JP2008210556A - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
JP2008210556A
JP2008210556A JP2007043909A JP2007043909A JP2008210556A JP 2008210556 A JP2008210556 A JP 2008210556A JP 2007043909 A JP2007043909 A JP 2007043909A JP 2007043909 A JP2007043909 A JP 2007043909A JP 2008210556 A JP2008210556 A JP 2008210556A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
negative electrode
material powder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007043909A
Other languages
Japanese (ja)
Other versions
JP5196805B2 (en
Inventor
Takahiro Endo
賢大 遠藤
Akira Saguchi
明 佐口
Masaru Kihara
勝 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007043909A priority Critical patent/JP5196805B2/en
Publication of JP2008210556A publication Critical patent/JP2008210556A/en
Application granted granted Critical
Publication of JP5196805B2 publication Critical patent/JP5196805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline storage battery having excellent discharge characteristics and life characteristics although its negative electrode contains a rare eath-Mg-Ni based hydrogen storage alloy. <P>SOLUTION: The negative electrode 4 of this alkaline storage battery contains a conductive substrate 20 having a plurality of holes 20a, and hydrogen storage alloy particles 20 formed by applying paste containing material powder of the hydrogen storage alloy to the conductive substrate 20 and applying a rolling treatment to it after drying it and allowed to be retained in the substrate. The arithmetic average roughness Ra of the conductive substrate 20 after the rolling treatment is 3.0 μm or more, and the composition of the hydrogen storage alloy particle 22 is expressed by a general formula: ((PrND)<SB>α</SB>Ln<SB>1-α</SB>)<SB>1-β</SB>Mg<SB>β</SB>Ni<SB>γ-δ-ε</SB>AL<SB>δ</SB>T<SB>ε</SB>. The average particle diameter D50 of the material powder of the hydrogen storage alloy is within a range of not less than 6 μm and not more than 40 μm, and the coefficient of variation σ/D50 obtained by dividing standard deviation σ in the particle size distribution of the material powder of the hydrogen storage alloy by the average particle diameter D50 is not more than 1.5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素吸蔵合金粒子を負極に使用したアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery using hydrogen storage alloy particles as a negative electrode.

水素吸蔵合金を負極に使用したアルカリ蓄電池は、高容量であることや、鉛やカドミウムを用いた場合に比べクリーンであるなどの特徴を有することから民生用電池として大きな需要がある。
より詳しくは、負極は、複数の孔を有する例えばパンチングメタル等の導電性基板と、導電性基板に保持された水素吸蔵合金粒子とを含む。かかる負極は、導電性基板に対し、水素吸蔵合金の原料粉末を含むペーストを塗布して乾燥させてから、圧延処理及び裁断処理を施して形成される。
Alkaline storage batteries using a hydrogen storage alloy as a negative electrode are in great demand as consumer batteries because of their high capacity and their cleanliness compared to the use of lead and cadmium.
More specifically, the negative electrode includes a conductive substrate such as punching metal having a plurality of holes, and hydrogen storage alloy particles held on the conductive substrate. Such a negative electrode is formed by applying a paste containing a raw material powder of a hydrogen storage alloy to a conductive substrate and drying it, and then performing a rolling process and a cutting process.

水素吸蔵合金粒子としては、例えば、CaCu型(AB型)を主結晶相とするMmNi型水素吸蔵合金(Mmはミッシュメタル)のNiの一部をCo、Mn、Alなどの元素で置換したAB型系水素吸蔵合金(AB型系合金)がある。AB型系合金粒子は既に実用化されており、その平均粒径は50μm程度が一般的である。これは平均粒径を50μmよりも大にした場合、放電特性が低下するのはもとより、充放電サイクルの進行に伴う微粉化により、十分な寿命特性向上も得られないからである。 As the hydrogen storage alloy particles, for example, a part of Ni of an MmNi 5 type hydrogen storage alloy (Mm is a misch metal) whose main crystal phase is CaCu 5 type (AB 5 type) is an element such as Co, Mn, or Al. There is a substituted AB type 5 hydrogen storage alloy (AB type 5 alloy). AB 5 type alloy particles have already been put into practical use, and the average particle size is generally about 50 μm. This is because when the average particle size is made larger than 50 μm, not only the discharge characteristics are deteriorated, but also the life characteristics are not sufficiently improved by the pulverization accompanying the progress of the charge / discharge cycle.

一方、上記したAB型系合金よりも常温下において多量の水素を吸蔵する水素吸蔵合金として、希土類−Mg―Ni系水素吸蔵合金(希土類−Mg―Ni系合金)が知られている。希土類−Mg―Ni系合金は、AB型系合金系中の希土類元素の一部をMg元素で置換したものである。ただし、AB型系合金には水素の吸蔵量が多いものの、吸蔵した水素を放出し難く、アルカリ電解液に対する耐食性が低いという問題がある。これらの問題のため、希土類−Mg−Ni系合金を負極に適用したアルカリ蓄電池にあっては、放電特性が不良であり、サイクル寿命が短いという問題がある。 On the other hand, rare earth-Mg—Ni hydrogen storage alloys (rare earth-Mg—Ni alloys) are known as hydrogen storage alloys that store a larger amount of hydrogen at room temperature than the above AB 5 type alloys. The rare earth-Mg—Ni alloy is obtained by substituting a part of rare earth elements in the AB 5 type alloy system with Mg elements. However, although the AB 5 type alloy has a large amount of occlusion of hydrogen, there is a problem that it is difficult to release the occluded hydrogen and the corrosion resistance against the alkaline electrolyte is low. Due to these problems, an alkaline storage battery in which a rare earth-Mg-Ni alloy is applied to the negative electrode has a problem that the discharge characteristics are poor and the cycle life is short.

そこで、特許文献1は、次の一般式及び条件式で表される組成を有した希土類−Mg−Ni系合金を開示している。
(R1−a―bLaCe1−cMgNiZ−X−Y−d−eMnAlCo
c=(−0.025/a)+f
ただし、これらの式中、Rは、Yを含む希土類元素及びCaよりなる群から選択される少なくとも1種類の元素(但し、LaとCeを除く)で、Mは、Fe、Ga、Zn、Sn、Cu、Si、B、Ti、Zr、Nb、W、Mo、V、Cr、Ta、Li、PおよびSからなる群より選ばれる1種以上の元素であり、原子比a,b,c,d,e,f,X,Y及びZは、0<a≦0.45,0≦b≦0.2,0.1≦c≦0.24,0≦X≦0.1,0.02≦Y≦0.2,0≦d≦0.5,0≦e≦0.1,3.2≦Z≦3.8,0.2≦f≦0.29としてそれぞれ規定される。
Therefore, Patent Document 1 discloses a rare earth-Mg-Ni alloy having a composition represented by the following general formula and conditional formula.
(R 1-a-b La a Ce b) 1-c Mg c Ni Z-X-Y-d-e Mn X Al Y Co d M e
c = (− 0.025 / a) + f
In these formulas, R is at least one element selected from the group consisting of rare earth elements including Y and Ca (excluding La and Ce), and M is Fe, Ga, Zn, Sn. , Cu, Si, B, Ti, Zr, Nb, W, Mo, V, Cr, Ta, Li, P and S, which are at least one element selected from the group consisting of atomic ratios a, b, c, d, e, f, X, Y and Z are 0 <a ≦ 0.45, 0 ≦ b ≦ 0.2, 0.1 ≦ c ≦ 0.24, 0 ≦ X ≦ 0.1, 0.02. ≤Y≤0.2, 0≤d≤0.5, 0≤e≤0.1, 3.2≤Z≤3.8, 0.2≤f≤0.29.

この希土類−Mg―Ni系合金では、一般式中、c=(−0.025/a)+fの関係が満たされることで、水素が放出され易くなり、アルカリ蓄電池の放電特性が改善されるものと考えられている。また、この関係により、CeNi構造、CeNi構造及びこれらの類似構造以外の不所望の結晶相の析出が抑制されて水素吸蔵量の低下が防止され、この結果として、アルカリ蓄電池のサイクル寿命特性が改善されるものと考えられている。 In this rare earth-Mg—Ni-based alloy, the relationship of c = (− 0.025 / a) + f is satisfied in the general formula, so that hydrogen is easily released and the discharge characteristics of the alkaline storage battery are improved. It is believed that. In addition, this relationship suppresses the precipitation of undesired crystal phases other than the Ce 2 Ni 7 structure, CeNi 3 structure, and similar structures, thereby preventing a decrease in the hydrogen storage amount. As a result, the cycle of the alkaline storage battery is reduced. It is thought that the life characteristics are improved.

一方、この希土類−Mg―Ni系合金では、一般式中、Alの割合を示すYが0.02以上に設定されることにより、その酸化が抑制されるが、不所望の結晶相の析出を抑制すべく、Yは0.2以下に設定される。
特開2002−164045号公報
On the other hand, in this rare earth-Mg—Ni-based alloy, in the general formula, when Y indicating the proportion of Al is set to 0.02 or more, the oxidation is suppressed, but precipitation of an undesired crystal phase is caused. In order to suppress it, Y is set to 0.2 or less.
JP 2002-164045 A

しかしながら、特許文献1の希土類―Mg−Ni系合金にあっても、水素の放出特性、アルカリ電解液に対する耐食性及び耐酸化性が不十分であり、希土類―Mg−Ni系合金を適用したアルカリ蓄電池の放電特性及び寿命特性の改善が望まれている。
本発明は上述の事情に基づいてなされたものであって、その目的とするところは、希土類―Mg−Ni系水素吸蔵合金を含みながら、放電特性及び寿命特性において優れている高容量のアルカリ蓄電池を提供することにある。
However, even in the rare earth-Mg-Ni alloy of Patent Document 1, the hydrogen release characteristics, the corrosion resistance against the alkaline electrolyte, and the oxidation resistance are insufficient, and the alkaline storage battery to which the rare earth-Mg-Ni alloy is applied. It is desired to improve the discharge characteristics and life characteristics.
The present invention has been made on the basis of the above-described circumstances, and its object is to provide a high-capacity alkaline storage battery that is excellent in discharge characteristics and life characteristics while including a rare earth-Mg-Ni-based hydrogen storage alloy. Is to provide.

上記した目的を達成すべく、本発明によれば、正極、負極及びアルカリ電解液を具備したアルカリ蓄電池において、前記負極は、複数の孔を有する導電性基板と、前記導電性基板に対し、水素吸蔵合金の原料粉末を含むペーストを塗布して乾燥させてから圧延処理を施して保持させた水素吸蔵合金粒子とを含み、前記圧延処理後の前記導電性基板の算術平均粗さRaは3.0μm以上であり、前記水素吸蔵合金粒子の組成は、一般式:((PrNd)αLn1−α1−βMgβNiγ−δ−εAlδε
(式中、Lnは、La,Ce,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる少なくとも1種を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Zn,Ga,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種を表し、添字α,β,γ,δ,εは、それぞれ、0.7<α,0.05<β<0.15,3.0≦γ≦4.2,0.15≦δ≦0.30,0≦ε≦0.20を満たす数を表す)
で示され、前記水素吸蔵合金の原料粉末の平均粒径は60μm以上140μm以下の範囲にあり、前記水素吸蔵合金の原料粉末の粒度分布の標準偏差を前記平均粒径で除して得られる変動係数が1.5以下であることを特徴とするアルカリ蓄電池が提供される(請求項1)。
In order to achieve the above object, according to the present invention, in an alkaline storage battery including a positive electrode, a negative electrode, and an alkaline electrolyte, the negative electrode is a conductive substrate having a plurality of holes, and a hydrogen with respect to the conductive substrate. And hydrogen storage alloy particles held by applying a rolling treatment after applying a paste containing the raw material powder of the storage alloy, the arithmetic average roughness Ra of the conductive substrate after the rolling treatment is 3. The composition of the hydrogen storage alloy particles is 0 μm or more, and the composition of the hydrogen storage alloy particles is represented by the general formula: ((PrNd) α Ln 1-α ) 1-β Mg β Ni γ-δ-ε Al δT ε
(In the formula, Ln is selected from the group consisting of La, Ce, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr, and Hf. T represents at least one selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Zn, Ga, Sn, In, Cu, Si, P, and B. Represents the seed, and the subscripts α, β, γ, δ, ε are 0.7 <α, 0.05 <β <0.15, 3.0 ≦ γ ≦ 4.2, 0.15 ≦ δ ≦, respectively. (Represents a number satisfying 0.30, 0 ≦ ε ≦ 0.20)
The average particle size of the raw material powder of the hydrogen storage alloy is in the range of 60 μm to 140 μm, and the variation obtained by dividing the standard deviation of the particle size distribution of the raw material powder of the hydrogen storage alloy by the average particle size An alkaline storage battery having a coefficient of 1.5 or less is provided (claim 1).

本発明のアルカリ蓄電池は、負極の水素吸蔵合金が希土類―Mg−Ni系水素吸蔵合金からなるので高容量化に適している。
また、本発明のアルカリ蓄電池は、優れた寿命特性(サイクル特性)及び放電特性を有する。これは以下の理由による。
まず、電池の負極に含まれる水素吸蔵合金粒子でのAlの割合を示す添字δが0.15以上であることによる。すなわち、Alの割合が従来よりも高いことで、水素吸蔵合金の結晶構造が安定化してアルカリ電解液に対する耐食性及び耐酸化性が向上し、この結果として、電池の寿命特性が向上したのである。
The alkaline storage battery of the present invention is suitable for increasing the capacity because the negative electrode hydrogen storage alloy is made of a rare earth-Mg-Ni hydrogen storage alloy.
Moreover, the alkaline storage battery of the present invention has excellent life characteristics (cycle characteristics) and discharge characteristics. This is due to the following reason.
First, the subscript δ indicating the ratio of Al in the hydrogen storage alloy particles contained in the negative electrode of the battery is 0.15 or more. That is, when the Al ratio is higher than before, the crystal structure of the hydrogen storage alloy is stabilized, and the corrosion resistance and oxidation resistance against the alkaline electrolyte are improved. As a result, the battery life characteristics are improved.

このように添字δを0.15以上にすることができたのは、電池の負極に含まれる水素吸蔵合金でのMgの割合を示す添字βが、0.05<β<0.15で示される範囲にあること及び水素吸蔵合金のAサイトでのPr及びNdの合計割合を示す添字αが0.7よりも大きいことによる。
すなわち、この水素吸蔵合金によれば、Mg,Pr及びNdの割合を上記範囲に設定したことにより、水素吸蔵合金におけるAlの固溶限界が増大し、Alを主成分とする不所望の相を析出させることなく、水素吸蔵合金でのAlの割合が従来より増大される。なお、Mg,Pr及びNdの割合を上記範囲に設定しても、添字δが0.30を超えると、Alを主成分とする不所望の相が析出するため、添字δは0.30以下に設定される。
In this way, the subscript δ could be set to 0.15 or more because the subscript β indicating the ratio of Mg in the hydrogen storage alloy contained in the negative electrode of the battery is 0.05 <β <0.15. And the subscript α indicating the total ratio of Pr and Nd at the A site of the hydrogen storage alloy is greater than 0.7.
That is, according to this hydrogen storage alloy, by setting the ratio of Mg, Pr and Nd within the above range, the solid solution limit of Al in the hydrogen storage alloy increases, and an undesired phase mainly composed of Al is formed. Without precipitating, the proportion of Al in the hydrogen storage alloy is increased as compared with the prior art. Even if the ratio of Mg, Pr, and Nd is set in the above range, if the subscript δ exceeds 0.30, an undesired phase mainly composed of Al is precipitated, so the subscript δ is 0.30 or less. Set to

次に、水素吸蔵合金において、Pr及びNdの割合を上記範囲に設定したことにより、その水素平衡圧が従来よりも上昇している。この水素平衡圧の上昇に伴い、電池の作動電圧も上昇しており、この結果として、電池の放電特性が向上する。
また、水素吸蔵合金の原料粉末の平均粒径が、60μm以上140μm以下の範囲にあり、粒度分布の標準偏差を平均粒径で除して得られる変動係数が1.5以下であることにより、圧延処理によって水素吸蔵合金粒子が導電性基板に食い込む。これにより、導電性基板と水素吸蔵合金粒子との間の接触抵抗が低減され、放電特性が更に向上する。
Next, in the hydrogen storage alloy, the ratio of Pr and Nd is set in the above range, so that the hydrogen equilibrium pressure is higher than before. As the hydrogen equilibrium pressure increases, the operating voltage of the battery also increases. As a result, the discharge characteristics of the battery are improved.
In addition, the average particle size of the raw material powder of the hydrogen storage alloy is in the range of 60 μm to 140 μm, and the coefficient of variation obtained by dividing the standard deviation of the particle size distribution by the average particle size is 1.5 or less. The hydrogen storage alloy particles bite into the conductive substrate by the rolling process. Thereby, the contact resistance between the conductive substrate and the hydrogen storage alloy particles is reduced, and the discharge characteristics are further improved.

更に、水素吸蔵合金の原料粉末の平均粒径が、60μm以上140μm以下の範囲にあり、変動係数が1.5以下であることにより、水素吸蔵合金粒子の比表面積が低減され、寿命特性が改善される。   Furthermore, when the average particle size of the raw material powder of the hydrogen storage alloy is in the range of 60 μm or more and 140 μm or less, and the coefficient of variation is 1.5 or less, the specific surface area of the hydrogen storage alloy particles is reduced and the life characteristics are improved. Is done.

図1は、本発明の一実施形態のアルカリ蓄電池としてのニッケル水素蓄電池を示す。
この電池は、有底円筒形状の導電性を有する外装缶1を備え、外装缶1の中に電極群2が収容されている。電極群2は、正極3及び負極4を、セパレータ5を介して渦巻状に巻回してなり、電極群2の最外周には、その渦巻き方向でみて負極4の外端側の部位が配置され、負極4が外装缶1の内周壁と電気的に接続されている。また、外装缶1の中には、図示しないアルカリ電解液が収容されている。
FIG. 1 shows a nickel metal hydride storage battery as an alkaline storage battery according to an embodiment of the present invention.
This battery includes a bottomed cylindrical conductive outer can 1, and an electrode group 2 is accommodated in the outer can 1. The electrode group 2 is formed by winding a positive electrode 3 and a negative electrode 4 in a spiral shape with a separator 5 interposed therebetween, and a portion on the outer end side of the negative electrode 4 is disposed on the outermost periphery of the electrode group 2 in the spiral direction. The negative electrode 4 is electrically connected to the inner peripheral wall of the outer can 1. The outer can 1 contains an alkaline electrolyte (not shown).

なお、アルカリ電解液としては、例えば水酸化カリウム水溶液と、これに水酸化ナトリウム水溶液、水酸化リチウム水溶液などを混合したものを用いることができる。
外装缶1の開口端内には、リング状の絶縁性ガスケット6を介して、中央にガス抜き孔7を有する円形の蓋板8が配置されている。これら絶縁性ガスケット6及び蓋板8は、かしめ加工された外装缶1の開口端縁により固定されている。電極群2の正極3と蓋板8の内面との間には、これらの間を電気的に接続する正極リード9が配置されている。一方、蓋板8の外面には、ガス抜き孔7を閉塞するようにゴム製の弁体10が配置され、更に、弁体10を囲むようにフランジ付きの円筒形状の正極端子11が取り付けられている。
In addition, as alkaline electrolyte, what mixed potassium hydroxide aqueous solution and sodium hydroxide aqueous solution, lithium hydroxide aqueous solution, etc. to this can be used, for example.
In the opening end of the outer can 1, a circular lid plate 8 having a gas vent hole 7 in the center is disposed via a ring-shaped insulating gasket 6. The insulating gasket 6 and the cover plate 8 are fixed by the opening edge of the caulked outer can 1. Between the positive electrode 3 of the electrode group 2 and the inner surface of the cover plate 8, a positive electrode lead 9 that electrically connects them is disposed. On the other hand, a rubber valve body 10 is disposed on the outer surface of the cover plate 8 so as to close the gas vent hole 7, and a cylindrical positive electrode terminal 11 with a flange is attached so as to surround the valve body 10. ing.

また、外装缶1の開口端縁上には環状の絶縁板12が配置され、正極端子11は絶縁板12を貫通して突出している。符号13は、外装チューブに付されており、外装チューブ13は絶縁板12の外周縁、外装缶1の外周面及び底壁外周縁を被覆している。
正極3は、導電性の正極基板と、正極基板に保持された正極合剤とから構成されている。正極基板としては、例えば、ニッケルめっきが施された網状、スポンジ状、繊維状、フエルト状の金属多孔体を用いることができる。
An annular insulating plate 12 is disposed on the opening edge of the outer can 1, and the positive terminal 11 protrudes through the insulating plate 12. Reference numeral 13 is attached to the outer tube, and the outer tube 13 covers the outer peripheral edge of the insulating plate 12, the outer peripheral surface of the outer can 1 and the outer peripheral edge of the bottom wall.
The positive electrode 3 includes a conductive positive electrode substrate and a positive electrode mixture held on the positive electrode substrate. As the positive electrode substrate, for example, a net-like, sponge-like, fiber-like, or felt-like metal porous body plated with nickel can be used.

正極合剤は、正極活物質としての水酸化ニッケルの粉末、導電剤及び結着剤を含むが、水酸化ニッケル粉末としては、ニッケルの平均価数が2価よりも大きく且つ各粒子の表面の少なくとも一部若しくは全部がコバルト化合物で被覆されている粉末を用いるのが好ましい。また、水酸化ニッケル粉末は、コバルト及び亜鉛が固溶していてもよい。
導電剤としては、例えば、コバルト酸化物、コバルト水酸化物、金属コバルトなどの粉末を用いることができ、また結着剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFEディスパージョン、HPCディスパージョンなどを用いることができる。
The positive electrode mixture includes a nickel hydroxide powder as a positive electrode active material, a conductive agent and a binder. The nickel hydroxide powder has an average valence of nickel larger than two and the surface of each particle. It is preferable to use a powder at least partially or entirely coated with a cobalt compound. Moreover, cobalt hydroxide and zinc may be dissolved in the nickel hydroxide powder.
As the conductive agent, for example, powders of cobalt oxide, cobalt hydroxide, metallic cobalt and the like can be used. As the binder, for example, carboxymethyl cellulose, methyl cellulose, PTFE dispersion, HPC dispersion, and the like. Can be used.

上記した正極3は、例えば、水酸化ニッケル粉末、導電剤、結着剤、及び水を混練して正極用スラリを調製し、この正極用スラリが塗着・充填された正極基板を、正極用スラリの乾燥を経てから圧延・裁断して作製することができる。
負極4は、図2に概略的に示したように、導電性の負極基板20を有し、負極基板20は、その両面に開口した複数の貫通孔20aを有する。負極基板20としては、例えば、ニッケルめっきされたパンチングメタルを用いることができる。
The positive electrode 3 described above is prepared by, for example, kneading nickel hydroxide powder, a conductive agent, a binder, and water to prepare a positive electrode slurry, and using the positive electrode substrate coated and filled with the positive electrode slurry as a positive electrode It can be produced by rolling and cutting after slurry drying.
As schematically shown in FIG. 2, the negative electrode 4 has a conductive negative electrode substrate 20, and the negative electrode substrate 20 has a plurality of through holes 20 a opened on both surfaces thereof. As the negative electrode substrate 20, for example, a punching metal plated with nickel can be used.

負極基板には水素吸蔵合金粒子22を含む負極合剤が保持され、より詳しくは、負極合剤は、水素吸蔵合金粒子22、結着剤、及び必要に応じて導電剤からなる。結着剤としては、正極合剤と同じ結着剤の外に、更に例えばポリアクリル酸ナトリウムなどを併用してもよい。また、導電剤としては、例えばカーボン粉末などを用いることができる。なお、図2では、負極基板20及び水素吸蔵合金粒子22のみ模式的に示し、結着剤及び導電剤を省略した。   A negative electrode mixture containing hydrogen storage alloy particles 22 is held on the negative electrode substrate. More specifically, the negative electrode mixture includes hydrogen storage alloy particles 22, a binder, and, if necessary, a conductive agent. As the binder, in addition to the same binder as the positive electrode mixture, for example, sodium polyacrylate may be used in combination. In addition, as the conductive agent, for example, carbon powder can be used. In FIG. 2, only the negative electrode substrate 20 and the hydrogen storage alloy particles 22 are schematically shown, and the binder and the conductive agent are omitted.

負極4の水素吸蔵合金粒子22は、希土類―Mg−Ni系水素吸蔵合金(希土類−Mg―Ni系合金)からなり、組成が一般式(I):((PrNd)αLn1−α1−βMgβNiγ−δ−εAlδεで示される。
ただし、式(I)中、Lnは、La,Ce,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる少なくとも1種を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Zn,Ga,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種を表し、添字α,β,γ,δ,εは、それぞれ、0.7<α,0.05<β<0.15,3.0≦γ≦4.2,0.15≦δ≦0.30,0≦ε≦0.20を満たす数を表す。
The hydrogen storage alloy particles 22 of the negative electrode 4 are made of a rare earth-Mg—Ni-based hydrogen storage alloy (rare earth-Mg—Ni-based alloy), and the composition is represented by the general formula (I): ((PrNd) α Ln 1-α ) 1 -Β Mg β Ni γ-δ-ε Al δT ε .
However, in formula (I), Ln is La, Ce, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr, and Hf. T represents at least one selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Zn, Ga, Sn, In, Cu, Si, P, and B. Represents at least one selected, and subscripts α, β, γ, δ, and ε are 0.7 <α, 0.05 <β <0.15, 3.0 ≦ γ ≦ 4.2, and 0.2, respectively. This represents a number satisfying 15 ≦ δ ≦ 0.30 and 0 ≦ ε ≦ 0.20.

なお、添字αは水素吸蔵合金でのPr及びNdの合計割合を示しており、水素吸蔵合金はPr及びNdのうち一方のみを単独で含んでもよい。
上記した負極4は、水素吸蔵合金粒子22の原料粉末、結着剤、水、及び必要に応じて配合される導電剤から成る負極用スラリを調製し、負極用スラリが塗着された負極基板を、負極用スラリの乾燥を経てから圧延・裁断して作製することができる。
The subscript α indicates the total ratio of Pr and Nd in the hydrogen storage alloy, and the hydrogen storage alloy may include only one of Pr and Nd alone.
The negative electrode 4 is prepared by preparing a negative electrode slurry comprising raw material powder of the hydrogen storage alloy particles 22, a binder, water, and a conductive agent blended as necessary, and the negative electrode substrate coated with the negative electrode slurry. Can be produced by rolling and cutting after drying the slurry for the negative electrode.

ここで、圧延処理は、得られる負極4における負極基板20の算術平均粗さRaが、3.0μm以上になるように実施される。すなわち、圧延処理により負極基板20に対し水素吸蔵合金粒子22を食い込ませ、これによって凹凸が形成された負極基板20の表面の算術平均粗さRaが3.0μm以上、好ましくは4.0μm以上になるよう圧延処理が実施される。   Here, the rolling treatment is performed such that the arithmetic average roughness Ra of the negative electrode substrate 20 in the obtained negative electrode 4 is 3.0 μm or more. That is, the hydrogen storage alloy particles 22 are bitten into the negative electrode substrate 20 by rolling, and the arithmetic average roughness Ra of the surface of the negative electrode substrate 20 on which the irregularities are formed is 3.0 μm or more, preferably 4.0 μm or more. The rolling process is carried out so that

算術平均粗さRaは、JIS B0601−1994に定義され、三次元粗さ計によって測定可能である。具体的には、算術平均粗さはRaは、三次元粗さ測定器によって、貫通孔20aを除く領域で負極基板20の表面形状を測定して粗さ曲線を取得し、粗さ曲線から抜き取った基準長さの部分と平均線との偏差の絶対値の合計を基準長さで除して平均した値である。   The arithmetic average roughness Ra is defined in JIS B0601-1994 and can be measured by a three-dimensional roughness meter. Specifically, the arithmetic average roughness Ra is obtained by measuring the surface shape of the negative electrode substrate 20 in a region excluding the through-hole 20a with a three-dimensional roughness measuring instrument to obtain a roughness curve, and extracting it from the roughness curve. This is a value obtained by dividing the sum of absolute values of deviations between the reference length portion and the average line by the reference length.

また、水素吸蔵合金22の原料粉末としては、その平均粒径が60μm以上140μm以下の範囲にあり、その粒度分布の標準偏差σを平均粒径で除して得られる変動係数が1.5以下、好ましくは1.2以下であるものが用いられる。
なお、原料粉末の平均粒径は、レーザ回折・散乱式粒度分布測定装置を使用して原料粉末の粒度分布を測定したとき、得られた粒度分布における重量積分50%に相当する粒径(D50)である。変動係数は百分率ではない。
The raw material powder of the hydrogen storage alloy 22 has an average particle size in the range of 60 μm to 140 μm, and a coefficient of variation obtained by dividing the standard deviation σ of the particle size distribution by the average particle size is 1.5 or less. Preferably, those having a particle size of 1.2 or less are used.
The average particle size of the raw material powder is a particle size (D50 corresponding to 50% weight integral in the obtained particle size distribution when the particle size distribution of the raw material powder is measured using a laser diffraction / scattering type particle size distribution analyzer. ). The coefficient of variation is not a percentage.

このような水素吸蔵合金粒子22の原料粉末は、例えば、以下のようにして作製される。
まず、一般式(I)に示した組成となるよう金属原料を秤量して混合し、この混合物を例えば高周波溶解炉で溶解してインゴットにする。得られたインゴットに、900〜1200℃の温度の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施し、インゴットにおける結晶構造をCeNi型構造若しくはその類似構造にする。換言すれば、AB型構造及びAB型構造の超格子構造にする。この後インゴットを粉砕し、篩分けにより所望粒径に分級して水素吸蔵合金粒子22の原料粉末が作製される。
Such raw material powder of the hydrogen storage alloy particles 22 is produced, for example, as follows.
First, metal raw materials are weighed and mixed so as to have the composition shown in the general formula (I), and this mixture is melted in, for example, a high-frequency melting furnace to make an ingot. The obtained ingot is heat-treated in an inert gas atmosphere at a temperature of 900 to 1200 ° C. for 5 to 24 hours, so that the crystal structure of the ingot is changed to a Ce 2 Ni 7 type structure or a similar structure. In other words, a superlattice structure of AB 5 type structure and AB 2 type structure is adopted. Thereafter, the ingot is pulverized and classified to a desired particle size by sieving to produce the raw material powder of the hydrogen storage alloy particles 22.

上述したニッケル水素蓄電池は、負極の水素吸蔵合金が一般式(I)で示される組成の希土類―Mg−Ni系水素吸蔵合金からなり、常温下における水素吸蔵量が大きいので、高容量化に適している。
また、上述したニッケル水素蓄電池は、優れた放電特性及び寿命特性を有する。これは以下の理由による。
The nickel-metal hydride storage battery described above is suitable for high capacity because the hydrogen storage alloy of the negative electrode is made of a rare earth-Mg-Ni based hydrogen storage alloy having the composition represented by the general formula (I) and has a large amount of hydrogen storage at room temperature. ing.
Moreover, the nickel hydride storage battery mentioned above has the outstanding discharge characteristic and lifetime characteristic. This is due to the following reason.

まず、電池の負極に含まれる水素吸蔵合金でのAlの割合を示す添字δが0.15以上であることによる。すなわち、Alの割合が従来よりも高いことで、水素吸蔵合金の結晶構造が安定化してアルカリ電解液に対する耐食性及び耐酸化性が向上し、この結果として、電池の寿命特性が向上したのである。
このように添字δを0.15以上にすることができたのは、電池の負極に含まれる水素吸蔵合金でのMgの割合を示す添字βが、0.05<β<0.15で示される範囲にあること及び水素吸蔵合金のAサイトでのPr及びNdの合計割合を示す添字αが0.7よりも大きいことによる。
First, the subscript δ indicating the ratio of Al in the hydrogen storage alloy contained in the negative electrode of the battery is 0.15 or more. That is, when the Al ratio is higher than before, the crystal structure of the hydrogen storage alloy is stabilized, and the corrosion resistance and oxidation resistance against the alkaline electrolyte are improved. As a result, the battery life characteristics are improved.
In this way, the subscript δ could be set to 0.15 or more because the subscript β indicating the ratio of Mg in the hydrogen storage alloy contained in the negative electrode of the battery is 0.05 <β <0.15. And the subscript α indicating the total ratio of Pr and Nd at the A site of the hydrogen storage alloy is greater than 0.7.

すなわち、この水素吸蔵合金によれば、Mg,Pr及びNdの割合を上記範囲に設定したことにより、水素吸蔵合金におけるAlの固溶限界が増大し、Alを主成分とする不所望の相を析出させることなく、水素吸蔵合金でのAlの割合が従来より増大される。なお、Mg,Pr及びNdの割合を上記範囲に設定しても、添字δが0.30を超えると、Alを主成分とする不所望の相が析出するため、添字δは0.30以下に設定される。   That is, according to this hydrogen storage alloy, by setting the ratio of Mg, Pr and Nd within the above range, the solid solution limit of Al in the hydrogen storage alloy increases, and an undesired phase mainly composed of Al is formed. Without precipitating, the proportion of Al in the hydrogen storage alloy is increased as compared with the prior art. Even if the ratio of Mg, Pr, and Nd is set in the above range, if the subscript δ exceeds 0.30, an undesired phase mainly composed of Al is precipitated, so the subscript δ is 0.30 or less. Set to

次に、この水素吸蔵合金では、Pr及びNdの割合を上記範囲に設定したことにより、その水素平衡圧が上昇している。この水素平衡圧の上昇に伴い、電池の作動電圧も上昇しており、この結果として、電池の放電特性が向上する。
また、水素吸蔵合金の原料粉末の平均粒径が、60μm以上140μm以下の範囲にあり、変動係数σ/D50が1.5以下であることにより、圧延処理によって水素吸蔵合金粒子が導電性基板に適当に食い込む。これにより、導電性基板と水素吸蔵合金粒子との間の接触抵抗が低減され、放電特性が更に向上する。
Next, in this hydrogen storage alloy, the hydrogen equilibrium pressure is increased by setting the ratio of Pr and Nd in the above range. As the hydrogen equilibrium pressure increases, the operating voltage of the battery also increases. As a result, the discharge characteristics of the battery are improved.
In addition, since the average particle size of the raw material powder of the hydrogen storage alloy is in the range of 60 μm to 140 μm and the coefficient of variation σ / D50 is 1.5 or less, the hydrogen storage alloy particles are formed on the conductive substrate by rolling. Encroach appropriately. Thereby, the contact resistance between the conductive substrate and the hydrogen storage alloy particles is reduced, and the discharge characteristics are further improved.

更に、水素吸蔵合金の原料粉末の平均粒径が、60μm以上140μm以下の範囲にあり、変動係数σ/D50が1.5以下であることにより、水素吸蔵合金粒子の比表面積が低減され、寿命特性が改善される。
なお、上述したニッケル水素蓄電池において、一般式(I)中、添字βが0.15以下に設定されることにより、Mgを主成分とする不所望の相の析出が防止され、この点からも、電池の寿命特性が向上する。すなわち、添字βが0.15以下であることにより、充放電サイクルに伴う水素吸蔵合金粉末の微粒子化が抑制され、もって、寿命特性が向上する。一方、添字βが0.05以上に設定されることにより、水素吸蔵合金は多量の水素を吸蔵可能である。
Furthermore, when the average particle size of the raw material powder of the hydrogen storage alloy is in the range of 60 μm or more and 140 μm or less and the coefficient of variation σ / D50 is 1.5 or less, the specific surface area of the hydrogen storage alloy particles is reduced and the service life is reduced. The characteristics are improved.
In the above-described nickel-metal hydride storage battery, in general formula (I), the subscript β is set to 0.15 or less, so that precipitation of an undesired phase mainly composed of Mg is prevented. Battery life characteristics are improved. That is, when the subscript β is 0.15 or less, the formation of fine particles of the hydrogen storage alloy powder accompanying the charge / discharge cycle is suppressed, thereby improving the life characteristics. On the other hand, when the subscript β is set to 0.05 or more, the hydrogen storage alloy can store a large amount of hydrogen.

そして、一般式(I)において、添字γが小さくなりすぎると、水素吸蔵合金内における水素の吸蔵安定性が高くなるため、水素放出能が劣化し、また添字γが大きくなりすぎると、今度は、水素吸蔵合金における水素の吸蔵サイトが減少して、水素吸蔵能の劣化が起こりはじめる。それ故、添字γは、3.0≦γ≦4.2を満たすように設定される。
また、一般式(I)において、添字εはNiの置換元素Tの置換量を示すが、添字εが大きくなりすぎると、水素吸蔵合金はその結晶構造が変化して水素の吸蔵・放出能を喪失しはじめるとともに、アルカリ電解液への置換元素Tの溶出が起こりはじめ、その複合物がセパレータに析出して電池の長期貯蔵性が低下する。それ故、添字εは、0≦ε≦0.20を満たすように設定される。
In the general formula (I), if the subscript γ is too small, the hydrogen storage stability in the hydrogen storage alloy is increased, so that the hydrogen releasing ability is deteriorated, and if the subscript γ is too large, this time, The hydrogen storage sites in the hydrogen storage alloy decrease, and the hydrogen storage capacity begins to deteriorate. Therefore, the subscript γ is set so as to satisfy 3.0 ≦ γ ≦ 4.2.
Further, in the general formula (I), the subscript ε indicates the amount of substitution of the Ni substituting element T. However, if the subscript ε becomes too large, the hydrogen storage alloy changes its crystal structure and exhibits hydrogen storage / release capability. As soon as it starts to be lost, elution of the substitution element T into the alkaline electrolyte begins to occur, and the composite precipitates on the separator, reducing the long-term storability of the battery. Therefore, the subscript ε is set so as to satisfy 0 ≦ ε ≦ 0.20.

実施例1
1.負極の作製
組成が(La0.10Ce0.05Pr0.35Nd0.50)0.90Mg0.10Ni3.22Al0.22となるように金属原料を秤量して混合し、この混合物を高周波溶解炉で溶解してインゴットを得た。このインゴットを、温度1000℃のアルゴン雰囲気下にて10時間加熱し、インゴットにおける結晶構造をCeNi型構造若しくはその類似構造にした。この後、インゴットを不活性雰囲気中で機械的に粉砕して篩分けし、上記組成を有する希土類―Mg−Ni系水素吸蔵合金粒子の原料粉末を得た。このとき、粉砕及び篩分けの条件を変化させて、平均粒径D50が50、100、120又は160μmで、変動係数σ/D50がいずれも1.5以下の4種類の原料粉末と、平均粒径D50が100μmで変動係数σ/D50が1.7の原料粉末とを用意した。
Example 1
1. Preparation of negative electrode The metal raw materials were weighed and mixed so that the composition was (La 0.10 Ce 0.05 Pr 0.35 Nd 0.50 ) 0.90 Mg 0.10 Ni 3.22 Al 0.22, and this mixture was melted in a high-frequency melting furnace to obtain an ingot. This ingot was heated in an argon atmosphere at a temperature of 1000 ° C. for 10 hours, and the crystal structure of the ingot was changed to a Ce 2 Ni 7 type structure or a similar structure. Thereafter, the ingot was mechanically pulverized in an inert atmosphere and sieved to obtain a raw material powder of rare earth-Mg—Ni-based hydrogen storage alloy particles having the above composition. At this time, by changing the pulverization and sieving conditions, the average particle size D50 was 50, 100, 120 or 160 μm, and the variation coefficient σ / D50 was 1.5 or less. A raw material powder having a diameter D50 of 100 μm and a coefficient of variation σ / D50 of 1.7 was prepared.

なお、得られた原料粉末の平均粒径D50は、レーザ回折・散乱式粒度分布測定装置(HORIBA製LA-300)を用いて測定した粒度分布において、重量積分50%にあたる粒径である。
得られた各原料粉末100質量部に対し、ポリアクリル酸ナトリウム0.5質量部、カルボキシメチルセルロース0.12質量部、PTFEディスパージョン(分散媒:水,比重1.5,固形分60質量%)1.0質量部(固形分換算)、カーボンブラック1.0質量部及び水30質量部を加えて混練し、負極用スラリを調製した。
The average particle diameter D50 of the obtained raw material powder is a particle diameter corresponding to 50% by weight in the particle size distribution measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA-300 manufactured by HORIBA).
For 100 parts by mass of each raw material powder obtained, 0.5 parts by mass of sodium polyacrylate, 0.12 parts by mass of carboxymethylcellulose, PTFE dispersion (dispersion medium: water, specific gravity 1.5, solid content 60% by mass) 1.0 parts by mass (in terms of solid content), 1.0 part by mass of carbon black and 30 parts by mass of water were added and kneaded to prepare a slurry for negative electrode.

一方、開孔率が43%で厚さが60μmのFe製のパンチングシートに2μmのNiめっきを施して負極基板を作製した。作製された負極基板の表面硬さは、ビッカース硬度で100Hvであった。この負極基板に対して、負極用スラリを塗着し、当該負極用スラリの乾燥を経てからロール圧延及び裁断処理を施し、SCサイズ用の負極を作製した。
なお、ロール圧延処理の際には、ロール圧延処理後における負極基板の算術平均粗さRaが表1に示した値になるよう、圧延荷重を調整し、水素吸蔵合金粒子の負極基板への食い込みの程度を変化させた。表1に示したロール圧延処理後における負極基板の算術平均粗さRaは、ロール圧延処理後に負極合剤を除去し、3次元粗さ測定器(シグマ光機製EMS98-3D)を用いて計測した。
On the other hand, a 2 μm Ni plating was applied to a punching sheet made of Fe having a porosity of 43% and a thickness of 60 μm to produce a negative electrode substrate. The surface hardness of the produced negative electrode substrate was 100 Hv in terms of Vickers hardness. A negative electrode slurry was applied to the negative electrode substrate, and after the negative electrode slurry was dried, roll rolling and cutting were performed to prepare a negative electrode for SC size.
In the roll rolling process, the rolling load is adjusted so that the arithmetic average roughness Ra of the negative electrode substrate after the roll rolling process becomes the value shown in Table 1, and the hydrogen storage alloy particles bite into the negative electrode substrate. The degree of change. The arithmetic average roughness Ra of the negative electrode substrate after the roll rolling treatment shown in Table 1 was measured by removing the negative electrode mixture after the roll rolling treatment and using a three-dimensional roughness measuring instrument (EMS98-3D manufactured by Sigma Koki Co., Ltd.). .

2.正極の作製
各粒子の全部若しくは一部がコバルト化合物で被覆された水酸化ニッケル粉末を用意し、この水酸化ニッケル粉末100質量部に対し、濃度が40質量%のHPCディスパージョンを混合して正極用スラリを調製し、この正極用スラリが塗着・充填されたシート状のニッケル多孔体を、乾燥を経てから、圧延・裁断して正極を作製した。
3.ニッケル水素蓄電池の組立て
得られた負極と正極とを、ポリプロピレン繊維製不織布からなり、厚さが0.15mmで目付量が60g/mのセパレータを介して渦巻状に巻回し、電極群を作製した。得られた電極群を外装缶内に収納して所定の取付工程を行った後、外装缶内に、7Nの水酸化カリウム水溶液と1Nの水酸化リチウム水溶液とからなるアルカリ電解液を注液した。そして、外装缶の開口端を蓋板等を用いて封口し、定格容量が3000mAhでSCサイズの実施例1,2及び比較例1〜4の密閉円筒形ニッケル水素蓄電池を組立てた。
2. Preparation of positive electrode A nickel hydroxide powder in which all or a part of each particle is coated with a cobalt compound is prepared, and 100 mass parts of the nickel hydroxide powder is mixed with an HPC dispersion having a concentration of 40 mass%. A slurry was prepared, and the sheet-like nickel porous body coated and filled with this positive electrode slurry was dried and then rolled and cut to produce a positive electrode.
3. Assembling the nickel-metal hydride storage battery The obtained negative electrode and positive electrode are spirally wound through a separator made of a nonwoven fabric made of polypropylene fiber and having a thickness of 0.15 mm and a basis weight of 60 g / m 2 to produce an electrode group. did. After the obtained electrode group was housed in an outer can and subjected to a predetermined mounting step, an alkaline electrolyte composed of a 7N potassium hydroxide aqueous solution and a 1N lithium hydroxide aqueous solution was poured into the outer can. . Then, the open end of the outer can was sealed with a cover plate or the like, and the sealed cylindrical nickel-metal hydride batteries of Examples 1 and 2 and Comparative Examples 1 to 4 having a rated capacity of 3000 mAh and an SC size were assembled.

そして、組立てた電池に、温度25℃の環境において、0.1It(CmA)の充電電流で15時間充電した後、0.2Itの放電電流で終止電圧1.0Vまで放電させる初期活性化処理を施した。
4.電池評価
初期活性化処理を施した実施例1、2及び比較例1〜4の各ニッケル水素蓄電池について以下の試験を行った。
The assembled battery is charged with 0.1 It (CmA) charging current for 15 hours in an environment at a temperature of 25 ° C., and then discharged to a final voltage of 1.0 V with a discharge current of 0.2 It. gave.
4). Battery Evaluation The following tests were conducted on the nickel hydride storage batteries of Examples 1 and 2 and Comparative Examples 1 to 4 that were subjected to the initial activation treatment.

(1)寿命特性(サイクル特性)
各電池について、温度40℃の環境において、1.0Itの充電電流でのdV制御による充電、60分間の休止、5.0Itの放電電流での1.0Vの終止電圧までの放電からなる充放電サイクルを繰り返した。この際、各サイクルで放電容量を測定し、放電容量が1サイクル目の放電容量の60%を下回ったときのサイクル数を表1に示す。
(2)放電特性
各電池について、温度25℃の環境において1.0Itの充電電流でdV制御により充電してから、温度0℃の環境において180分間の休止時間をとった。この後、放電電流が40Aでパルス幅が2秒のパルス放電を8秒の休止時間をあけて0.3Vの終止電圧まで繰り返した。各パルス放電直後の電圧値を測定し、放電深度が30%以内にあるときの最も低い電圧値を放電特性として表1に示した。この電圧値が高いほど、放電特性が優れていることを表す。
(1) Life characteristics (cycle characteristics)
For each battery, charging / discharging consisting of charging by dV control at a charging current of 1.0 It in a temperature of 40 ° C., resting for 60 minutes, discharging to a final voltage of 1.0 V at a discharging current of 5.0 It The cycle was repeated. At this time, the discharge capacity was measured in each cycle, and the number of cycles when the discharge capacity was less than 60% of the discharge capacity in the first cycle is shown in Table 1.
(2) Discharge characteristics Each battery was charged by dV control at a charging current of 1.0 It in an environment at a temperature of 25 ° C, and then a rest time of 180 minutes was taken in an environment at a temperature of 0 ° C. Thereafter, a pulse discharge with a discharge current of 40 A and a pulse width of 2 seconds was repeated to a final voltage of 0.3 V with a rest time of 8 seconds. The voltage value immediately after each pulse discharge was measured, and the lowest voltage value when the discharge depth is within 30% is shown in Table 1 as discharge characteristics. The higher the voltage value, the better the discharge characteristics.

Figure 2008210556
Figure 2008210556

表1から次のことが明らかである。
(1)実施例1、2の放電特性及び寿命特性は優れている。
(2)変動係数σ/D50がそれぞれ0.92、0.95の実施例1、2は、変動係数σ/D50が1.70の比較例1と比べ、寿命特性において顕著に優れている。これは、比較例1では、粒度分布の標準偏差σが大きいため、粒度分布がブロードであり、原料粉末に微粒子が多く含まれていたことに起因する。微粒子は、比表面積が大きいためアルカリ電解液により腐食し易く、これによりアルカリ電解液が消費された為と考えられる。
From Table 1, the following is clear.
(1) The discharge characteristics and life characteristics of Examples 1 and 2 are excellent.
(2) Examples 1 and 2 having a coefficient of variation σ / D50 of 0.92 and 0.95, respectively, are remarkably superior in life characteristics as compared with Comparative Example 1 having a coefficient of variation σ / D50 of 1.70. This is because in Comparative Example 1, since the standard deviation σ of the particle size distribution is large, the particle size distribution is broad, and the raw material powder contains many fine particles. The fine particles are likely to be corroded by the alkaline electrolyte due to their large specific surface area, which is considered to be due to consumption of the alkaline electrolyte.

(3)負極基板の算術平均粗さRaが4.5の実施例1は、負極基板の算術平均粗さRaが2.3の比較例2と比べ、放電特性において顕著に優れている。これは、原料粉末は同じであるものの、比較例2では、実施例1に比べ、ロール圧延処理の圧延加重を小さくして負極合剤を低密度にしたため、負極基板と水素吸蔵合金粒子との間の接触抵抗が高くなった為と考えられる。
(4)平均粒径D50が100μmの実施例1は、平均粒径D50が50μmの比較例3と比べて、寿命特性において顕著に優れている。これは、比較例3では、実施例1に比べ、水素吸蔵合金粒子の比表面積が大きいため水素吸蔵合金粒子が腐食し易く、これによりアルカリ電解液が消費された為と考えられる。
(5)平均粒径D50が100μmの実施例1は、平均粒径D50が160μmの比較例4と比べて、放電特性において顕著に優れている。これは、比較例4では、実施例1に比べ、水素吸蔵合金粒子の比表面積が大きいため、反応抵抗が高い為と考えられる。
(3) Example 1 in which the arithmetic average roughness Ra of the negative electrode substrate is 4.5 is remarkably superior in discharge characteristics as compared with Comparative Example 2 in which the arithmetic average roughness Ra of the negative electrode substrate is 2.3. Although the raw material powder is the same, in Comparative Example 2, the negative electrode mixture and the hydrogen storage alloy particles were reduced in comparison with Example 1 because the negative load was made lower by reducing the rolling load of the roll rolling process. It is thought that the contact resistance between them became high.
(4) Example 1 having an average particle diameter D50 of 100 μm is significantly superior in life characteristics as compared with Comparative Example 3 having an average particle diameter D50 of 50 μm. This is presumably because, in Comparative Example 3, the hydrogen storage alloy particles were easily corroded because the specific surface area of the hydrogen storage alloy particles was larger than that in Example 1, thereby consuming the alkaline electrolyte.
(5) Example 1 having an average particle diameter D50 of 100 μm is significantly superior in discharge characteristics as compared with Comparative Example 4 having an average particle diameter D50 of 160 μm. This is presumably because, in Comparative Example 4, compared with Example 1, the specific surface area of the hydrogen storage alloy particles is large, and thus the reaction resistance is high.

本発明は上記した一実施形態及びその実施例に限定されることはなく、種々変形が可能であり、電池は、角形電池であってもよく、機械的な構造は格別限定されることはない。
一実施形態では、Lnは、La,Ce,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる少なくとも1種を表すが、LnとしてCeを選択した場合、Pr,Nd及びLnにおけるCeの割合が0.2を超えないようにするのが好ましい。Ceの割合が0.2を超えると、水素吸蔵合金の水素吸蔵能が低下するためである。
The present invention is not limited to the above-described embodiment and its examples, and various modifications are possible. The battery may be a prismatic battery, and the mechanical structure is not particularly limited. .
In one embodiment, Ln is a group consisting of La, Ce, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr, and Hf. In the case where Ce is selected as Ln, it is preferable that the ratio of Ce in Pr, Nd and Ln does not exceed 0.2. This is because if the ratio of Ce exceeds 0.2, the hydrogen storage ability of the hydrogen storage alloy is lowered.

一実施形態では、添字αは0.7よりも大きかったが、0.75よりも大きいのが好ましく、0.80よりも大きいのがより好ましい。なお、添字αは最大値として1であってもよい。
一実施形態では、添字βは0.05<β<0.15の範囲にあったけれども、0.07<β<0.14の範囲にあるのが好ましく、0.08<β<0.12の範囲にあるのがより好ましい。
In one embodiment, the subscript α was greater than 0.7, but is preferably greater than 0.75, and more preferably greater than 0.80. The subscript α may be 1 as the maximum value.
In one embodiment, the subscript β was in the range 0.05 <β <0.15, but is preferably in the range 0.07 <β <0.14, and 0.08 <β <0.12. More preferably, it is in the range.

一実施形態では、添字γは3.0≦γ≦4.2の範囲にあったけれども、3.2≦γ≦3.8の範囲にあるのが好ましく、3.3≦γ≦3.7の範囲にあるのがより好ましい。
一実施形態では、添字δは0.15≦δ≦0.30の範囲にあったけれども、0.17≦δ≦0.27の範囲にあるのが好ましく、0.20≦δ≦0.25の範囲にあるのがより好ましい。
In one embodiment, the subscript γ was in the range of 3.0 ≦ γ ≦ 4.2, but preferably in the range of 3.2 ≦ γ ≦ 3.8, 3.3 ≦ γ ≦ 3.7. More preferably, it is in the range.
In one embodiment, the subscript δ was in the range of 0.15 ≦ δ ≦ 0.30, but is preferably in the range of 0.17 ≦ δ ≦ 0.27, and 0.20 ≦ δ ≦ 0.25. More preferably, it is in the range.

一実施形態では、添字εは0≦ε≦0.20の範囲にあったけれども、0≦ε≦0.15の範囲にあるのが好ましく、0≦ε≦0.10の範囲にあるのがより好ましい。
一実施形態では、負極合剤は、水素吸蔵合金粉末、結着剤、及び必要に応じて導電剤からなるが、負極合剤は、更に、Al(OH)からなる添加剤粉末を含んでいるのが好ましい。これは以下の理由による。
In one embodiment, the subscript ε was in the range 0 ≦ ε ≦ 0.20, but preferably in the range 0 ≦ ε ≦ 0.15, and in the range 0 ≦ ε ≦ 0.10. More preferred.
In one embodiment, the negative electrode mixture is composed of a hydrogen storage alloy powder, a binder, and optionally a conductive agent, but the negative electrode mixture further includes an additive powder composed of Al (OH) 3. It is preferable. This is due to the following reason.

上記一般式(I)で示される組成の希土類―Mg−Ni系水素吸蔵合金は、アルカリ電解液に対する耐食性及び耐酸化性が高い。このため、この水素吸蔵合金を適用したニッケル水素蓄電池では、水素吸蔵合金のAlがアルカリ電解液に溶解し難い。
そこで、上述したニッケル水素蓄電池の負極は、水素吸蔵合金でのAlの割合が大きいにも拘わらず、水素吸蔵合金のAlとは別に添加剤としてAl(OH)を含むのが好ましい。Al(OH)はアルカリ電解液中でゲル状化合物になり、正極近傍に分布したゲル状化合物は、正極活物質である水酸化ニッケル粉末の酸素過電圧を上昇させ、水酸化ニッケル粉末の自己還元を防止する。この結果として、ニッケル水素蓄電池の貯蔵時の自己放電が防止される。
The rare earth-Mg—Ni-based hydrogen storage alloy having the composition represented by the general formula (I) has high corrosion resistance and oxidation resistance to the alkaline electrolyte. For this reason, in the nickel metal hydride storage battery to which this hydrogen storage alloy is applied, Al of the hydrogen storage alloy is difficult to dissolve in the alkaline electrolyte.
Therefore, the negative electrode of the nickel-metal hydride storage battery described above preferably contains Al (OH) 3 as an additive in addition to Al of the hydrogen storage alloy, despite the large proportion of Al in the hydrogen storage alloy. Al (OH) 3 becomes a gel compound in the alkaline electrolyte, and the gel compound distributed in the vicinity of the positive electrode increases the oxygen overvoltage of the nickel hydroxide powder, which is the positive electrode active material, and the self-reduction of the nickel hydroxide powder. To prevent. As a result, self-discharge during storage of the nickel-metal hydride storage battery is prevented.

また、電池の貯蔵時、ゲル状化合物により自己放電が防止されたことで、水酸化ニッケル粉末が不可逆的な領域まで過剰に還元されるのも防止される。この結果として、ニッケル水素蓄電池の貯蔵前後での容量低下が抑制される。
最後に、本発明のアルカリ蓄電池は、ニッケル水素蓄電池のみならず、負極が水素吸蔵合金粉末を含むアルカリ蓄電池に適用することができる。
Further, since the self-discharge is prevented by the gel compound during storage of the battery, it is possible to prevent the nickel hydroxide powder from being excessively reduced to an irreversible region. As a result, a decrease in capacity before and after storage of the nickel-metal hydride storage battery is suppressed.
Finally, the alkaline storage battery of the present invention can be applied not only to nickel-metal hydride storage batteries but also to alkaline storage batteries in which the negative electrode contains hydrogen storage alloy powder.

本発明の一実施形態のアルカリ蓄電池としてのニッケル水素蓄電池を示す部分切欠斜視図である。It is a partial notch perspective view which shows the nickel hydride storage battery as an alkaline storage battery of one Embodiment of this invention. 図1の電池に用いられた負極の断面の一部を拡大して概略的に示した図である。It is the figure which expanded and schematically showed a part of cross section of the negative electrode used for the battery of FIG.

符号の説明Explanation of symbols

1 外装缶
2 電極群
3 正極
4 負極
5 セパレータ
20 導電性基板
20a 孔(貫通孔)
22 水素吸蔵合金粒子
DESCRIPTION OF SYMBOLS 1 Exterior can 2 Electrode group 3 Positive electrode 4 Negative electrode 5 Separator 20 Conductive substrate 20a Hole (through hole)
22 Hydrogen storage alloy particles

Claims (1)

正極、負極及びアルカリ電解液を具備したアルカリ蓄電池において、
前記負極は、
複数の孔を有する導電性基板と、
前記導電性基板に対し、水素吸蔵合金の原料粉末を含むペーストを塗布して乾燥させてから圧延処理を施して保持させた水素吸蔵合金粒子と
を含み、
前記圧延処理後の前記導電性基板の算術平均粗さRaは3.0μm以上であり、
前記水素吸蔵合金粒子の組成は、
一般式:((PrNd)αLn1−α1−βMgβNiγ−δ−εAlδε
(式中、Lnは、La,Ce,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,Zr及びHfよりなる群から選ばれる少なくとも1種を表し、Tは、V,Nb,Ta,Cr,Mo,Mn,Fe,Co,Zn,Ga,Sn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種を表し、添字α,β,γ,δ,εは、それぞれ、0.7<α,0.05<β<0.15,3.0≦γ≦4.2,0.15≦δ≦0.30,0≦ε≦0.20を満たす数を表す)
で示され、
前記水素吸蔵合金の原料粉末の平均粒径は60μm以上140μm以下の範囲にあり、
前記水素吸蔵合金の原料粉末の粒度分布の標準偏差を前記平均粒径で除して得られる変動係数が1.5以下である
ことを特徴とするアルカリ蓄電池。
In an alkaline storage battery comprising a positive electrode, a negative electrode and an alkaline electrolyte,
The negative electrode is
A conductive substrate having a plurality of holes;
The conductive substrate, the hydrogen storage alloy particles held by applying a rolling treatment after applying a paste containing the raw material powder of the hydrogen storage alloy and then performing a rolling treatment,
The arithmetic average roughness Ra of the conductive substrate after the rolling treatment is 3.0 μm or more,
The composition of the hydrogen storage alloy particles is:
General formula: ((PrNd) α Ln 1 -α) 1-β Mg β Ni γ-δ-ε Al δ T ε
(In the formula, Ln is selected from the group consisting of La, Ce, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr, and Hf. T represents at least one selected from the group consisting of V, Nb, Ta, Cr, Mo, Mn, Fe, Co, Zn, Ga, Sn, In, Cu, Si, P, and B. Represents the seed, and the subscripts α, β, γ, δ, ε are 0.7 <α, 0.05 <β <0.15, 3.0 ≦ γ ≦ 4.2, 0.15 ≦ δ ≦, respectively. (Represents a number satisfying 0.30, 0 ≦ ε ≦ 0.20)
Indicated by
The average particle diameter of the raw material powder of the hydrogen storage alloy is in the range of 60 μm to 140 μm,
An alkaline storage battery having a coefficient of variation obtained by dividing the standard deviation of the particle size distribution of the raw material powder of the hydrogen storage alloy by the average particle size of 1.5 or less.
JP2007043909A 2007-02-23 2007-02-23 Alkaline storage battery Active JP5196805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043909A JP5196805B2 (en) 2007-02-23 2007-02-23 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043909A JP5196805B2 (en) 2007-02-23 2007-02-23 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2008210556A true JP2008210556A (en) 2008-09-11
JP5196805B2 JP5196805B2 (en) 2013-05-15

Family

ID=39786703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043909A Active JP5196805B2 (en) 2007-02-23 2007-02-23 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5196805B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210554A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245782A (en) * 1996-03-05 1997-09-19 Sanyo Electric Co Ltd Metal hydride storage battery
JP2004221057A (en) * 2002-12-25 2004-08-05 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2006156005A (en) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and manufacturing method of its negative electrode
JP2006228536A (en) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2006236692A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2006309998A (en) * 2005-04-27 2006-11-09 Mitsui Mining & Smelting Co Ltd Ab5 type hydrogen storage alloy powder
JP2006338887A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Alkaline storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245782A (en) * 1996-03-05 1997-09-19 Sanyo Electric Co Ltd Metal hydride storage battery
JP2004221057A (en) * 2002-12-25 2004-08-05 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
JP2006156005A (en) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery and manufacturing method of its negative electrode
JP2006228536A (en) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP2006236692A (en) * 2005-02-23 2006-09-07 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2006309998A (en) * 2005-04-27 2006-11-09 Mitsui Mining & Smelting Co Ltd Ab5 type hydrogen storage alloy powder
JP2006338887A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210554A (en) * 2007-02-23 2008-09-11 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
WO2013118806A1 (en) * 2012-02-09 2013-08-15 株式会社三徳 Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
US9859556B2 (en) 2012-02-09 2018-01-02 Santoku Corporation Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell

Also Published As

Publication number Publication date
JP5196805B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP4566025B2 (en) Alkaline storage battery
JP4873914B2 (en) Alkaline storage battery
JP4873947B2 (en) Hydrogen storage alloy and alkaline secondary battery using the hydrogen storage alloy
JP5512080B2 (en) Alkaline storage battery
JP5196953B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4911561B2 (en) Alkaline storage battery
JP5121499B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP2007084846A (en) Hydrogen storage alloy
JP5196805B2 (en) Alkaline storage battery
JP4587734B2 (en) Hydrogen storage alloy electrode and secondary battery using the electrode
JP2007250250A (en) Nickel hydrogen storage battery
JP2006228536A (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery
JP4849852B2 (en) Method for producing alkaline storage battery
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP5436825B2 (en) Hydrogen storage alloy powder for alkaline storage battery, its production method and alkaline storage battery
JP5171123B2 (en) Alkaline secondary battery
JP2009228096A (en) Hydrogen storage alloy
JP2007092115A (en) Hydrogen storage alloy, and nickel-hydrogen storage battery using this alloy
JP2007123228A (en) Hydrogen storage alloy electrode, alkaline storage battery and manufacturing method of the same
JP2010231940A (en) Alkaline secondary battery
JP5183077B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode using the alloy, and nickel hydride secondary battery
JP4159501B2 (en) Rare earth-magnesium hydrogen storage alloy, hydrogen storage alloy particles, and secondary battery
JP4511298B2 (en) Nickel metal hydride storage battery
JP2010080171A (en) Alkaline secondary battery
JP2010212117A (en) Negative electrode for alkaline storage battery, and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5196805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3