とする1〜7のいずれかに記載の水素吸蔵合金。   8. The hydrogen occlusion according to any one of 1 to 7, wherein an equilibrium pressure having an H / M of 0.4 in a hydrogen release curve obtained by measurement at 80 ° C. is 0.03 to 0.07 MPa. alloy. 式(1)RaMgbNicAlde(式中のRはYを含む希土類元素、Zr、HfおよびCaから選ばれる少なくとも1種、MはR、Mg、Ni、Al以外の元素から選ばれる少なくとも1種を示す。aは0.75≦a≦0.85、bは0.15≦b≦0.25、cは3.30≦c≦3.65、dは0.15≦d≦0.25、eは0≦e≦0.20、a+b=1、0.33≦b+d≦0.45、3.45≦c+d+e≦3.80である。)で示される組成を構成する金属元素又は母合金を原料とし、該原料を加熱溶解し、融点より300℃以上高い合金溶融物とした後、該合金溶融物をストリップキャスティング法により冷却・凝固して合金を得、得られた合金を合金の融点より10〜100℃低い温度域で30分間〜10時間熱処理する請求項1記載の水素吸蔵合金の製造方法。 Formula (1) R a Mg b Ni c Al d Me (wherein R is a rare earth element including Y, at least one selected from Zr, Hf and Ca, M is an element other than R, Mg, Ni, Al) A is 0.75 ≦ a ≦ 0.85, b is 0.15 ≦ b ≦ 0.25, c is 3.30 ≦ c ≦ 3.65, and d is 0.15. ≦ d ≦ 0.25, e is 0 ≦ e ≦ 0.20, a + b = 1, 0.33 ≦ b + d ≦ 0.45, 3.45 ≦ c + d + e ≦ 3.80). Obtained by heating and melting the raw material to obtain an alloy melt higher than the melting point by 300 ° C. or higher, and then cooling and solidifying the alloy melt by a strip casting method to obtain an alloy. The alloy is heat-treated for 30 minutes to 10 hours in a temperature range 10 to 100 ° C. lower than the melting point of the alloy. Method for producing a hydrogen-absorbing alloy Motomeko 1 wherein. 請求項1〜8のいずれかに記載の水素吸蔵合金を含有するニッケル水素二次電池用負極。   A negative electrode for a nickel metal hydride secondary battery containing the hydrogen storage alloy according to claim 1. 請求項10記載のニッケル水素二次電池用負極を用いたニッケル水素二次電池。   A nickel metal hydride secondary battery using the negative electrode for a nickel metal hydride secondary battery according to claim 10.
JP2009287358A 2009-12-18 2009-12-18 Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery Pending JP2011127185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287358A JP2011127185A (en) 2009-12-18 2009-12-18 Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287358A JP2011127185A (en) 2009-12-18 2009-12-18 Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JP2011127185A true JP2011127185A (en) 2011-06-30
JP2011127185A5 JP2011127185A5 (en) 2012-12-06

Family

ID=44290085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287358A Pending JP2011127185A (en) 2009-12-18 2009-12-18 Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2011127185A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023610A1 (en) * 2010-08-19 2012-02-23 株式会社三徳 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
WO2014050075A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Storage cell system
US9490477B2 (en) 2012-09-27 2016-11-08 Gs Yuasa International Ltd. Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide
CN111224092A (en) * 2019-12-05 2020-06-02 包头稀土研究院 Zirconium or titanium doped samarium-containing hydrogen storage alloy, negative electrode, battery and preparation method
WO2021205749A1 (en) * 2020-04-10 2021-10-14 日本重化学工業株式会社 Hydrogen storage alloy for alkaline storage battery
CN113862536A (en) * 2021-09-14 2021-12-31 钢铁研究总院 Mg-Al-Y-based hydrogen storage material and preparation method thereof
JP7461655B2 (en) 2020-09-23 2024-04-04 日本重化学工業株式会社 Hydrogen storage alloy for alkaline batteries

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2002105564A (en) * 2000-09-29 2002-04-10 Toshiba Corp Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
WO2003054240A1 (en) * 2001-12-13 2003-07-03 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
JP2004221057A (en) * 2002-12-25 2004-08-05 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2004273261A (en) * 2003-03-07 2004-09-30 Sanyo Electric Co Ltd Alkaline storage battery
JP2007123228A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, alkaline storage battery and manufacturing method of the same
JP2007169724A (en) * 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Hydrogen occlusion alloy and alkaline secondary battery using the hydrogen occlusion alloy
JP2007250439A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2008084818A (en) * 2006-02-09 2008-04-10 Sanyo Electric Co Ltd Storage battery and hydrogen-absorbing alloy for same
JP2008210554A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP2008210556A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Alkaline storage battery
JP2008258121A (en) * 2007-03-30 2008-10-23 Santoku Corp Hydrogen storage alloy, nickel hydrogen secondary battery, and negative electrode therefor
JP2008300108A (en) * 2007-05-30 2008-12-11 Sanyo Electric Co Ltd Hydrogen absorbing alloy for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JP2009054514A (en) * 2007-08-29 2009-03-12 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, and alkaline storage battery using the same
JP2009081040A (en) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Hydrogen storing alloy, hydrogen storing alloy electrode using hydrogen storing alloy, and nickel hydrogen secondary battery
JP2009087631A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (en) * 1997-06-17 1999-11-26 Toshiba Corp Hydrogen storage alloy and secondary battery
JP2002105564A (en) * 2000-09-29 2002-04-10 Toshiba Corp Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
WO2003054240A1 (en) * 2001-12-13 2003-07-03 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
JP2004221057A (en) * 2002-12-25 2004-08-05 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2004273261A (en) * 2003-03-07 2004-09-30 Sanyo Electric Co Ltd Alkaline storage battery
JP2007123228A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, alkaline storage battery and manufacturing method of the same
JP2007169724A (en) * 2005-12-22 2007-07-05 Sanyo Electric Co Ltd Hydrogen occlusion alloy and alkaline secondary battery using the hydrogen occlusion alloy
JP2008084818A (en) * 2006-02-09 2008-04-10 Sanyo Electric Co Ltd Storage battery and hydrogen-absorbing alloy for same
JP2007250439A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2008210554A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP2008210556A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Alkaline storage battery
JP2008258121A (en) * 2007-03-30 2008-10-23 Santoku Corp Hydrogen storage alloy, nickel hydrogen secondary battery, and negative electrode therefor
JP2008300108A (en) * 2007-05-30 2008-12-11 Sanyo Electric Co Ltd Hydrogen absorbing alloy for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JP2009054514A (en) * 2007-08-29 2009-03-12 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, and alkaline storage battery using the same
JP2009081040A (en) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Hydrogen storing alloy, hydrogen storing alloy electrode using hydrogen storing alloy, and nickel hydrogen secondary battery
JP2009087631A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Alkaline storage battery system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023610A1 (en) * 2010-08-19 2012-02-23 株式会社三徳 Hydrogen absorbing alloy, negative pole, and nickel-hydrogen secondary battery
US9225016B2 (en) 2010-08-19 2015-12-29 Santoku Corporation Hydrogen absorbing alloy, negative pole, and nickel—hydrogen secondary battery
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
US9859556B2 (en) 2012-02-09 2018-01-02 Santoku Corporation Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
WO2014050075A1 (en) * 2012-09-25 2014-04-03 三洋電機株式会社 Storage cell system
US9490477B2 (en) 2012-09-27 2016-11-08 Gs Yuasa International Ltd. Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide
CN111224092B (en) * 2019-12-05 2022-08-30 包头稀土研究院 Zirconium or titanium doped samarium-containing hydrogen storage alloy, negative electrode, battery and preparation method
CN111224092A (en) * 2019-12-05 2020-06-02 包头稀土研究院 Zirconium or titanium doped samarium-containing hydrogen storage alloy, negative electrode, battery and preparation method
WO2021205749A1 (en) * 2020-04-10 2021-10-14 日本重化学工業株式会社 Hydrogen storage alloy for alkaline storage battery
JPWO2021205749A1 (en) * 2020-04-10 2021-10-14
CN114946051A (en) * 2020-04-10 2022-08-26 日本重化学工业株式会社 Hydrogen-absorbing alloy for alkaline storage battery
JP7251864B2 (en) 2020-04-10 2023-04-04 日本重化学工業株式会社 Hydrogen storage alloy for alkaline storage batteries
CN114946051B (en) * 2020-04-10 2024-06-11 日本重化学工业株式会社 Hydrogen storage alloy for alkaline storage battery
JP7461655B2 (en) 2020-09-23 2024-04-04 日本重化学工業株式会社 Hydrogen storage alloy for alkaline batteries
CN113862536A (en) * 2021-09-14 2021-12-31 钢铁研究总院 Mg-Al-Y-based hydrogen storage material and preparation method thereof
CN113862536B (en) * 2021-09-14 2022-07-08 钢铁研究总院 Mg-Al-Y-based hydrogen storage material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5466015B2 (en) Nickel metal hydride storage battery and method for producing hydrogen storage alloy
US20100178561A1 (en) Hydrogen Storage Alloy, Hydrogen Storage Alloy Electrode, Secondary Battery, And Method For Producing Hydrogen Storage Alloy
JP2011127185A (en) Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
JP5856056B2 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP2024023286A (en) Manufacturing method of hydrogen storage material
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP5455297B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
JP5224581B2 (en) Nickel metal hydride storage battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401