JP2008258121A6 - Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery - Google Patents

Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery Download PDF

Info

Publication number
JP2008258121A6
JP2008258121A6 JP2007117713A JP2007117713A JP2008258121A6 JP 2008258121 A6 JP2008258121 A6 JP 2008258121A6 JP 2007117713 A JP2007117713 A JP 2007117713A JP 2007117713 A JP2007117713 A JP 2007117713A JP 2008258121 A6 JP2008258121 A6 JP 2008258121A6
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
secondary battery
metal hydride
hydride secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007117713A
Other languages
Japanese (ja)
Other versions
JP5179777B2 (en
JP2008258121A (en
Inventor
桂 森高
宏樹 林
敦 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2007117713A priority Critical patent/JP5179777B2/en
Priority claimed from JP2007117713A external-priority patent/JP5179777B2/en
Publication of JP2008258121A publication Critical patent/JP2008258121A/en
Publication of JP2008258121A6 publication Critical patent/JP2008258121A6/en
Application granted granted Critical
Publication of JP5179777B2 publication Critical patent/JP5179777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 ニッケル水素二次電池の負極活物質に使用した場合に、サイクル特性が良好で、電池の作動電圧が高く、かつ自己放電を抑制することができる水素吸蔵合金、この水素吸蔵合金を用いて製造したニッケル水素二次電池用負極、この負極を用いて製造したニッケル水素二次電池を提供することを目的とする
【解決手段】 式RNiCo,AlMn(式中RはYを含む希土類元素から選ばれる少なくとも1種、MはR、Ni、Co、Al、Mn以外の元素から選ばれる少なくとも1種を示す。aは3.30≦a≦5.00、bは0.10≦b≦0.90、cは0.30≦c≦0.80、dは0≦d≦0.15、eは0≦e≦0.30、4.90≦a+b+c+d+e≦5.50である。)で表される組成を有する水素吸蔵合金であって、合金の断面組織のEPMAによる500倍のComp像およびAlの元素マッピング像で確認される母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が存在しない水素吸蔵合金をニッケル水素二次電池に用いる。
【選択図】図2
PROBLEM TO BE SOLVED: To use a hydrogen storage alloy having good cycle characteristics, high battery operating voltage and suppressing self-discharge when used as a negative electrode active material of a nickel metal hydride secondary battery, and using this hydrogen storage alloy An object of the present invention is to provide a negative electrode for a nickel-metal hydride secondary battery and a nickel-metal hydride secondary battery manufactured using the negative electrode. SOLUTION: RNI a Co b , Al c Mn d Me (wherein R is at least one selected from rare earth elements including Y, M is at least one selected from elements other than R, Ni, Co, Al, and Mn, a is 3.30 ≦ a ≦ 5.00, b Is 0.10 ≦ b ≦ 0.90, c is 0.30 ≦ c ≦ 0.80, d is 0 ≦ d ≦ 0.15, e is 0 ≦ e ≦ 0.30, 4.90 ≦ a + b + c + d + e ≦ 5 Hydrogen having a composition represented by. It is a stored alloy, and there is no precipitated phase having an Al concentration higher than that of the parent phase confirmed by the Comp image and Al element mapping image of 500 times the EPMA of the cross-sectional structure of the alloy and having a grain size of 2.0 μm or more. A hydrogen storage alloy is used for a nickel metal hydride secondary battery.
[Selection] Figure 2

Description

本発明はニッケル水素二次電池、それに用いる水素吸蔵合金、負極に関する。  The present invention relates to a nickel metal hydride secondary battery, a hydrogen storage alloy used therefor, and a negative electrode.

特開2004−55494号公報JP 2004-55494 A 特開2001−40442号公報JP 2001-40442 A 特開2004−119353号公報JP 2004-119353 A

水素吸蔵合金を含有する負極を用いたニッケル水素二次電池は、ニッケルカドミウム二次電池に比べ高エネルギー密度で、有害なCdを使用しないことから環境への負荷も小さい。ニッケル水素電池は、デジタルカメラや電動工具等の携帯機器、さらには、電気自動車又はハイブリッド型電気自動車にも使用されており、用途に合わせて様々な電池特性が求められている。なかでも自己放電を抑制したニッケル水素二次電池は、消費者が店頭で購入後、充電せずにすぐ使える利便性から注目されている。電気自動車又はハイブリッド型電気自動車用途においては、自己放電を抑制することによりエネルギー消費を節減できる。同用途においては充放電を頻繁に行う必要があるため、良好なサイクル特性が求められる。  A nickel metal hydride secondary battery using a negative electrode containing a hydrogen storage alloy has a higher energy density than a nickel cadmium secondary battery, and does not use harmful Cd. Nickel metal hydride batteries are also used in portable devices such as digital cameras and electric tools, as well as electric vehicles or hybrid electric vehicles, and various battery characteristics are required depending on the application. Among these, nickel metal hydride rechargeable batteries that suppress self-discharge are attracting attention because they are convenient for consumers to use immediately after purchase at the store. In electric vehicle or hybrid electric vehicle applications, energy consumption can be reduced by suppressing self-discharge. In the same application, since it is necessary to frequently charge and discharge, good cycle characteristics are required.

従来、ニッケル水素二次電池の負極材料として、主にAB系水素吸蔵合金が使用されている。この合金は、水素吸蔵量、平衡圧、耐食性などの要求を満たすため、Mn、Al、Co等の添加がなされるのが一般的である。Conventionally, as a negative electrode material of a nickel metal hydride secondary battery, an AB 5 type hydrogen storage alloy is mainly used. In general, Mn, Al, Co, or the like is added to this alloy in order to satisfy requirements such as hydrogen storage capacity, equilibrium pressure, and corrosion resistance.

文献1には、Alを含む水素吸蔵合金を含有する負極を用いた場合、水素吸蔵合金から溶出するAlが正極で析出して、自己放電等が生じることを防ぐため、負極にAlと錯体を形成する錯体形成剤を添加することが開示されている。  In literature 1, when a negative electrode containing a hydrogen storage alloy containing Al is used, in order to prevent Al eluting from the hydrogen storage alloy from precipitating on the positive electrode and causing self-discharge, etc., Al and a complex are added to the negative electrode. It is disclosed to add a complexing agent to form.

文献2には、Mn及びAlの含有割合を極めて少なくし、水素吸蔵特性に優れると共に、微粉化特性や良好な初期特性や出力特性を有し、しかも耐久性や保存性について高い信頼性を有する水素吸蔵合金として、一般式MmNiMnAlCo(式中、Mmはミッシュメタル、3.7≦a≦4.2、0<b≦0.3、0<c≦0.4、0.2≦d≦0.4、b+c<0.5、5.00≦a+b+c+d≦5.20)で表されるCaCu型の結晶構造を有する水素吸蔵合金等が開示されている。In Document 2, the content ratio of Mn and Al is extremely reduced, the hydrogen storage characteristics are excellent, the fine powder characteristics, the good initial characteristics and the output characteristics, and the durability and the storage stability are high. As a hydrogen storage alloy, a general formula MmNi a Mn b Al c Co d (where Mm is Misch metal, 3.7 ≦ a ≦ 4.2, 0 <b ≦ 0.3, 0 <c ≦ 0.4, A hydrogen storage alloy having a CaCu 5 type crystal structure represented by 0.2 ≦ d ≦ 0.4, b + c <0.5, 5.00 ≦ a + b + c + d ≦ 5.20) is disclosed.

文献3には、長期間放置しても内部抵抗の上昇を抑制して、充放電サイクル特性に優れるとともに容量が大きいニッケル水素二次電池として、亜鉛が固溶した水酸化ニッケルを正極、組成式がMmNiCoAlMnで表されるLaNi型結晶構造で、Mnの添加モル比が0.2以下(0<d≦0.2)で、かつ40℃における平衡水素圧力が0.10MPa未満の水素吸蔵合金を負極に使用したニッケル水素二次電池が開示されている。Reference 3 describes a nickel hydride secondary battery that suppresses an increase in internal resistance even when left for a long period of time, has excellent charge / discharge cycle characteristics, and has a large capacity. Is a LaNi 5- type crystal structure represented by MmNi a Co b Al c Mn d , the Mn addition molar ratio is 0.2 or less (0 <d ≦ 0.2), and the equilibrium hydrogen pressure at 40 ° C. is 0 A nickel metal hydride secondary battery using a hydrogen storage alloy of less than 10 MPa as a negative electrode is disclosed.

文献1のニッケル水素二次電池は、水素吸蔵合金から電解液に溶出するAlを錯体として捕捉することで、ある程度自己放電を抑制することは可能であるが、溶出したMnがセパレータまたは正極上で析出することにより、正極活物質の還元や内部抵抗の増大が起こり、自己放電、電池の作動電圧の低下が生じてしまう。また、文献2および文献3の水素吸蔵合金は、鋳造された合金に熱処理を施してもAlまたはMnの偏析が十分に均質化できず、残留した偏析部分を起点としてAl、Mnの溶出、微粉化が生じる。その結果、自己放電が生じ、サイクル特性が低下する。  The nickel metal hydride secondary battery of Document 1 can suppress self-discharge to some extent by capturing Al as a complex from the hydrogen storage alloy in the electrolyte solution. Precipitation causes reduction of the positive electrode active material and increase in internal resistance, resulting in self-discharge and a decrease in battery operating voltage. Further, in the hydrogen storage alloys of Reference 2 and Reference 3, even if the cast alloy is heat-treated, the segregation of Al or Mn cannot be sufficiently homogenized. Will occur. As a result, self-discharge occurs, and the cycle characteristics deteriorate.

AB系の水素吸蔵合金に添加されているMnにより、水素吸蔵量を大きく低下させることなく水素吸蔵放出時の平衡圧を調整することが可能であるが、Mnは電解液に溶出しやすいため、自己放電、電池の作動電圧の低下が生じる。またMnを多量に含有すると水素の吸蔵放出に伴い、合金の微粉化が生じるため、電池のサイクル特性にも悪影響を及ぼす。しかしながら、Mnを添加した場合の悪影響を低減するためにMnの添加量を減らすと、平衡圧の調整のためにAlを増加させる必要が生じるが、その場合、合金組織にAlを均一に分散させることが難しい。Alの偏析があると合金の微粉化が促進されるため、サイクル特性が低下し、また微粉化に伴い溶出するAlやCoが電池の内部抵抗増大や短絡などを引き起こす。It is possible to adjust the equilibrium pressure at the time of hydrogen storage and release without greatly reducing the amount of hydrogen stored by Mn added to the AB 5 type hydrogen storage alloy, but because Mn is easily eluted into the electrolyte , Self-discharge and battery operating voltage drop. Further, when Mn is contained in a large amount, the alloy is pulverized with the absorption and release of hydrogen, which adversely affects the cycle characteristics of the battery. However, if the amount of Mn added is reduced in order to reduce the adverse effects of adding Mn, Al needs to be increased to adjust the equilibrium pressure. In that case, Al is uniformly dispersed in the alloy structure. It is difficult. If there is segregation of Al, the pulverization of the alloy is promoted, so that the cycle characteristics are deteriorated, and Al and Co eluted with the pulverization cause an increase in the internal resistance of the battery and a short circuit.

そこで、本発明はMnの添加量を減らし、Alの添加量を増やした水素吸蔵合金であっても、ニッケル水素二次電池の負極活物質に使用した場合に、サイクル特性が良好で、電池の作動電圧が高く、かつ自己放電を抑制することができる水素吸蔵合金、この水素吸蔵合金を用いて製造したニッケル水素二次電池用負極、この負極を用いて製造したニッケル水素二次電池を提供することを目的とする。  Therefore, the present invention reduces the amount of Mn added and increases the amount of Al added even when the hydrogen storage alloy is used as a negative electrode active material for a nickel metal hydride secondary battery. Provided are a hydrogen storage alloy having a high operating voltage and capable of suppressing self-discharge, a negative electrode for a nickel metal hydride secondary battery manufactured using the hydrogen storage alloy, and a nickel metal hydride secondary battery manufactured using the negative electrode. For the purpose.

上述の課題を解決するために、本発明によればMnの含有量が少なく、かつAlの含有量が多いにもかかわらず、Alの偏析が少ない水素吸蔵合金として、式RNiCoAlMnM。(式中RはYを含む希土類元素から選ばれる少なくとも1種、MはR、Ni、Co、Al、Mn以外の元素から選ばれる少なくとも1種を示す。aは3.30≦a≦5.00、bは0.10≦b≦0.90、cは0.30≦c≦0.80、dは0≦d≦0.15、eは0≦e≦0.30、4.90≦a+b+c+d+e≦5.50である。)で表される組成を有する水素吸蔵合金であって、合金の断面組織のEPMAによる500倍のComp像およびAlの元素マッピング像で確認される母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が存在しない水素吸蔵合金が提供される。In order to solve the above-described problems, according to the present invention, as a hydrogen storage alloy having a low Mn content and a low Al segregation despite a high Al content, the formula RNi a Co b Al c is used. Mnd d M. (In the formula, R represents at least one selected from rare earth elements including Y, M represents at least one selected from elements other than R, Ni, Co, Al, and Mn. A represents 3.30 ≦ a ≦ 5. 00, b is 0.10 ≦ b ≦ 0.90, c is 0.30 ≦ c ≦ 0.80, d is 0 ≦ d ≦ 0.15, e is 0 ≦ e ≦ 0.30, 4.90 ≦ a + b + c + d + e ≦ 5.50), which is a hydrogen storage alloy having a composition represented by the following formula: 500 times as large as the Comp image and EP elemental mapping image by EPMA of the cross-sectional structure of the alloy. And a hydrogen storage alloy having no precipitated phase having a particle size of 2.0 μm or more is provided.

また、本発明によれば前記水素吸蔵合金を含有するニッケル水素二次電池用負極が提供される。  Moreover, according to this invention, the negative electrode for nickel hydride secondary batteries containing the said hydrogen storage alloy is provided.

さらに本発明によれば前記ニッケル水素二次電池用負極を用いたニッケル水素二次電池が提供される。  Furthermore, according to this invention, the nickel hydride secondary battery using the said negative electrode for nickel hydride secondary batteries is provided.

本発明の水素吸蔵合金は次式の組成を有する。
式RNiCoAlMn
式中Rは、Yを含む希土類元素から選ばれる少なくとも1種を表す。Rは求める特性により選択されるが、通常はコストの点で、原料の一部または全部にミッシュメタルを使用する場合がほとんどであり、Rとしては主にLa、Ce、Pr、Ndの軽希土類元素が使用される。Laの含有量は、主に水素吸蔵量と平衡圧に影響する。原料としてミッシュメタルを用いた場合、ミッシュメタル中のLaの含有割合を高くする場合には、Laの単金属等La含有割合の高い原料を同時に使用して、所望のLa含有量となるように調整する。
The hydrogen storage alloy of the present invention has the following formula.
Formula RNi a Co b Al c Mn d M e
In the formula, R represents at least one selected from rare earth elements including Y. R is selected depending on the required characteristics, but usually, in terms of cost, misch metal is mostly used for part or all of the raw material. R is mainly a light rare earth such as La, Ce, Pr, or Nd. Elements are used. The La content mainly affects the hydrogen storage amount and the equilibrium pressure. When misch metal is used as a raw material, when increasing the La content in the misch metal, a raw material with a high La content such as a single metal of La is used at the same time so that the desired La content is obtained. adjust.

aは、Rのモル数を1としたときのNiの含有量を表す。Niの含有量は、主に微紛化に影響する。aは、3.30≦a≦5.00である。好ましくは、3.70≦x≦4.45である。aが3.30より小さいと微紛化を抑制することができず、5.00より大きいと水素吸蔵量が少なくなるので好ましくない。  a represents the Ni content when the number of moles of R is 1. The Ni content mainly affects the micronization. a is 3.30 ≦ a ≦ 5.00. Preferably, 3.70 ≦ x ≦ 4.45. If a is less than 3.30, pulverization cannot be suppressed, and if a is more than 5.00, the hydrogen storage amount decreases, which is not preferable.

bは、Rのモル数を1としたときのCoの含有量を表す。Coの含有量は、主に微粉化に影響する。bは、0.10≦b≦0.90である。好ましくは、0.40≦b≦0.70である。bが0.10より小さいと鋳造した合金を熱処理しても十分に均質化できず、Al濃度の高い析出相が存在して微紛化を抑制することができず、0.90より大きいと水素吸蔵量が少なく、初期活性が十分でない。  b represents the Co content when the number of moles of R is 1. The Co content mainly affects pulverization. b is 0.10 ≦ b ≦ 0.90. Preferably, 0.40 ≦ b ≦ 0.70. If b is less than 0.10, the cast alloy cannot be sufficiently homogenized even if heat-treated, and there is a precipitated phase with a high Al concentration, and fine powdering cannot be suppressed. The hydrogen storage amount is small and the initial activity is not sufficient.

cは、Rのモル数を1としたときのAlの含有量を示す。Alの含有量は、主に平衡圧に影響する。cは、0.30≦c≦0.80である。好ましくは0.45≦x≦0.60である。本発明の水素吸蔵合金は、後述するようにMnの含有量を少なく規定しているため、Alの含有量を多くすることにより平衡圧を調整する必要がある。cが0.30より小さいと平衡圧が所望のものとならず、0.80より大きいと鋳造した合金を熱処理しても十分に均質化できず、合金組織に母相よりAl濃度が高い析出相が存在する。このような析出相が存在すると、この析出相を起点として割れが生じ、合金が微粉化し、サイクル特性が低下する。また、このような析出相からAlが溶出することにより、電池の内部抵抗が増大し、電池の作動電圧が低下する。  c represents the Al content when the number of moles of R is 1. The Al content mainly affects the equilibrium pressure. c is 0.30 ≦ c ≦ 0.80. Preferably, 0.45 ≦ x ≦ 0.60. Since the hydrogen storage alloy of the present invention regulates the Mn content to be small as will be described later, it is necessary to adjust the equilibrium pressure by increasing the Al content. If c is less than 0.30, the equilibrium pressure is not as desired, and if it is greater than 0.80, the cast alloy cannot be sufficiently homogenized even by heat treatment, and the alloy structure has a higher Al concentration than the parent phase. There is a phase. When such a precipitated phase exists, cracks are generated starting from this precipitated phase, the alloy is pulverized, and the cycle characteristics deteriorate. Moreover, when Al elutes from such a deposited phase, the internal resistance of the battery increases and the operating voltage of the battery decreases.

dは、Rのモル数を1としたときのMnの含有量を示す。Mnの含有量は、主に平衡圧に影響する。dは、0≦d≦0.15である。上述した通り、本願においてはMnによる悪影響、つまりは自己放電が生じ、さらには電池の作動電圧が低下するという問題を解決するため、Mnの含有量はできる限り少なくする。好ましくは0≦d≦0.10、さらに好ましくはdは0である。しかしながら、不純物レベルでMnを含有することは許容される。dが0.15より大きいと自己放電生じやすくなり、さらには電池の作動電圧が低下する。  d represents the Mn content when the number of moles of R is 1. The Mn content mainly affects the equilibrium pressure. d is 0 ≦ d ≦ 0.15. As described above, in the present application, the Mn content is reduced as much as possible in order to solve the problem that the adverse effect of Mn, that is, self-discharge occurs and the operating voltage of the battery decreases. Preferably 0 ≦ d ≦ 0.10, more preferably d is 0. However, it is permissible to contain Mn at the impurity level. If d is greater than 0.15, self-discharge tends to occur, and the operating voltage of the battery decreases.

eは、Rのモル数を1としたときのMの含有量を示す。eは、0≦e≦0.30である。Mは必ずしも必要でなく、電池の用途により特性の微調整が必要な場合に含有させる。MはR、Ni、Co、Al、Mn以外の元素から選ばれる少なくとも1種を示す。具体的にはMとして、Mg、Ca、Ti、Zr、V、Nb、Ta、Cr、Mo、W、Fe、Cu、Zn、B、Ga、Sn、Sb等が挙げられ、好ましくはMは、Mg、Ti、Zr、Nb、Mo、W、Fe、Cu、B、Snから選ばれる少なくとも1種である。例えばMgを含有させると水素吸蔵量が大きくなる。Fe、Cu、Zr、Sn、Ti、Nb、Mo、W、Bを含有させると微紛化が抑制される、もしくは電解液へのAl、Mn、Coの溶出が抑制される。eが0.30より大きいと本発明の水素吸蔵合金に求める諸特性が得られなくなる。  e represents the content of M when the number of moles of R is 1. e is 0 ≦ e ≦ 0.30. M is not always necessary, and is included when fine adjustment of characteristics is required depending on the use of the battery. M represents at least one selected from elements other than R, Ni, Co, Al, and Mn. Specific examples of M include Mg, Ca, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Zn, B, Ga, Sn, and Sb. Preferably, M is It is at least one selected from Mg, Ti, Zr, Nb, Mo, W, Fe, Cu, B, and Sn. For example, when Mg is contained, the hydrogen storage amount increases. When Fe, Cu, Zr, Sn, Ti, Nb, Mo, W, and B are contained, pulverization is suppressed, or elution of Al, Mn, and Co into the electrolytic solution is suppressed. When e is larger than 0.30, various properties required for the hydrogen storage alloy of the present invention cannot be obtained.

a+b+c+d+eは、Rのモル数を1としたときのR以外の成分の含有量を示す。R以外の成分全体の含有量は、主に微紛化に影響する。a+b+c+d+eは、4.90≦a+b+c+d+e≦5.50である。a+b+c+d+eが4.90より小さいと微紛化を抑制することができず、5.50よりと水素吸蔵量が少なくなるので好ましくない。a+b+c+d+eが大きいとAlやMnの偏析が生じやすくなるため、本発明の水素吸蔵合金のようにAlの含有量が多く、Alの偏析が生じやすい水素吸蔵合金においては、5.10≦a+b+c+d+e≦5.30とすることが好ましい。  a + b + c + d + e represents the content of components other than R when the number of moles of R is 1. The content of all components other than R mainly affects the pulverization. a + b + c + d + e is 4.90 ≦ a + b + c + d + e ≦ 5.50. If a + b + c + d + e is less than 4.90, the pulverization cannot be suppressed, and the hydrogen storage amount is less than 5.50, which is not preferable. When a + b + c + d + e is large, segregation of Al or Mn is likely to occur. Therefore, in a hydrogen storage alloy having a large Al content and causing segregation of Al as in the hydrogen storage alloy of the present invention, 5.10 ≦ a + b + c + d + e ≦ 5 .30 is preferable.

本発明の水素吸蔵合金は、Mnの含有量が少なく、かつAlの含有量が多いにもかかわらず、Alの偏析が少ない合金である。下記に示す方法で水素吸蔵合金の断面組織をEPMAで観察し、Alの偏析の度合いを評価した。  The hydrogen storage alloy of the present invention is an alloy having a small amount of Mn and a small amount of segregation of Al even though the content of Al is large. The cross-sectional structure of the hydrogen storage alloy was observed with EPMA by the method shown below, and the degree of segregation of Al was evaluated.

水素吸蔵合金を鋳造時の抜熱方向にほぼ平行な断面の厚み中ほどをEPMAにより500倍で観察する。本発明の水素吸蔵合金はいわゆるAB系であり、EPMA観察像のマトリックス(母相)はLaNi型結晶構造である。本発明の水素吸蔵合金はComp像とAlの元素マッピング像により確認できる、母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が存在しない。まずComp像により析出相の存在を確認し、次いでAlの元素マッピング像により析出相が母相よりAl濃度が高いものであるかを確認する。ここでいう析出相の粒径とは、短軸の長さのことをいう。母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が存在しないため、析出相を起点とした合金の微粉化が抑制されることから、サイクル特性が向上する。また、Alの溶出が抑制されることから、電池の内部抵抗が増大して電池の作動電圧が低下することを抑制できる。好ましくは母相よりAl濃度が高く、かつ粒径が1.0μm以上の析出相が存在しない。The thickness of the cross-section substantially parallel to the heat removal direction during casting of the hydrogen storage alloy is observed 500 times with EPMA. The hydrogen storage alloy of the present invention is a so-called AB 5 system, and the matrix (matrix) of the EPMA observation image has a LaNi 5 type crystal structure. The hydrogen storage alloy of the present invention can be confirmed by a Comp image and an element mapping image of Al, and there is no precipitated phase having an Al concentration higher than that of the parent phase and a particle size of 2.0 μm or more. First, the presence of the precipitated phase is confirmed by the Comp image, and then, it is confirmed by the element mapping image of Al whether the precipitated phase has a higher Al concentration than the parent phase. The particle size of the precipitated phase here means the length of the minor axis. Since there is no precipitated phase having an Al concentration higher than that of the parent phase and a particle size of 2.0 μm or more, pulverization of the alloy starting from the precipitated phase is suppressed, so that the cycle characteristics are improved. Moreover, since the elution of Al is suppressed, it is possible to suppress the battery internal voltage from increasing and the operating voltage of the battery from decreasing. Preferably, there is no precipitated phase having an Al concentration higher than that of the parent phase and a particle size of 1.0 μm or more.

本発明の水素吸蔵合金は、40℃での平衡圧が0.02〜0.15MPaである。本発明の水素吸蔵合金の平衡圧は、JIS H7201(1991)「水素吸蔵合金の圧力−組成等温線(PCT線)の測定方法」に準拠して測定した40℃、H/M=0.5時における吸蔵圧とする。前記平衡圧が0.02MPaより低くなると放電性が低下してしまい、また0.15MPaより高くなると電池の内圧上昇につながる。  The hydrogen storage alloy of the present invention has an equilibrium pressure at 40 ° C. of 0.02 to 0.15 MPa. The equilibrium pressure of the hydrogen storage alloy of the present invention was measured at 40 ° C. according to JIS H7201 (1991) “Measurement Method of Pressure-Composition Isotherm (PCT Line) of Hydrogen Storage Alloy”, H / M = 0.5. The occlusion pressure at the time. When the equilibrium pressure is lower than 0.02 MPa, the discharge performance is lowered. When the equilibrium pressure is higher than 0.15 MPa, the internal pressure of the battery is increased.

本発明の水素吸蔵合金を製造する方法は、本発明の水素吸蔵合金が得られれば、とくに限定されない。例えば、R、Ni、Co、Mn、Al、Mを含有する金属、母合金を既述の組成となるよう配合した原料を準備する。次いで不活性ガス雰囲気下、配合した原料を加熱溶解して合金溶融物を得る。得られた合金溶融物を冷却凝固する。本発明の水素吸蔵合金は、Alの偏析をほとんどなくす必要があるため、冷却凝固の過程は大きな冷却速度が得られる単ロールや双ロールによるストリップキャスト法で行うことが好ましい。例えば、単ロールによるストリップキャスト法の場合、得られる鋳片の厚さは0.05〜0.50mmの範囲に制御することが好ましい。また、冷却凝固する直前の合金溶融物の温度は、融点以上であっても温度によって各成分の混合状態が異なるため重要であり、Alの偏析をなくすためには融点より100℃以上高くすることが好ましく、さらに好ましくは250℃以上高くする。合金溶融物は十分に混合する必要があり、その点、合金溶融物が大きく対流する高周波溶解炉で行うことが好ましい。  The method for producing the hydrogen storage alloy of the present invention is not particularly limited as long as the hydrogen storage alloy of the present invention is obtained. For example, the raw material which mix | blended the metal and mother alloy containing R, Ni, Co, Mn, Al, and M so that it may become the above-mentioned composition is prepared. Next, the blended raw materials are heated and melted under an inert gas atmosphere to obtain an alloy melt. The obtained alloy melt is cooled and solidified. In the hydrogen storage alloy of the present invention, Al segregation needs to be almost eliminated, and therefore, the cooling and solidification process is preferably performed by a strip casting method using a single roll or a twin roll that can obtain a large cooling rate. For example, in the case of a strip casting method using a single roll, the thickness of the resulting slab is preferably controlled in the range of 0.05 to 0.50 mm. In addition, the temperature of the alloy melt immediately before cooling and solidification is important because the mixed state of each component varies depending on the temperature even if the temperature is higher than the melting point. Is preferable, and more preferably 250 ° C. or higher. The alloy melt needs to be sufficiently mixed. In this respect, it is preferable to carry out in a high-frequency melting furnace in which the alloy melt largely convects.

次いで、合金溶融物を冷却凝固して得られた鋳片を熱処理する。熱処理は不活性雰囲気下、1,000〜1,200℃で行う。熱処理前の合金鋳片におけるAlの偏析の度合いにもよるが、好ましくは1,100℃を超える温度、さらに好ましくは1,150℃以上で行う。  Next, the slab obtained by cooling and solidifying the alloy melt is heat-treated. The heat treatment is performed at 1,000 to 1,200 ° C. in an inert atmosphere. Although it depends on the degree of segregation of Al in the alloy slab before heat treatment, it is preferably performed at a temperature exceeding 1,100 ° C., more preferably at 1,150 ° C. or more.

本発明のニッケル水素二次電池用負極は、本発明の水素吸蔵合金を含有する。本発明の水素吸蔵合金は、粉砕粉として含有することが好ましい。既知の粉砕手段により粉砕し、MV(体積平均径)10〜50μm、さらに好ましくは20〜40μmの粉砕粉とする。粉砕粉は、例えば、所望する特性に応じ、メッキ、高分子ポリマー等で表面被覆したり、酸、アルカリ等の溶液による表面処理等、公知の処理を施すことができる。  The negative electrode for a nickel metal hydride secondary battery of the present invention contains the hydrogen storage alloy of the present invention. The hydrogen storage alloy of the present invention is preferably contained as pulverized powder. It grind | pulverizes by a known grinding | pulverization means and it is set as the pulverized powder of MV (volume average diameter) 10-50 micrometers, More preferably, 20-40 micrometers. The pulverized powder can be subjected to a known treatment such as plating, surface coating with a polymer or the like, or a surface treatment with a solution of acid, alkali, or the like according to desired characteristics.

本発明の水素吸蔵合金の含有量は、導電材、結着材等の集電体以外の負極を構成する材料の合計量に対して80質量%以上とする。さらに好ましくは95質量%以上である。導電材としては、既知のものが使用でき、黒鉛、カーボンブラック等(アセチレンブラック、ファーネスブラック等)の炭素質材料、銅、ニッケル、コバルト等が挙げられる。結着材としては、既知のものが使用でき、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリテトラフルオロエチレン(PTFE)、4−フッ化エチレン−6−フッ化プロピレン共重合体(FEP)等が挙げられる。  Content of the hydrogen storage alloy of this invention shall be 80 mass% or more with respect to the total amount of materials which comprise negative electrodes other than collectors, such as an electrically conductive material and a binder. More preferably, it is 95 mass% or more. As the conductive material, known materials can be used, and examples thereof include carbonaceous materials such as graphite and carbon black (acetylene black, furnace black, etc.), copper, nickel, cobalt and the like. As the binder, known materials can be used, such as carboxymethyl cellulose, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, polyethylene oxide, polytetrafluoroethylene (PTFE), 4-fluoroethylene-6-fluoropropylene copolymer. (FEP) and the like.

集電体としては、例えばパンチングメタル、発泡メタル等を用いることができる。通常、ニッケル水素二次電池用負極は、いわゆるペースト式で作製されるため、パンチングメタルを用いる。ペースト式負極は、本発明の水素吸蔵合金(粉砕粉)と上述した結着剤と必要に応じて導電材、酸化防止剤、界面活性剤、増粘剤等が添加され、水を溶媒として混合し、ペースト状とし、このペーストを集電体に塗布、充填、乾燥した後、ローラープレスなどを施すことにより作製される。  As the current collector, for example, punching metal, foam metal, or the like can be used. Usually, since the negative electrode for nickel metal hydride secondary batteries is produced by what is called a paste type, punching metal is used. The paste type negative electrode is mixed with the hydrogen storage alloy (ground powder) of the present invention, the above-mentioned binder and, if necessary, a conductive material, an antioxidant, a surfactant, a thickener, etc. and mixed with water as a solvent. The paste is made into a paste, and this paste is applied to a current collector, filled, dried, and then subjected to a roller press or the like.

本発明のニッケル水素二次電池用負極は、必要に応じ、表面に撥水層や導電層等を形成することができる。これらは公知の方法で行われ、例えば、前者はフッ素樹脂ディスパージヨン等を塗布、乾燥して行われ、後者はメッキ等により行われる。  The negative electrode for a nickel metal hydride secondary battery of the present invention can be formed with a water repellent layer, a conductive layer, or the like on the surface as necessary. These are performed by a known method. For example, the former is performed by applying and drying a fluororesin dispersion and the latter is performed by plating or the like.

本発明のニッケル水素二次電池は、本発明のニッケル水素二次電池用負極を用いる。それ以外の構成は、公知のものを用いることができる。本発明のニッケル水素二次電池の形状は円筒型、積層型、コイン型等、種々のものとすることができる。いずれの形状であっても、ニッケル水素二次電池は負極とセパレータと正極を積層した電極群をステンレス等からなる缶体に収納している。円筒形状の場合、通常、缶体を負極端子とするため、負極を外側にして電極群を渦巻き状に巻いて缶体に挿入することにより負極と負極端子は接続されている。正極は通常、リードにより正極端子に接続されている。  The nickel metal hydride secondary battery of the present invention uses the negative electrode for a nickel metal hydride secondary battery of the present invention. A publicly known thing can be used for the other composition. The nickel-hydrogen secondary battery of the present invention can have various shapes such as a cylindrical shape, a stacked shape, and a coin shape. Regardless of the shape, the nickel-metal hydride secondary battery stores an electrode group in which a negative electrode, a separator, and a positive electrode are stacked in a can made of stainless steel or the like. In the case of a cylindrical shape, the negative electrode and the negative electrode terminal are usually connected by winding the electrode group spirally with the negative electrode on the outside and inserting it into the can body so that the negative electrode terminal is the can body. The positive electrode is usually connected to the positive terminal by a lead.

セパレータは、ナイロン、ポリプロピレン、ポリエチレン製等の高分子繊維不織布、ポリエチレン、ポリプロピレン等の多孔質高分子膜などを用いることができる。  As the separator, a polymer fiber nonwoven fabric made of nylon, polypropylene, polyethylene or the like, a porous polymer film such as polyethylene, polypropylene, or the like can be used.

正極は、ニッケル酸化物を含むものであり、例えば非焼結式ニッケル電極などが用いられる。非焼結式ニッケル電極は、水酸化ニッケルと必要に応じて添加される水酸化コバルト、一酸化コバルト、金属コバルトなどを結着剤とを水を溶媒として混合し、ペースト状とし、このペーストを発泡メタル等の集電体に充填、乾燥した後、ローラープレスなどを施すことにより作製されるものである。  The positive electrode contains nickel oxide, and for example, a non-sintered nickel electrode is used. A non-sintered nickel electrode is made by mixing nickel hydroxide and optionally added cobalt hydroxide, cobalt monoxide, metallic cobalt, etc., with a binder as a solvent to form a paste. It is manufactured by filling a current collector such as foam metal and drying, and then applying a roller press or the like.

電極群が収納された容器内には、6〜8規定の水酸化カリウム溶液がアルカリ電解液として注入されている。アルカリ電解液には、水酸化リチウム、水酸化ナトリウムなどが添加されているものも用いることができる。容器内には電池を密閉するためのガスケットや電池内の圧力が異常に上昇した際に作動する安全弁等が設けられている。  A 6-8 N potassium hydroxide solution is injected as an alkaline electrolyte into a container in which the electrode group is housed. An alkaline electrolyte to which lithium hydroxide, sodium hydroxide or the like is added can also be used. In the container, a gasket for sealing the battery, a safety valve that operates when the pressure in the battery rises abnormally, and the like are provided.

発明の効果Effect of the invention

本発明の水素吸蔵合金を用いて製造したニッケル水素二次電池用負極、この負極を用いて製造したニッケル水素二次電池は、サイクル特性が良好で、電池の作動電圧が高く、かつ自己放電を抑制することができる。  A negative electrode for a nickel metal hydride secondary battery manufactured using the hydrogen storage alloy of the present invention, a nickel metal hydride secondary battery manufactured using this negative electrode has good cycle characteristics, a high operating voltage of the battery, and self-discharge. Can be suppressed.

次に実施例により本発明を詳述する。Next, the present invention will be described in detail by way of examples.

(実施例1)
(La0.85Ce0.11Pr0.01Nd0.03)Ni4.15Co0.55Al0.50の合金組成になるよう、原料のMm(ミッシュメタル)、La、Ni、Mn、Co、Alを秤量し、高周波溶解炉にてアルゴン雰囲気中で溶解し、合金溶融物とした。続いて、この溶融物の温度を1,550℃とし、銅製水冷ロールの単ロール鋳造装置を用いたストリップキャスティング法にて、急冷、固化し、厚みがおよそ0.2mmの薄片状合金を得た。得られた合金をアルゴン雰囲気中、1,140℃で6時間熱処理を行った。
Example 1
(La 0.85 Ce 0.11 Pr 0.01 Nd 0.03 ) Ni 4.15 Co 0.55 Al 0.50 The raw material Mm (Misch metal), La, Ni, Mn , Co and Al were weighed and melted in an argon atmosphere in a high-frequency melting furnace to obtain an alloy melt. Subsequently, the temperature of this melt was set to 1,550 ° C., and it was rapidly cooled and solidified by a strip casting method using a single roll casting apparatus of a copper water-cooled roll to obtain a flaky alloy having a thickness of approximately 0.2 mm. . The obtained alloy was heat-treated at 1,140 ° C. for 6 hours in an argon atmosphere.

得られた水素吸蔵合金をEPMA(日本電子社製、商品名JXA8800)により倍率500倍で観察した。得られたComp像とAlの元素マッピング像をそれぞれ図1および図2に示す。結果、母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が1つも確認されなかった。  The obtained hydrogen storage alloy was observed with an EPMA (manufactured by JEOL Ltd., trade name JXA8800) at a magnification of 500 times. The obtained Comp image and Al element mapping image are shown in FIGS. 1 and 2, respectively. As a result, no precipitated phase having an Al concentration higher than that of the mother phase and having a particle size of 2.0 μm or more was confirmed.

(微粉化特性の評価)
得られた水素吸蔵合金をボールミルにて粉砕し、D50が35μmの合金粉末を得た。得られた合金粉末をPCT装置にて80℃で1時間の真空引きの後、40℃で2.3MPaの水素ガスを導入して水素圧が平衡に達するまで水素を吸蔵させ、その後80℃で1時間の真空引きにより水素を放出した。水素吸蔵放出前のD50に対する水素吸蔵放出後のD50の比を計算し、微粉化残存率とした。この水素吸蔵合金の微粉化残存率は92%であった。
(Evaluation of pulverization characteristics)
The obtained hydrogen storage alloy was pulverized by a ball mill to obtain an alloy powder having a D50 of 35 μm. The obtained alloy powder was evacuated at 80 ° C. for 1 hour using a PCT apparatus, and 2.3 MPa of hydrogen gas was introduced at 40 ° C. to absorb hydrogen until the hydrogen pressure reached equilibrium, and then at 80 ° C. Hydrogen was released by evacuation for 1 hour. The ratio of D50 after hydrogen storage / release to D50 before hydrogen storage / release was calculated and used as the pulverization residual rate. The residual rate of pulverization of this hydrogen storage alloy was 92%.

(自己放電特性の評価)
同様に作製した合金粉末に結着材を加えペースト状にし、これを集電体に塗布、乾燥後プレスしてニッケル水素二次電池用負極を作製し、この負極と公知のニッケル正極、セパレーター、電解液を用いて2000mAhのAAサイズ密閉型ニッケル水素電池を作製した。この電池を20℃にて0.1Cで120%充電し、0.2Cで1.0Vまで放電して得られた容量を標準容量とした。また20℃にて0.1Cで150%充電したのち40℃にて28日間放置し、その後20℃にて0.2Cで1.0Vまで放電した。標準容量に対する28日保存後の容量の比を計算し、保存後の容量維持率とした。この合金粉末の容量維持率は91%であった。
(Evaluation of self-discharge characteristics)
Similarly, a binder is added to the produced alloy powder to form a paste, which is applied to a current collector, dried and pressed to produce a negative electrode for a nickel metal hydride secondary battery. This negative electrode and a known nickel positive electrode, separator, A 2000 mAh AA size sealed nickel-metal hydride battery was fabricated using the electrolytic solution. This battery was charged at 120 ° C. at 120 ° C. for 120%, and the capacity obtained by discharging to 0.2 V at 1.0 C was taken as the standard capacity. Moreover, after charging 150% at 20 ° C. and 0.1 C, it was left at 40 ° C. for 28 days, and then discharged at 20 ° C. and 0.2 C to 1.0 V. The ratio of the capacity after 28 days storage to the standard capacity was calculated and used as the capacity retention rate after storage. The capacity maintenance rate of this alloy powder was 91%.

(実施例2)
(La0.85Ce0.11Pr0.01Nd0.03)Ni4.25Co0.45Al0.50の合金組成になるよう原料を調整し、急冷、固化した鋳片の熱処理を1,165℃で6時間行った以外は実施例1と同様に行った。得られた鋳片のEPMAにより観察したComp像とAlの元素マッピング像をそれぞれ図3および図4に示す。母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が1つも確認されなかった。また、微粉化残存率、容量維持率を表1に示す。
(Example 2)
(La 0.85 Ce 0.11 Pr 0.01 Nd 0.03 ) Ni 4.25 Co 0.45 Al 0.50 The raw material was adjusted so as to have an alloy composition, and quenched and solidified heat treatment was performed. The same procedure as in Example 1 was performed except that the procedure was performed at 1,165 ° C. for 6 hours. The Comp image and Al element mapping image observed by EPMA of the obtained slab are shown in FIGS. 3 and 4, respectively. No precipitated phase having an Al concentration higher than that of the mother phase and having a particle size of 2.0 μm or more was confirmed. Table 1 shows the pulverization residual rate and the capacity maintenance rate.

(実施例3)
(La0.85Ce0.11Pr0.01Nd0.03)Ni4.25Co0.45Al0.40Mn0.10の合金組成になるよう原料を調整し、急冷、固化した鋳片の熱処理を1,120℃で6時間行った以外は実施例1と同様に行った。得られた鋳片をEPMAにより観察したところ、母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が1つも確認されなかった。また、微粉化残存率、容量維持率を表1に示す。
(Example 3)
(La 0.85 Ce 0.11 Pr 0.01 Nd 0.03 ) Ni 4.25 Co 0.45 Al 0.40 Mn 0.10 The raw material was adjusted so as to have an alloy composition, quenched and solidified. Example 1 was performed except that the heat treatment of the piece was performed at 1,120 ° C. for 6 hours. When the obtained slab was observed by EPMA, no precipitated phase having an Al concentration higher than that of the matrix and a particle size of 2.0 μm or more was confirmed. Table 1 shows the pulverization residual rate and the capacity maintenance rate.

(実施例4)
(La0.85Ce0.11Pr0.01Nd0.03)Ni4.40Co0.30Al0.50の合金組成になるよう原料を調整し、急冷、固化した鋳片の熱処理を1,165℃で6時間行った以外は実施例1と同様に行った。得られた鋳片をEPMAにより観察したところ、母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が1つも確認されなかった。また、微粉化残存率、容量維持率を表1に示す。
Example 4
(La 0.85 Ce 0.11 Pr 0.01 Nd 0.03 ) Ni 4.40 Co 0.30 Al 0.50 The same procedure as in Example 1 was performed except that the procedure was performed at 1,165 ° C. for 6 hours. When the obtained slab was observed by EPMA, no precipitated phase having an Al concentration higher than that of the matrix and a particle size of 2.0 μm or more was confirmed. Table 1 shows the pulverization residual rate and the capacity maintenance rate.

(比較例1)
急冷、固化した鋳片の熱処理を1,000℃で6時間行った以外は実施例1と同様に行った。得られた鋳片のEPMAにより観察したComp像とAlの元素マッピング像をそれぞれ図5および図6に示す。母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が確認された。析出相は最大で3.5μmであった。また、微粉化残存率、容量維持率を表1に示す。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the quenched and solidified slab was heat treated at 1,000 ° C. for 6 hours. A Comp image and an element mapping image of Al observed by EPMA of the obtained slab are shown in FIGS. 5 and 6, respectively. A precipitated phase having an Al concentration higher than that of the mother phase and having a particle size of 2.0 μm or more was confirmed. The maximum precipitated phase was 3.5 μm. Table 1 shows the pulverization residual rate and the capacity maintenance rate.

(比較例2)
急冷、固化した鋳片の熱処理を1,140℃で6時間行った以外は実施例2と同様に行った。得られた鋳片のEPMAにより観察したComp像とAlの元素マッピング像をそれぞれ図7および図8に示す。母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が確認された。析出相は最大で2.5μmであった。また、微粉化残存率、容量維持率を表1に示す。
(Comparative Example 2)
The quenched and solidified slab was processed in the same manner as in Example 2 except that the heat treatment was performed at 1,140 ° C. for 6 hours. A Comp image and an element mapping image of Al observed by EPMA of the obtained slab are shown in FIGS. 7 and 8, respectively. A precipitated phase having an Al concentration higher than that of the mother phase and having a particle size of 2.0 μm or more was confirmed. The maximum precipitated phase was 2.5 μm. Table 1 shows the pulverization residual rate and the capacity maintenance rate.

(比較例3)
水冷式銅鋳型を使用し、厚さ3cmの合金鋳塊とした以外は、実施例2と同様に行った。得られた鋳片のEPMAにより観察したComp像とAlの元素マッピング像をそれそれ図9および図10に示す。母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が確認された。析出相は最大で3.5μmであった。また、微粉化残存率、容量維持率を表1に示す。
(Comparative Example 3)
The same procedure as in Example 2 was performed except that a water-cooled copper mold was used to form an alloy ingot having a thickness of 3 cm. The Comp image and Al element mapping image observed by EPMA of the obtained slab are shown in FIGS. A precipitated phase having an Al concentration higher than that of the mother phase and having a particle size of 2.0 μm or more was confirmed. The maximum precipitated phase was 3.5 μm. Table 1 shows the pulverization residual rate and the capacity maintenance rate.

(比較例4)
(La0.85Ce0.11Pr0.01Nd0.03)Ni4.25Co0.45Al0.20Mn0.30の合金組成になるよう原料を調整し、急冷、固化した鋳片の熱処理を1000℃で6時間行った以外は実施例1と同様に行った。得られた鋳片をEPMAにより観察したところ、母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が1つも確認されなかった。また、微粉化残存率、容量維持率を表1に示す。
(Comparative Example 4)
(La 0.85 Ce 0.11 Pr 0.01 Nd 0.03 ) Ni 4.25 Co 0.45 Al 0.20 Mn 0.30 The raw material was adjusted to have an alloy composition, quenched and solidified. Example 1 was performed except that the heat treatment of the piece was performed at 1000 ° C. for 6 hours. When the obtained slab was observed by EPMA, no precipitated phase having an Al concentration higher than that of the matrix and a particle size of 2.0 μm or more was confirmed. Table 1 shows the pulverization residual rate and the capacity maintenance rate.

(比較例5)
(La0.85Ce0.11Pr0.01Nd0.03)Ni4.55Co0.15Al0.50の合金組成になるよう原料を調整した以外は実施例2と同様に行った。得られた鋳片のEPMAにより観察したComp像とAlの元素マッピング像をそれぞれ図11および図12に示す。母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が確認された。析出相は最大で3.5μmであった。また、微粉化残存率、容量維持率を表1に示す。
(Comparative Example 5)
(La 0.85 Ce 0.11 Pr 0.01 Nd 0.03) except for adjusting the raw material so that the alloy composition of Ni 4.55 Co 0.15 Al 0.50 was carried out in the same manner as in Example 2 . A Comp image and an element mapping image of Al observed by EPMA of the obtained slab are shown in FIGS. 11 and 12, respectively. A precipitated phase having an Al concentration higher than that of the mother phase and having a particle size of 2.0 μm or more was confirmed. The maximum precipitated phase was 3.5 μm. Table 1 shows the pulverization residual rate and the capacity maintenance rate.

Figure 2008258121
Figure 2008258121

実施例1の水素吸蔵合金の断面組織のComp像である。2 is a Comp image of a cross-sectional structure of the hydrogen storage alloy of Example 1. FIG. 実施例1の水素吸蔵合金の断面組織のAlマッピング像である。2 is an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Example 1. FIG. 実施例2の水素吸蔵合金の断面組織のComp像である。4 is a Comp image of a cross-sectional structure of the hydrogen storage alloy of Example 2. 実施例2の水素吸蔵合金の断面組織のAlマッピング像である。3 is an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Example 2. FIG. 比較例1の水素吸蔵合金の断面組織のComp像である。3 is a Comp image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 1. 比較例1の水素吸蔵合金の断面組織のAlマッピング像である。3 is an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 1. 比較例2の水素吸蔵合金の断面組織のComp像である。6 is a Comp image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 2. 比較例2の水素吸蔵合金の断面組織のAlマッピング像である。4 is an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 2. 比較例3の水素吸蔵合金の断面組織のComp像である。6 is a Comp image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 3. 比較例3の水素吸蔵合金の断面組織のAlマッピング像である。10 is an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 3. 比較例5の水素吸蔵合金の断面組織のComp像である。10 is a Comp image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 5. 比較例5の水素吸蔵合金の断面組織のAlマッピング像である。6 is an Al mapping image of a cross-sectional structure of the hydrogen storage alloy of Comparative Example 5.

Claims (9)

式RNiCoAlMn(式中RはYを含む希土類元素から選ばれる少なくとも1種、MはR、Ni、Co、Al、Mn以外の元素から選ばれる少なくとも1種を示す。aは3.30≦a≦5.00、bは0.10≦b≦0.90、cは0.30≦c≦0.80、dは0≦d≦0.15、eは0≦e≦0.30、4.90≦a+b+c+d+e≦5.50である。)で表される組成を有する水素吸蔵合金であって、合金の断面組織のEPMAによる500倍のComp像およびAlの元素マッピング像で確認される母相よりAl濃度が高く、かつ粒径が2.0μm以上の析出相が存在しないことを特徴とする水素吸蔵合金。Formula RNi a Co b Al c Mn d M e ( at least one wherein R is selected from rare earth elements including Y, M represents R, Ni, Co, Al, at least one selected from the elements other than Mn A is 3.30 ≦ a ≦ 5.00, b is 0.10 ≦ b ≦ 0.90, c is 0.30 ≦ c ≦ 0.80, d is 0 ≦ d ≦ 0.15, and e is 0 ≦ e ≦ 0.30, 4.90 ≦ a + b + c + d + e ≦ 5.50), and a COMP image and Al element of 500 times the EPMA of the cross-sectional structure of the alloy by EPMA A hydrogen storage alloy characterized by having a higher Al concentration than a parent phase confirmed by a mapping image and no precipitated phase having a particle size of 2.0 μm or more. MはMg、Ti、Zr、Nb、Mo、W、Fe、Cu、B、Snから選ばれる少なくとも1種であることを特徴とする請求項1記載の水素吸蔵合金。  2. The hydrogen storage alloy according to claim 1, wherein M is at least one selected from Mg, Ti, Zr, Nb, Mo, W, Fe, Cu, B, and Sn. 40℃での平衡圧が0.02〜0.15MPaであることを特徴とする請求項1または2記載の水素吸蔵合金。  The hydrogen storage alloy according to claim 1 or 2, wherein an equilibrium pressure at 40 ° C is 0.02 to 0.15 MPa. dが0であることを特徴とする請求項1〜3記載の水素吸蔵合金。  d is 0, The hydrogen storage alloy of Claims 1-3 characterized by the above-mentioned. cが0.45以上、0.60以下であることを特徴とする請求項1〜4記載の水素吸蔵合金。  5. The hydrogen storage alloy according to claim 1, wherein c is 0.45 or more and 0.60 or less. bが0.40以上、0.70以下であることを特徴とする請求項1〜5記載の水素吸蔵合金。  b is 0.40 or more and 0.70 or less, The hydrogen storage alloy of Claims 1-5 characterized by the above-mentioned. 厚みが0.05〜0.50mmの鋳片からなることを特徴とする請求項1〜6記載の水素吸蔵合金。  The hydrogen storage alloy according to claim 1, comprising a slab having a thickness of 0.05 to 0.50 mm. 請求項1〜7記載の水素吸蔵合金を含有するニッケル水素二次電池用負極。  A negative electrode for a nickel metal hydride secondary battery containing the hydrogen storage alloy according to claim 1. 請求項8記載のニッケル水素二次電池用負極を用いたニッケル水素二次電池。  A nickel metal hydride secondary battery using the negative electrode for a nickel metal hydride secondary battery according to claim 8.
JP2007117713A 2007-03-30 2007-03-30 Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery Active JP5179777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117713A JP5179777B2 (en) 2007-03-30 2007-03-30 Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117713A JP5179777B2 (en) 2007-03-30 2007-03-30 Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery

Publications (3)

Publication Number Publication Date
JP2008258121A JP2008258121A (en) 2008-10-23
JP2008258121A6 true JP2008258121A6 (en) 2013-02-07
JP5179777B2 JP5179777B2 (en) 2013-04-10

Family

ID=39981467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117713A Active JP5179777B2 (en) 2007-03-30 2007-03-30 Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery

Country Status (1)

Country Link
JP (1) JP5179777B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
JP5716969B2 (en) 2012-09-27 2015-05-13 株式会社Gsユアサ Nickel metal hydride storage battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828714B2 (en) * 2001-04-03 2011-11-30 株式会社三徳 Hydrogen storage alloy, method for producing the same, and negative electrode for nickel metal hydride secondary battery
AU2002354479A1 (en) * 2001-12-13 2003-07-09 Santoku Corporation Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
WO2003056047A1 (en) * 2001-12-27 2003-07-10 Santoku Corporation Hydrogen-occluding alloy, powder of hydrogen-occluding alloy, processes for producing these, and negative electrode for nickel-hydrogen secondary battery
JP4297669B2 (en) * 2002-09-02 2009-07-15 日立マクセル株式会社 Hydrogen storage alloy electrode and hydride secondary battery using the same for negative electrode

Similar Documents

Publication Publication Date Title
US20100178561A1 (en) Hydrogen Storage Alloy, Hydrogen Storage Alloy Electrode, Secondary Battery, And Method For Producing Hydrogen Storage Alloy
JP3965209B2 (en) Low Co hydrogen storage alloy
JP5856056B2 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
JP2011127185A (en) Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP2024023286A (en) Manufacturing method of hydrogen storage material
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP3697996B2 (en) Hydrogen storage alloy for battery negative electrode that enables high discharge capacity with a small number of charge / discharge cycles and improvement of low-temperature, high-rate discharge capacity with high-rate initial activation treatment
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
CN111118346B (en) Zirconium or titanium containing A2B7 type hydrogen storage alloy, negative electrode, battery and preparation method
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP5455297B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP2001342529A (en) Ab5 type hydrogen absorption and storage alloy providing batteries with highly efficient discharging characteristic
JP2000345264A (en) Hydrogen storage alloy enabling high rate discharge of battery
JPH10237570A (en) Hydrogen storage alloy, its production and nickel-hydrogen storage battery