JP3930638B2 - Hydrogen storage alloy and method for producing the same - Google Patents

Hydrogen storage alloy and method for producing the same Download PDF

Info

Publication number
JP3930638B2
JP3930638B2 JP11697398A JP11697398A JP3930638B2 JP 3930638 B2 JP3930638 B2 JP 3930638B2 JP 11697398 A JP11697398 A JP 11697398A JP 11697398 A JP11697398 A JP 11697398A JP 3930638 B2 JP3930638 B2 JP 3930638B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
heat treatment
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11697398A
Other languages
Japanese (ja)
Other versions
JPH11310838A (en
Inventor
清隆 安田
実 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP11697398A priority Critical patent/JP3930638B2/en
Publication of JPH11310838A publication Critical patent/JPH11310838A/en
Application granted granted Critical
Publication of JP3930638B2 publication Critical patent/JP3930638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水素吸蔵合金及びその製造方法に関し、詳しくは合金中にコバルトを含有させることなく、鉄を含有させ、微粉化特性に優れ、しかも初期活性が良好で、鉄の偏析がなく、アルミニウムの溶出量も少ない水素吸蔵合金及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、ニッケル−カドミウム蓄電池に代わる高容量アルカリ蓄電池として、水素吸蔵合金を負極に用いたニッケル−水素蓄電池が注目されている。この水素吸蔵合金は、現在では希土類系の混合物であるMm(ミッシュメタル)とNi、Al、Mn、Coとの5元素の水素吸蔵合金が汎用されている。
【0003】
このMm−Ni−Mn−Al−Co合金は、La系のそれに比べて比較的安価な材料で負極を構成でき、サイクル寿命が長く、過充電時の発生ガスによる内圧上昇が少ない密閉形ニッケル水素蓄電池を得ることができることから、電極材料として広く用いられている。
【0004】
現在用いられているMm−Ni−Mn−Al−Co合金は、合金の微粉化を抑制してサイクル寿命を長くしているが、一般的にこの微粉化抑制のためには10重量%程度のCo(原子比で0.6〜1.0)を必要とすることが知られている。また、優れた水素吸蔵特性及び耐食性を得るためにも一定量のCoの含有は必要とされている。
【0005】
しかしながら、Coの含有率が高いとそれだけ原料コストが高くなり、原料コストの面から問題視されている。特に、電気自動車用電源(EV:Electric vihicle)等の大型電池への適用やニッケル−水素蓄電池のさらなる市場の増大に対しては、原料コストは、電極負極材料の選定において大きな割合を占め、このことが問題となっていた。
【0006】
このような問題を解決するために、特開平9−213319号公報には、Mm−Ni−Mn−Al−Co系合金の組成を変化させ、これにさらに少量の1元素を加えることが提案されている。同公報に記載の水素吸蔵合金粉末を負極に用いることによって、Coが少量にもかかわらず、合金の微粉化による負極の劣化を一定限度抑制し、電池のサイクル寿命を長くすることができる。
【0007】
しかるに、同公報に開示の水素吸蔵合金を用いた場合には、安定した良好な初期特性が得られないという問題がある。また、微粉化特性及び水素吸蔵特性も必ずしも満足し得るものではない。
【0008】
Feを含有し、Coを含有しない水素吸蔵合金は、耐微粉化特性が向上し有望であるが、Feの偏析やAlの溶出が問題となり、時として性能差が著しく、例えば高温での保存時に合金の腐食が著しくなったり、充放電サイクル初期の容量の劣化が起こったりするため性能の安定性を得るのが非常に難しく、基本的性能向上は認められたものの、安定性に欠け、実用化の大きな障壁となっていた。
【0009】
従って、本発明の目的は、コバルトを含有しないことによって製造コストを低減し、かつ微粉化特性に優れると共に、良好な初期特性を有し、しかも鉄の偏析がなく、アルミニウム溶出量も少ない水素吸蔵合金及びその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は種々の研究を重ねた結果、コバルトを含有することなく、鉄を含有するAB5 型合金組成を特定の非化学量論組成(Bサイトリッチ)とし、かつc軸が一定範囲にある水素吸蔵合金によって、上記目的を達成し得ることを知見した。また、このような水素吸蔵合金は、上記特定の組成において、熱処理条件とが一定の関係にある場合に得られることを見い出した。
【0011】
本発明は、上記知見に基づきなされたもので、
一般式
MmNia Mnb Alc Fed Cue
(式中、Mmはミッシュメタル、3.9≦a≦4.3、0.3≦b≦0.55、0.15≦c≦0.5、0.1≦d≦0.4、0.05≦e≦0.35、5.10≦a+b+c+d+e≦5.35)
で表されるCaCu5 型の結晶構造を有するAB5 型水素吸蔵合金であって、
c軸の格子長が407.3pm以上であることを特徴とする水素吸蔵合金を提供するものである。
【0012】
また、本発明は、本発明の水素吸蔵合金の好ましい製造方法として、
水素吸蔵合金原料を加熱溶解し、これを水冷型の鋳型に流し込んで1350〜1550℃で鋳造した後、不活性ガス雰囲気中で熱処理し、下記一般式で表されるCaCu5型の結晶構造を有するAB5型水素吸蔵合金を製造する方法であって、該熱処理条件が、下記一般式において、a+b+c+d+eが5.10〜5.25未満の場合、1040〜1080℃、3〜6時間であり、a+b+c+d+eが5.25〜5.35の場合、1060〜1100℃、3〜6時間であることを特徴とする水素吸蔵合金の製造方法を提供するものである。
一般式
MmNiaMnbAlcFedCue
(式中、Mmはミッシュメタル、3.9≦a≦4.3、0.3≦b≦0.55、0.15≦c≦0.5、0.1≦d≦0.4、0.05≦e≦0.35、5.10≦a+b+c+d+e≦5.35)
【0013】
更に、本発明は、本発明の水素吸蔵合金の好ましい製造方法として、
水素吸蔵合金原料を加熱溶解し、これを超急冷凝固又はアトマイズした後、不活性ガス雰囲気中で熱処理し、下記一般式で表されるCaCu5型の結晶構造を有するAB5型水素吸蔵合金を製造する方法であって、該熱処理条件が1000〜1100℃、10分〜6時間であることを特徴とする水素吸蔵合金の製造方法。
一般式
MmNiaMnbAlcFedCue
(式中、Mmはミッシュメタル、3.9≦a≦4.3、0.3≦b≦0.55、0.15≦c≦0.5、0.1≦d≦0.4、0.05≦e≦0.35、5.10≦a+b+c+d+e≦5.35)
【0014】
【発明の実施の形態】
本発明の水素吸蔵合金は、一般式
MmNia Mnb Alc Fed Cue
(式中、Mmはミッシュメタル、3.9≦a≦4.3、0.3≦b≦0.55、0.15≦c≦0.5、0.1≦d≦0.4、0.05≦e≦0.35、5.10≦a+b+c+d+e≦5.35)
で表されるCaCu5 型の結晶構造を有するAB5 型水素吸蔵合金である。
【0015】
ここで、MmはLa、Ce、Pr、Nd、Sm等の希土類系の混合物であるミッシュメタルである。また、この水素吸蔵合金は、CaCu5 型の結晶構造を有するAB5 型水素吸蔵合金で、AB5.10`5.35 のBサイトリッチの非化学量論組成である。
【0016】
この水素吸蔵合金において、Nia Mnb Alc Fed Cue の組成割合(原子比)は、下記の関係を有するものである。すなわち、Niの割合は3.9≦a≦4.3であり、Mnの割合は0.3≦b≦0.55であり、Alの割合は0.15≦c≦0.5であり、Feの割合は0.1≦d≦0.4であり、Cuの割合は0.05≦e≦0.35であり、かつa+b+c+d+eが5.10〜5.35の範囲にある。
【0017】
上記のように、Niの割合aは3.9〜4.3であり、aが3.9未満では水素吸蔵量が損なわれ、4.3を超えると微粉化や寿命特性劣化が認められる。
【0018】
Mnの割合bは0.3〜0.55であり、bが0.3未満ではプラトー圧力が高くなり、かつ水素吸蔵量が損なわれ、0.55を超えると合金の腐食が激しくなり、合金の早期劣化が認められる。
【0019】
Alの割合cは0.15〜0.3であり、cが0.15未満では水素吸蔵合金放出圧力であるプラトー圧力が高くなり、充放電のエネルギー効率が悪くなり、0.5を超えると水素吸蔵量が少なくなるだけでなく、合金が単相化しにくい。
【0020】
Feの割合dは0.1〜0.4であり、dが0.1未満では微粉化特性に劣り、0.4を超えるとFeの偏析を防ぐことができず、またAlの溶出を抑えることができない。
【0021】
Cuの割合eは0.05〜0.35であり、eが0.05未満では微粉化特性の向上は見られず、0.35を超えると水素吸蔵特性が損なわれ、またCuが析出する場合が生じる。
【0022】
a+b+c+d+e(以下、場合によってxと総称する)は5.10〜5.35であり、xが5.10未満では電池寿命や微粉化特性が損なわれ、5.35を超えた場合には、水素吸蔵特性が損なわれる。
【0023】
本発明の水素吸蔵合金は、c軸の格子長が407.3pm以上、好ましくは407.6〜408.0pmである。c軸の格子長が407.3pm未満では、微粉化特性に劣るのみならず、初期特性も低下する。また、408.0pmを超えるような水素吸蔵合金は、製造において困難性が伴うし、水素吸蔵量の大幅な減少を伴う。
【0024】
さらに、本発明の水素吸蔵合金のa軸の格子長は、特に限定されないが、一般には500.0〜503.0pmである。
【0025】
次に、本発明の水素吸蔵合金の製造方法について説明する。
先ず、上記で示したような合金組成となるように、水素吸蔵合金原料を秤量、混合し、例えば誘導加熱による高周波加熱溶解炉を用いて、上記水素吸蔵合金原料を溶解して金属溶湯となす、これを水冷型の鋳型に流し込んで水素吸蔵合金を1350〜1550℃で鋳造する。
【0026】
次に、得られた水素吸蔵合金を不活性ガス雰囲気中、例えばアルゴンガス中で熱処理する。熱処理を行うのは、鋳造された合金の組織には通常Mn又はFe主体の微細な粒界偏析が認められるが、これを加熱することによって均質化するためである。
【0027】
処理条件a+b+c+d+e(x)の値によって異なり、xが5.10〜5.25未満の時は、1040〜1080℃、3〜6時間であり、xが5.25〜5.35の時は、1060〜1100℃、3〜6時間である。
【0028】
また、本発明の水素吸蔵合金の他の製造方法としては、上記で示したような合金組成となるように、水素吸蔵合金原料を秤量、混合して得られた金属溶湯を、103 〜105 K程度の速い冷却速度で超急冷凝固させる超急冷凝固法(メルトスピン法)や上記金属溶湯を圧縮空気等を作用させ、多数の液滴に分割し、凝固させるアトマイズ法によって水素吸蔵合金を製造してもよい。
【0029】
この場合の熱処理条件は、1000〜1100℃、10分〜6時間、好ましくは10分〜3時間である。
【0030】
このようにして、鉄を含有し、コバルトを含有しないにも拘わらず、微粉化特性に優れると共に、良好な初期特性を有し、かつ鉄の偏析が生じず、アルミニウムの溶出量が少ない水素吸蔵合金が得られる。
【0031】
この水素吸蔵合金は、粗粉砕、微粉砕後、アルカリ蓄電池の負極として好適に用いられる。かかるアルカリ蓄電池は、初期特性が良好で、合金の微粉化による負極の劣化が抑制され、サイクル寿命が長いものとなる。
【0032】
【実施例】
以下、本発明を実施例等に基づき具体的に説明する。
【0033】
[実施例1−1〜1−3及び比較例1−1〜1−2]
Mm、Ni、Mn、Al、Fe及びCuを合金組成でMmNi4.05Mn0.45Al0.3 Fe0.28Cu0.22(x=5.30)になるように、各水素吸蔵合金原料を秤量、混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-3Torrまで真空状態にした後、アルゴンガス雰囲気中で加熱溶解した後、水冷式銅鋳型に流し込み、1450℃で鋳造を行い、合金を得た。更に、この合金をアルゴンガス雰囲気中で、表2に示す条件で熱処理を行い、それぞれ水素吸蔵合金を得た。
【0034】
[実施例2−1〜2−3及び比較例2−1〜2−2]
合金組成を表1に示される合金組成Bとし、表2に示す条件で熱処理を行った以外は、実施例1−1と同様にしてそれぞれ水素吸蔵合金を得た。
【0035】
[比較例3−1〜3−3]
合金組成を表1に示される合金組成Cとし、表2に示す条件で熱処理を行った以外は、実施例1−1と同様にしてそれぞれ水素吸蔵合金を得た。
【0036】
[比較例4−1〜4−5]
合金組成を表1に示される合金組成Dとし、表2に示す条件で熱処理を行った以外は、実施例1−1と同様にしてそれぞれ水素吸蔵合金を得た。
【0037】
[実施例5−1〜5−3及び比較例5−1〜5−2]
合金組成を表1に示される合金組成Eとし、表3に示す条件で熱処理を行った以外は、実施例1−1と同様にしてそれぞれ水素吸蔵合金を得た。
【0038】
[実施例6−1〜6−3及び比較例6−1〜6−2]
合金組成を表1に示される合金組成Fとし、表3に示す条件で熱処理を行った以外は、実施例1−1と同様にしてそれぞれ水素吸蔵合金を得た。
【0039】
[実施例7−1〜7−3及び比較例7−1〜7−2]
合金組成を表1に示される合金組成Gとし、表3に示す条件で熱処理を行った以外は、実施例1−1と同様にしてそれぞれ水素吸蔵合金を得た。
【0040】
[実施例8−1]
合金組成を表1に示される合金組成Hとし、表3に示す条件で熱処理を行った以外は、実施例1−1と同様にして水素吸蔵合金を得た。
【0041】
[実施例9−1]
合金組成を表1に示される合金組成Iとし、表3に示す条件で熱処理を行った以外は、実施例1−1と同様にして水素吸蔵合金を得た。
【0042】
[実施例10−1〜10−3及び比較例10−1〜10−2]
Mm、Ni、Mn、Al、Fe及びCuを合金組成でMmNi4.05Mn0.45Al0.3 Fe0.28Cu0。22(x=5.30)(合金組成A)になるように、各水素吸蔵合金原料を秤量、混合し、その混合物をルツボに入れて高周波溶解炉に固定し、10-3Torrまで真空状態にした後、アルゴンガス雰囲気中で加熱溶解した後、103 〜105 K程度の冷却速度で超急冷凝固させ合金を得た。更に、この合金をアルゴンガス雰囲気中で、表4に示す条件で熱処理を行い、それぞれ水素吸蔵合金を得た。
【0043】
[実施例11−1〜11−3及び比較例11−1〜11−2]
合金組成を表1に示される合金組成Gとし、表4に示す条件で熱処理を行った以外は、実施例10−1と同様にしてそれぞれ水素吸蔵合金を得た。
【0044】
[特性評価]
実施例及び比較例で得られた水素吸蔵合金について、格子長、アルミニウム溶出率、初期容量劣化の有無及び微粉化残存率の評価を行った。その結果を表2〜4に示す。なお、格子長、アルミニウム溶出率及び微粉化残存率は下記の方法に基づいて行った。そして、これらの評価に基づいて総合評価を行い、◎を良好、×を不良とした。
【0045】
<格子長>
X線回折試験に基づいて行い、粒径22μm以下の合金粉末をディフラクトメータで測定し、100゜≦2θ≦150゜の間のピークを用いて、格子定数の精密化を実施した。
【0046】
<アルミニウム溶出率>
アルミニウム溶出試験を行い、試験片を30重量%KOH水溶液(65℃)中に放置し、ICP分析を行った。そして、比較例3−1の値を100%とした指数表示とした。
【0047】
<微粉化残存率>
PCT装置で、30barの水素ガスを粒度22〜53ミクロンに調整した水素吸蔵合金に導入し、その後脱蔵排気する処理を10回繰り返した後、サイクル試験前の平均粒度に対するサイクル試験後の平均粒度の比で計算した。
【0048】
【表1】

Figure 0003930638
【0049】
【表2】
Figure 0003930638
【0050】
【表3】
Figure 0003930638
【0051】
【表4】
Figure 0003930638
【0052】
表2〜4の結果から明らかなように、実施例はコバルトを含有しない比較例よりも、一般的にアルミニウム溶出率が小さく、初期容量劣化もなく、また微粉化残存率が高いため総合評価において優れている。また、コバルトを含有する比較例は、総合評価に優れているものの、経済性に劣り、また実施例に比べてアルミニウム溶出率が大きい。
【0053】
[実験例1]
MmNi4.05Mn0.45Al0.3 Fe0.28Cu0。22(x=5.30)(合金組成A)とMmNi3.95Mn0.4 Al0.3 Fe0.3 Cu0。25(x=5.20)(合金組成B)の熱処理条件と格子長(c軸)の関係を評価した。結果を図1に示す。なお、合金組成A及びBはいずれも鋳造によって得られたものである。
【0054】
図1の結果から、合金組成Aは熱処理条件が1080℃、3時間で最もc軸長が長くなり、合金組成Bは熱処理条件が1060℃、6時間で最もc軸長が長くなる。このように合金組成A及びBではxの値によって、最適熱処理条件が異なることが判る。
【0055】
[実験例2]
MmNi4.05Mn0.45Al0.3 Fe0.28Cu0。22(x=5.30)(合金組成A)、MmNi3.55Mn0.4 Al0.3 Co0.75(x=5.00)(合金組成C)及びMmNi3.95Mn0.45Al0.3 Co0.4 Cu0.1 (x=5.20)(合金組成D)の熱処理条件とアルミニウム溶出量の関係を評価した。結果を図2に示す。なお、合金組成A、C、Dはいずれも鋳造によって得られたものである。また、アルミニウム溶出量は合金組成Cを100%とした指数表示で示した。
【0056】
図2の結果から、合金組成C及びDは熱処理条件に拘わらず、アルミニウム溶出量が一定であるのに対し、合金組成Aは1080℃、3〜6時間で最もアルミニウム溶出量が少ない。このように合金組成Aでは、アルミニウム溶出量において最適熱処理条件があることが判る。
【0057】
【発明の効果】
以上説明したように、本発明の水素吸蔵合金は、コバルトを含有しないため製造コストが低減され、かつ微粉化特性に優れると共に、良好な初期特性を有し、しかも鉄の偏析がなく、アルミニウム溶出量も少ない。
また、本発明の製造方法によって、上記水素吸蔵合金が安定して、かつ効率よく得られる。
【図面の簡単な説明】
【図1】各合金組成における熱処理条件と格子長(c軸)の関係を示すグラフ。
【図2】各合金組成における熱処理条件とアルミニウム溶出量の関係を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage alloy and a method for producing the same. More specifically, the alloy does not contain cobalt, contains iron, has excellent pulverization characteristics, has good initial activity, has no segregation of iron, and does not contain aluminum. The present invention relates to a hydrogen storage alloy with a small amount of elution and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, nickel-hydrogen storage batteries using a hydrogen storage alloy as a negative electrode have attracted attention as high-capacity alkaline storage batteries that can replace nickel-cadmium storage batteries. As this hydrogen storage alloy, a five-element hydrogen storage alloy of Mm (Misch metal), which is a rare earth-based mixture, and Ni, Al, Mn, and Co is currently widely used.
[0003]
This Mm-Ni-Mn-Al-Co alloy can form a negative electrode with a relatively inexpensive material compared to that of La-based, has a long cycle life, and has a low internal pressure increase due to gas generated during overcharge. Since a storage battery can be obtained, it is widely used as an electrode material.
[0004]
The currently used Mm-Ni-Mn-Al-Co alloy suppresses the pulverization of the alloy and extends the cycle life. Generally, about 10% by weight is required for suppressing the pulverization. It is known that Co (at an atomic ratio of 0.6 to 1.0) is required. In order to obtain excellent hydrogen storage characteristics and corrosion resistance, it is necessary to contain a certain amount of Co.
[0005]
However, the higher the Co content, the higher the raw material cost, which is regarded as a problem from the viewpoint of raw material cost. In particular, for application to large batteries such as electric vehicle power supplies (EVs) and further market growth of nickel-hydrogen storage batteries, raw material costs account for a large proportion in the selection of electrode negative electrode materials. That was a problem.
[0006]
In order to solve such a problem, Japanese Patent Laid-Open No. 9-213319 proposes changing the composition of the Mm-Ni-Mn-Al-Co alloy and adding a small amount of one element to the composition. ing. By using the hydrogen storage alloy powder described in the publication for the negative electrode, it is possible to suppress the deterioration of the negative electrode due to the pulverization of the alloy to a certain limit and extend the cycle life of the battery even though the amount of Co is small.
[0007]
However, when the hydrogen storage alloy disclosed in the publication is used, there is a problem that stable and good initial characteristics cannot be obtained. Further, the pulverization characteristics and the hydrogen storage characteristics are not always satisfactory.
[0008]
Hydrogen storage alloys that contain Fe and do not contain Co are promising due to improved anti-dusting properties, but segregation of Fe and elution of Al are problematic, and sometimes there are significant performance differences, for example during storage at high temperatures. It is very difficult to obtain performance stability due to significant corrosion of the alloy and deterioration of capacity at the beginning of the charge / discharge cycle, and although basic performance improvement has been recognized, it is not stable and practical use It became a big barrier.
[0009]
Accordingly, the object of the present invention is to reduce the manufacturing cost by not containing cobalt, and to have excellent pulverization characteristics, good initial characteristics, no segregation of iron, and little aluminum elution. It is to provide an alloy and a manufacturing method thereof.
[0010]
[Means for Solving the Problems]
As a result of various studies by the inventors, the AB 5 type alloy composition containing iron has a specific non-stoichiometric composition (B site rich) without containing cobalt, and the c-axis is in a certain range. It has been found that the above object can be achieved by the hydrogen storage alloy in FIG. Further, it has been found that such a hydrogen storage alloy can be obtained when the specific composition has a certain relationship with the heat treatment conditions.
[0011]
The present invention has been made based on the above findings,
Formula MmNi a Mn b Al c Fe d Cu e
(In the formula, Mm is misch metal, 3.9 ≦ a ≦ 4.3, 0.3 ≦ b ≦ 0.55, 0.15 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.4, 0 .05 ≦ e ≦ 0.35, 5.10 ≦ a + b + c + d + e ≦ 5.35)
In a AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by,
The present invention provides a hydrogen storage alloy having a c-axis lattice length of 407.3 pm or more.
[0012]
Further, the present invention provides a preferred method for producing the hydrogen storage alloy of the present invention,
The hydrogen storage alloy raw material is heated and melted , poured into a water-cooled mold and cast at 1350 to 1550 ° C., and then heat-treated in an inert gas atmosphere to obtain a CaCu 5 type crystal structure represented by the following general formula. a method of manufacturing a AB 5 type hydrogen storage alloy having, heat treatment conditions, the following formula, when a + b + c + d + e is less than 5.10-5.25, 1,040 to 1,080 ° C., is 3-6 hours, When a + b + c + d + e is 5.25 to 5.35, it provides a method for producing a hydrogen storage alloy characterized by being 1060 to 1100 ° C. and 3 to 6 hours .
General formula MmNi a Mn b Al c Fe d Cu e
(In the formula, Mm is misch metal, 3.9 ≦ a ≦ 4.3, 0.3 ≦ b ≦ 0.55, 0.15 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.4, 0 .05 ≦ e ≦ 0.35, 5.10 ≦ a + b + c + d + e ≦ 5.35)
[0013]
Furthermore, the present invention is a preferred method for producing the hydrogen storage alloy of the present invention,
A hydrogen storage alloy raw material is heated and melted, and this is subjected to ultra-rapid solidification or atomization, followed by heat treatment in an inert gas atmosphere, and an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following general formula: A method for producing a hydrogen-absorbing alloy, characterized in that the heat treatment conditions are 1000 to 1100 ° C. and 10 minutes to 6 hours.
General formula MmNi a Mn b Al c Fe d Cu e
(In the formula, Mm is misch metal, 3.9 ≦ a ≦ 4.3, 0.3 ≦ b ≦ 0.55, 0.15 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.4, 0 .05 ≦ e ≦ 0.35, 5.10 ≦ a + b + c + d + e ≦ 5.35)
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The hydrogen storage alloy of the present invention have the general formula MmNi a Mn b Al c Fe d Cu e
(In the formula, Mm is misch metal, 3.9 ≦ a ≦ 4.3, 0.3 ≦ b ≦ 0.55, 0.15 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.4, 0 .05 ≦ e ≦ 0.35, 5.10 ≦ a + b + c + d + e ≦ 5.35)
In a AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented.
[0015]
Here, Mm is a misch metal which is a rare earth-based mixture of La, Ce, Pr, Nd, Sm and the like. This hydrogen storage alloy is an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, and has a B site rich non-stoichiometric composition of AB 5.10`5.35 .
[0016]
In this hydrogen storage alloy, the composition ratio (atomic ratio) of Ni a Mn b Al c Fe d Cu e has the following relationship. That is, the proportion of Ni is 3.9 ≦ a ≦ 4.3, the proportion of Mn is 0.3 ≦ b ≦ 0.55, the proportion of Al is 0.15 ≦ c ≦ 0.5, The proportion of Fe is 0.1 ≦ d ≦ 0.4, the proportion of Cu is 0.05 ≦ e ≦ 0.35, and a + b + c + d + e is in the range of 5.10 to 5.35.
[0017]
As described above, the Ni ratio “a” is 3.9 to 4.3, and when a is less than 3.9, the hydrogen storage amount is impaired, and when it exceeds 4.3, pulverization and deterioration of life characteristics are observed.
[0018]
The ratio b of Mn is 0.3 to 0.55. If b is less than 0.3, the plateau pressure becomes high and the hydrogen storage amount is impaired. If it exceeds 0.55, the corrosion of the alloy becomes severe. Early deterioration is observed.
[0019]
The ratio c of Al is 0.15 to 0.3. If c is less than 0.15, the plateau pressure, which is the hydrogen storage alloy discharge pressure, becomes high, the energy efficiency of charge / discharge deteriorates, and if it exceeds 0.5, Not only does the hydrogen storage amount decrease, but the alloy is less likely to become a single phase.
[0020]
The ratio d of Fe is 0.1 to 0.4. If d is less than 0.1, the pulverization characteristics are inferior. If it exceeds 0.4, segregation of Fe cannot be prevented and the elution of Al is suppressed. I can't.
[0021]
The ratio e of Cu is 0.05 to 0.35. When e is less than 0.05, improvement of the pulverization property is not observed, and when it exceeds 0.35, the hydrogen storage property is impaired and Cu is precipitated. Cases arise.
[0022]
a + b + c + d + e (hereinafter, collectively referred to as x in some cases) is 5.10 to 5.35. When x is less than 5.10, the battery life and pulverization characteristics are impaired, and when it exceeds 5.35, hydrogen The storage characteristics are impaired.
[0023]
The hydrogen storage alloy of the present invention has a c-axis lattice length of 407.3 pm or more, preferably 407.6 to 408.0 pm. When the c-axis lattice length is less than 407.3 pm, not only the pulverization characteristics are inferior but also the initial characteristics are deteriorated. Moreover, a hydrogen storage alloy exceeding 408.0 pm is accompanied by difficulty in production and accompanied by a significant decrease in the amount of hydrogen storage.
[0024]
Further, the a-axis lattice length of the hydrogen storage alloy of the present invention is not particularly limited, but is generally 500.0 to 503.0 pm.
[0025]
Next, the manufacturing method of the hydrogen storage alloy of this invention is demonstrated.
First, the hydrogen storage alloy raw material is weighed and mixed so as to have the alloy composition as described above, and the hydrogen storage alloy raw material is melted into a molten metal using, for example, an induction heating high-frequency heating melting furnace. , which is cast at 1,350 to 1,550 ° C. a hydrogen storage alloy is poured into water cooling type template.
[0026]
Next, the obtained hydrogen storage alloy is heat-treated in an inert gas atmosphere, for example, argon gas . Perform thermal processing, the fine grain boundary segregation of normal Mn or Fe mainly observed in the tissue of the cast alloy, in order to homogenize by heating it.
[0027]
Heat treatment conditions depend on the value of a + b + c + d + e (x), when x is less than 5.10 to 5.25 is, 1 040-1,080 ° C., is 3-6 hours, x is from the 5.25 to 5.35 time, 1 060~1100 ℃, 3 to 6 hours.
[0028]
Further, as another method for producing the hydrogen storage alloy of the present invention, a metal melt obtained by weighing and mixing the hydrogen storage alloy raw materials so as to have the alloy composition as described above is 10 3 to 10. Manufactures hydrogen storage alloys by ultra-rapid solidification method (melt spin method), in which ultra-rapid solidification is performed at a high cooling rate of about 5 K, and the atomized method in which the molten metal is divided into a large number of droplets by the action of compressed air. May be.
[0029]
The heat treatment conditions in this case are 1000-1100 ° C., 10 minutes-6 hours, preferably 10 minutes-3 hours.
[0030]
In this way, although it contains iron and does not contain cobalt, it has excellent pulverization characteristics, has good initial characteristics, does not cause segregation of iron, and has a low aluminum elution amount. An alloy is obtained.
[0031]
This hydrogen storage alloy is suitably used as a negative electrode for an alkaline storage battery after coarse pulverization and fine pulverization. Such an alkaline storage battery has good initial characteristics, suppresses deterioration of the negative electrode due to the pulverization of the alloy, and has a long cycle life.
[0032]
【Example】
Hereinafter, the present invention will be specifically described based on examples and the like.
[0033]
[Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-2]
Each hydrogen storage alloy raw material is weighed and mixed so that MmNi 4.05 Mn 0.45 Al 0.3 Fe 0.28 Cu 0.22 (x = 5.30) in the alloy composition of Mm, Ni, Mn, Al, Fe and Cu, and the mixture Is put in a crucible and fixed in a high-frequency melting furnace, vacuumed to 10 -3 Torr, heated and melted in an argon gas atmosphere, poured into a water-cooled copper mold, and cast at 1450 ° C to obtain an alloy. It was. Furthermore, this alloy was heat-treated in an argon gas atmosphere under the conditions shown in Table 2 to obtain hydrogen storage alloys.
[0034]
[Examples 2-1 to 2-3 and Comparative examples 2-1 to 2-2]
A hydrogen storage alloy was obtained in the same manner as in Example 1-1 except that the alloy composition was alloy composition B shown in Table 1 and heat treatment was performed under the conditions shown in Table 2.
[0035]
[Comparative Examples 3-1 to 3-3]
A hydrogen storage alloy was obtained in the same manner as in Example 1-1, except that the alloy composition was alloy composition C shown in Table 1 and heat treatment was performed under the conditions shown in Table 2.
[0036]
[Comparative Examples 4-1 to 4-5]
A hydrogen storage alloy was obtained in the same manner as in Example 1-1 except that the alloy composition was alloy composition D shown in Table 1 and heat treatment was performed under the conditions shown in Table 2.
[0037]
[Examples 5-1 to 5-3 and Comparative Examples 5-1 to 5-2]
A hydrogen storage alloy was obtained in the same manner as in Example 1-1 except that the alloy composition was alloy composition E shown in Table 1 and heat treatment was performed under the conditions shown in Table 3.
[0038]
[Examples 6-1 to 6-3 and Comparative Examples 6-1 to 6-2]
A hydrogen storage alloy was obtained in the same manner as in Example 1-1 except that the alloy composition was alloy composition F shown in Table 1 and heat treatment was performed under the conditions shown in Table 3.
[0039]
[Examples 7-1 to 7-3 and Comparative Examples 7-1 to 7-2]
A hydrogen storage alloy was obtained in the same manner as in Example 1-1 except that the alloy composition was alloy composition G shown in Table 1 and heat treatment was performed under the conditions shown in Table 3.
[0040]
[Example 8-1]
A hydrogen storage alloy was obtained in the same manner as in Example 1-1 except that the alloy composition was the alloy composition H shown in Table 1 and heat treatment was performed under the conditions shown in Table 3.
[0041]
[Example 9-1]
A hydrogen storage alloy was obtained in the same manner as in Example 1-1 except that the alloy composition was alloy composition I shown in Table 1 and heat treatment was performed under the conditions shown in Table 3.
[0042]
[Examples 10-1 to 10-3 and Comparative Examples 10-1 to 10-2]
Mm, Ni, Mn, Al, Fe and Cu are alloy compositions of MmNi 4.05 Mn 0.45 Al 0.3 Fe 0.28 Cu 0.22 (x = 5.30) (alloy composition A). Weigh and mix, put the mixture in a crucible and fix it in a high-frequency melting furnace, evacuate to 10 -3 Torr, heat and dissolve in an argon gas atmosphere, then cool at a cooling rate of about 10 3 to 10 5 K The alloy was obtained by ultra-cooling and solidification. Furthermore, this alloy was heat-treated in an argon gas atmosphere under the conditions shown in Table 4 to obtain hydrogen storage alloys.
[0043]
[Examples 11-1 to 11-3 and Comparative Examples 11-1 to 11-2]
A hydrogen storage alloy was obtained in the same manner as in Example 10-1, except that the alloy composition was alloy composition G shown in Table 1 and heat treatment was performed under the conditions shown in Table 4.
[0044]
[Characteristic evaluation]
The hydrogen storage alloys obtained in Examples and Comparative Examples were evaluated for lattice length, aluminum elution rate, presence / absence of initial capacity deterioration, and residual pulverization rate. The results are shown in Tables 2-4. The lattice length, aluminum elution rate, and pulverization residual rate were determined based on the following methods. Then, comprehensive evaluation was performed based on these evaluations, with 良好 being good and × being bad.
[0045]
<Lattice length>
Based on the X-ray diffraction test, an alloy powder having a particle size of 22 μm or less was measured with a diffractometer, and the lattice constant was refined using a peak between 100 ° ≦ 2θ ≦ 150 °.
[0046]
<Aluminum dissolution rate>
An aluminum elution test was performed, and the test piece was left in a 30 wt% KOH aqueous solution (65 ° C.) for ICP analysis. And it was set as the index display which made the value of the comparative example 3-1 100%.
[0047]
<Micronized residual rate>
After the process of introducing 30 bar hydrogen gas into a hydrogen storage alloy adjusted to a particle size of 22-53 microns and then evacuating and exhausting 10 times with a PCT device, the average particle size after the cycle test with respect to the average particle size before the cycle test is repeated. The ratio was calculated.
[0048]
[Table 1]
Figure 0003930638
[0049]
[Table 2]
Figure 0003930638
[0050]
[Table 3]
Figure 0003930638
[0051]
[Table 4]
Figure 0003930638
[0052]
As is clear from the results of Tables 2 to 4, the examples generally have a lower aluminum elution rate, no initial capacity deterioration, and a higher pulverization residual rate than the comparative examples not containing cobalt. Are better. Moreover, although the comparative example containing cobalt is excellent in comprehensive evaluation, it is inferior to economical efficiency, and its aluminum elution rate is large compared with an Example.
[0053]
[Experimental Example 1]
MmNi 4.05 Mn 0.45 Al 0.3 Fe 0.28 Cu 0.22 (x = 5.30) (alloy composition A) and MmNi 3.95 Mn 0.4 Al 0.3 Fe 0.3 Cu 0.25 (x = 5.20) (alloy composition B) The relationship between the heat treatment conditions and the lattice length (c-axis) was evaluated. The results are shown in FIG. Alloy compositions A and B are both obtained by casting.
[0054]
From the results of FIG. 1, the alloy composition A has the longest c-axis length at 1080 ° C. for 3 hours, and the alloy composition B has the longest c-axis length at 1060 ° C. for 6 hours. Thus, it can be seen that the optimum heat treatment conditions differ depending on the value of x in the alloy compositions A and B.
[0055]
[Experiment 2]
MmNi 4.05 Mn 0.45 Al 0.3 Fe 0.28 Cu 0.22 (x = 5.30) (alloy composition A), MmNi 3.55 Mn 0.4 Al 0.3 Co 0.75 (x = 5.00) (alloy composition C) and MmNi 3.95 Mn 0.45 The relationship between the heat treatment conditions of Al 0.3 Co 0.4 Cu 0.1 (x = 5.20) (alloy composition D) and the aluminum elution amount was evaluated. The results are shown in FIG. Alloy compositions A, C, and D are all obtained by casting. Moreover, the aluminum elution amount was shown by an index display with the alloy composition C as 100%.
[0056]
From the results of FIG. 2, the alloy compositions C and D have a constant aluminum elution amount regardless of the heat treatment conditions, whereas the alloy composition A has the smallest aluminum elution amount at 1080 ° C. for 3 to 6 hours. Thus, it can be seen that the alloy composition A has optimum heat treatment conditions for the aluminum elution amount.
[0057]
【The invention's effect】
As described above, the hydrogen storage alloy of the present invention does not contain cobalt, so the production cost is reduced, and it is excellent in pulverization characteristics, has good initial characteristics, has no segregation of iron, and dissolves aluminum. The amount is also small.
Moreover, the hydrogen storage alloy can be obtained stably and efficiently by the production method of the present invention.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between heat treatment conditions and lattice length (c-axis) in each alloy composition.
FIG. 2 is a graph showing the relationship between heat treatment conditions and aluminum elution amount in each alloy composition.

Claims (5)

一般式
MmNiaMnbAlcFedCue
(式中、Mmはミッシュメタル、3.9≦a≦4.3、0.3≦b≦0.55、0.15≦c≦0.5、0.1≦d≦0.4、0.05≦e≦0.35、5.10≦a+b+c+d+e≦5.35)
で表されるCaCu5型の結晶構造を有するAB5型水素吸蔵合金であって、
c軸の格子長が407.3pm以上であることを特徴とする水素吸蔵合金。
General formula MmNi a Mn b Al c Fe d Cu e
(In the formula, Mm is misch metal, 3.9 ≦ a ≦ 4.3, 0.3 ≦ b ≦ 0.55, 0.15 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.4, 0 .05 ≦ e ≦ 0.35, 5.10 ≦ a + b + c + d + e ≦ 5.35)
In a AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by,
A hydrogen storage alloy having a c-axis lattice length of 407.3 pm or more.
上記c軸の格子長が407.6〜408.0pmである請求項1に記載の水素吸蔵合金。  The hydrogen storage alloy according to claim 1, wherein the c-axis has a lattice length of 407.6 to 408.0 pm. 水素吸蔵合金原料を加熱溶解し、これを水冷型の鋳型に流し込んで1350〜1550℃で鋳造した後、不活性ガス雰囲気中で熱処理し、下記一般式で表されるCaCu5型の結晶構造を有するAB5型水素吸蔵合金を製造する方法であって、該熱処理条件が、下記一般式において、a+b+c+d+eが5.10〜5.25未満の場合、1040〜1080℃、3〜6時間であり、a+b+c+d+eが5.25〜5.35の場合、1060〜1100℃、3〜6時間であることを特徴とする水素吸蔵合金の製造方法。
一般式
MmNiaMnbAlcFedCue
(式中、Mmはミッシュメタル、3.9≦a≦4.3、0.3≦b≦0.55、0.15≦c≦0.5、0.1≦d≦0.4、0.05≦e≦0.35、5.10≦a+b+c+d+e≦5.35)
The hydrogen storage alloy raw material is heated and melted , poured into a water-cooled mold and cast at 1350 to 1550 ° C., and then heat-treated in an inert gas atmosphere to obtain a CaCu 5 type crystal structure represented by the following general formula. a method of manufacturing a AB 5 type hydrogen storage alloy having, heat treatment conditions, the following formula, when a + b + c + d + e is less than 5.10-5.25, 1,040 to 1,080 ° C., is 3-6 hours, When a + b + c + d + e is 5.25-5.35, it is 1060-1100 degreeC and it is 3 to 6 hours , The manufacturing method of the hydrogen storage alloy characterized by the above-mentioned.
General formula MmNi a Mn b Al c Fe d Cu e
(In the formula, Mm is misch metal, 3.9 ≦ a ≦ 4.3, 0.3 ≦ b ≦ 0.55, 0.15 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.4, 0 .05 ≦ e ≦ 0.35, 5.10 ≦ a + b + c + d + e ≦ 5.35)
水素吸蔵合金原料を高周波誘導加熱によって加熱溶解する請求項3記載の水素吸蔵合金の製造方法 The method for producing a hydrogen storage alloy according to claim 3, wherein the hydrogen storage alloy raw material is heated and melted by high frequency induction heating . 水素吸蔵合金原料を加熱溶解し、これを超急冷凝固又はアトマイズした後、不活性ガス雰囲気中で熱処理し、下記一般式で表されるCaCu5型の結晶構造を有するAB5型水素吸蔵合金を製造する方法であって、該熱処理条件が1000〜1100℃、10分〜6時間であることを特徴とする水素吸蔵合金の製造方法。
一般式
MmNiaMnbAlcFedCue
(式中、Mmはミッシュメタル、3.9≦a≦4.3、0.3≦b≦0.55、0.15≦c≦0.5、0.1≦d≦0.4、0.05≦e≦0.35、5.10≦a+b+c+d+e≦5.35)
A hydrogen storage alloy raw material is heated and melted, and this is subjected to ultra-rapid solidification or atomization, followed by heat treatment in an inert gas atmosphere, and an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure represented by the following general formula: A method for producing a hydrogen-absorbing alloy, characterized in that the heat treatment conditions are 1000 to 1100 ° C. and 10 minutes to 6 hours.
General formula MmNi a Mn b Al c Fe d Cu e
(In the formula, Mm is misch metal, 3.9 ≦ a ≦ 4.3, 0.3 ≦ b ≦ 0.55, 0.15 ≦ c ≦ 0.5, 0.1 ≦ d ≦ 0.4, 0 .05 ≦ e ≦ 0.35, 5.10 ≦ a + b + c + d + e ≦ 5.35)
JP11697398A 1998-04-27 1998-04-27 Hydrogen storage alloy and method for producing the same Expired - Lifetime JP3930638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11697398A JP3930638B2 (en) 1998-04-27 1998-04-27 Hydrogen storage alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11697398A JP3930638B2 (en) 1998-04-27 1998-04-27 Hydrogen storage alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11310838A JPH11310838A (en) 1999-11-09
JP3930638B2 true JP3930638B2 (en) 2007-06-13

Family

ID=14700350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11697398A Expired - Lifetime JP3930638B2 (en) 1998-04-27 1998-04-27 Hydrogen storage alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3930638B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493516B2 (en) 1998-12-15 2004-02-03 三井金属鉱業株式会社 Hydrogen storage alloy and method for producing the same
JP3881823B2 (en) * 2000-06-09 2007-02-14 三井金属鉱業株式会社 Hydrogen storage alloy and method for producing the same

Also Published As

Publication number Publication date
JPH11310838A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
WO1997003213A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
JP3737163B2 (en) Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery
JPH09209065A (en) Age precipitation type rare earth metal-nickel alloy, its production, and nickel-hydrogen secondary battery negative pole
JP3828922B2 (en) Low Co hydrogen storage alloy
JP4828714B2 (en) Hydrogen storage alloy, method for producing the same, and negative electrode for nickel metal hydride secondary battery
JP2022020892A (en) HYDROGEN STORAGE ALLOY POWDER OF LOW Co CONTENT
JP4647910B2 (en) Hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
JP3881823B2 (en) Hydrogen storage alloy and method for producing the same
JP2001040442A (en) Hydrogen storage alloy
JP5001809B2 (en) Hydrogen storage alloy
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
US20040217327A1 (en) Method for fabricating negative electrode for secondary cell
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP2000144278A (en) Hydrogen occlusion alloy and its production
JP2001294958A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and its producing method
JP4091704B2 (en) Hydrogen storage alloy and method for producing the same
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JP2001181763A (en) Hydrogen storage alloy
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JPH11323468A (en) Hydrogen storage alloy and its production
JP2004218017A (en) Hydrogen storage alloy
JP3984802B2 (en) Hydrogen storage alloy
JP2000038630A (en) Hydrogen storage alloy and its production
JP2000160265A (en) Hydrogen storage alloy and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term