JP3737163B2 - Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery - Google Patents

Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery Download PDF

Info

Publication number
JP3737163B2
JP3737163B2 JP19572195A JP19572195A JP3737163B2 JP 3737163 B2 JP3737163 B2 JP 3737163B2 JP 19572195 A JP19572195 A JP 19572195A JP 19572195 A JP19572195 A JP 19572195A JP 3737163 B2 JP3737163 B2 JP 3737163B2
Authority
JP
Japan
Prior art keywords
nickel
hydrogen storage
alloy
negative electrode
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19572195A
Other languages
Japanese (ja)
Other versions
JPH0925529A (en
Inventor
明仁 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP19572195A priority Critical patent/JP3737163B2/en
Publication of JPH0925529A publication Critical patent/JPH0925529A/en
Application granted granted Critical
Publication of JP3737163B2 publication Critical patent/JP3737163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、水素貯蔵容器、ヒートポンプ並びにニッケル水素2次電池の負極材料等に利用することにより、高容量でかつ長寿命を発揮する希土類金属−ニッケル系水素吸蔵合金及びその製造法、並びにニッケル水素2次電池用負極に関する。
【0002】
【従来の技術】
現在多量に生産されているニッケル水素2次電池の負極合金としては、Mm(ミッシュメタル)、Ni、Co、Mn、Al系のAB5型合金が主に使用されている。この合金は水素吸蔵量が他の合金に比べて大きく、常温における水素吸収放出圧が1〜5気圧と使用に供し易いという特徴を有している。
しかしながら、従来のAB5型構造の希土類金属−ニッケル系合金は、水素吸蔵時の初期活性が低く、100%水素吸蔵量を得るために、初期に数回〜十数回水素の吸収放出を行わなければならない。また、この合金は水素の吸収放出によって合金が膨張収縮するため、クラックが入り、微粉化して電池特性を劣化させるという欠点が生じる。
【0003】
また最近、更に高電池容量の電極が望まれており、電池容量を増加させるために、希土類金属に対してニッケルを主成分とする遷移金属の含有量を少なくした組成を有するAB2型、AB3型、A27型合金が研究されている。しかしこれらの合金は、水素吸蔵量は増加するが、水素を吸収した場合アモルファス化して水素放出温度が上昇し、常温では水素が放出されず使用に耐えられない恐れがある。
【0004】
このように、従来ニッケル水素2次電池の負極材料等に使用する希土類金属−ニッケル系水素吸蔵合金としては、より高容量で、かつ長寿命であることが望まれている。
しかし、例えば寿命を延長させるためにCo等の割合を増加させる方法や、合金自体を熱処理し組成偏析の解消、鋳造時の歪を除去する方法が提案されているが、いずれの方法によっても電池容量が低下し、一方容量増加のためにMnの割合を増加させると長寿命化が犠牲になっている。よって初期高活性化、高電池容量化及び長寿命化のすべてを同時に充足するような合金については知られていないのが実状である。
【0005】
前述のとおり、従来のAB5型構造等のニッケル水素2次電池においては、組成の検討がなされているのがほとんどであるが、合金の特性は更に細かい結晶状態や結晶分布にも作用される。そこで、近年このような結晶状態等が合金特性にどのような影響を及ぼすのかについて注目されている。
【0006】
ところで従来Ce2Ni7構造やCeNi3構造には逆位相境界があることが知られている。この逆位相境界とは、成分原子の配列の規則性が不完全な超格子構造において、副格子上の原子配列が逆転している逆位相領域と呼ばれる領域の、正位相と逆位相との境界面のことである。(株式会社培風館発行の「物理学辞典縮刷版(昭和61年10月20日発行)」439−440頁参照)。
ところがこのような逆位相境界の作用については知られていない。よって水素吸蔵合金の性能を改善するためにこの構造を応用することについては、従来全く知られていない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、水素吸蔵合金、特に従来のニッケル水素2次電池の負極材料として使用しうる希土類金属−ニッケル系水素吸蔵合金に比して、初期活性、電池容量及び寿命のすべてを同時に改善することができる希土類金属−ニッケル系水素吸蔵合金及びその製造法を提供することにある。
本発明の別の目的は、初期高活性化、高電池容量及び長寿命のすべてを同時に兼ね備えた、ニッケル水素2次電池用負極を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、下記一般式(1)
(R1-XX)(Ni1-yy)Z・・・(1)
(式中Rは、Laと、Ce、Pr、Ndの少なくとも1種との2種以上の混合元素を示し、LはGd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Sc、Mg、Ca、Ti、Zr、またはこれらの混合元素を示し、MはCo、Al、Mn、Fe、Cu、Mo、Si、V、Cr、Nb、Hf、Ta、W、B、C、またはこれらの混合元素を示す。また、0.2≦x≦0.6、0≦y≦0.5、2.0≦z<3.0である。)で表される組成(以下組成Aと称す)を示し、合金中の結晶粒のC軸と垂直に存在する逆位相境界がC軸方向に20nm当たり20本以上、40本未満含まれる結晶を50容量%以上、95容量%未満含有し、且つ一般式(1)中のLで示された元素を、前記逆位相領域にその添加量の60%以上、95%未満配置した希土類金属−ニッケル系水素吸蔵合金(以下水素吸蔵合金Bと称す)が提供される。
また本発明によれば、水素吸蔵合金Bと導電剤とを負極材料として含むニッケル水素2次電池用負極が提供される。
【0009】
【発明の実施の形態】
本発明者は、従来LaNi2型構造の合金が水素の吸収はするが、アモルファス化して水素放出温度が上昇し、常温では水素放出量が低下するので使用に耐えうることができなかったが、前記一般式(1)で表される組成Aに示すように希土類金属元素の一部が特定の元素(L)(以下置換元素Lと称す)に置換されており、特定の逆位相境界の領域を有する水素吸蔵合金Bが、アモルファス化が防止され、初期活性化等に好影響を与えることを見い出した。このような逆位相境界の存在が水素吸蔵能に好作用を及ぼすのは、逆位相領域に置換元素Lがその添加量の60%以上存在し、逆位相境界に面して希土類元素並びに前記置換元素Lが配列し、この境界を通って容易に水素が移動できるからであると考えられる。
【0010】
本発明の水素吸蔵合金Bは、前記一般式(1)で表される組成Aを示し、合金中の結晶粒のC軸と垂直に存在する逆位相境界がC軸方向に20nm当たり20本以上、40本未満含まれる結晶を50容量%以上、95容量%未満含有し、この逆位相領域に置換元素Lで示された元素の60%以上、95%未満配置した希土類金属−ニッケル系水素吸蔵合金である。結晶粒のC軸と垂直に存在するこの逆位相境界がC軸方向に20nm当たり20本以上、40本未満含まれる結晶の含有量が50容量%未満である場合には、初期活性が低下する。一方95容量%以上である場合には、電池寿命が低下する。また、逆位相領域に置換元素Lが60%未満の場合には、水素吸蔵時にアモルファス化し、水素放出温度が上昇して常温で水素が放出されず使用に耐えられない。一方95%を超える場合には、水素吸蔵能が低下する。
【0011】
逆位相境界の測定は、加速電圧200kV以上の高分解能透過型電子顕微鏡を用いて、合金結晶粒の[100]軸から電子線を入射し倍率30万倍以上で(100)面の高分解能像を撮影し、C軸方向([001]方向)の単位長さ当たりの逆位相境界数を計測することにより行うことができる。また、逆位相境界を含有する結晶粒の存在量の測定は、加速電圧200kV以上の透過型電子顕微鏡を用いて倍率1万〜5万倍にて結晶粒の(100)面の透過電子顕微鏡像を撮影し、逆位相境界を含有する結晶の面積率を計測することにより行うことができる。逆位相領域に置換した置換元素Lの存在量は、フィールドエミッション高分解能透過型電子顕微鏡のEDX分析装置を用い、ビーム径4nmで逆位相領域の組成分析を行うことにより求めることができる。
【0012】
前記一般式(1)中のz、即ち(R1-xx)を1としたときの(Ni1-yy)の原子比が1.8未満の場合には、逆位相境界が存在せず、水素吸蔵時に相分解し使用に耐えられない。また3.0以上の場合には水素吸蔵量が低下する。一般式(1)中のy、即ちNiと置換する置換元素Mの原子比が0.5を超える場合には表面活性が低下して水素吸蔵量が低下する。一般式(1)中のx、即ちRと置換する置換元素Lの原子比が0.6を超える場合には水素吸蔵量が低下し、ニッケル水素2次電池用負極とした際に電池容量が低下する。
【0013】
前記組成Aにおいて、式中RはLa、Ce、Pr、Ndの希土類金属のうち1種または2種以上から選択することができる。2種以上組み合わせる場合には各元素の含有割合が、好ましくはLa20〜60原子%、Ce0〜60原子%、Pr0〜50原子%、Nd0〜50原子%となるように適宜選択することができる。また、ミッシュメタルを原料として用いることもできる。式中Rの希土類金属に置換する置換元素Lは、希土類金属と原子半径が近似のものが良く、希土類金属のサイトに置換して配置される。置換元素Lは、重希土類金属のGd、Tb、Dy、Ho、Er、Tm、Yb、Lu、その他の金属としてのY、Sc、Mg、Ca、Ti、Zrから選択する。実際に水素吸蔵合金B中においては、L元素が1種類であっても、また2種類以上の混合物であっても良い。これらの置換元素Lの中でも、単独において水素吸蔵量が大きいものの使用が好ましい。本発明の水素吸蔵合金Bにおいて、これらの置換元素Lを単独で存在させず、希土類金属Rの置換元素としているのは、単独で水素吸蔵量が大きくても、水素放出温度の上昇や、水素吸蔵による微粉化等の欠点が生じるためである。そこで本発明の水素吸蔵合金Bでは、希土類金属Rと置換させて存在させることによって、このような欠点が補完されるとともに、逆位相境界析出による好作用を示す合金とすることができる。このような置換元素Lの配合割合(式中x)は、0.2≦x≦0.6、好ましくは0.3≦x≦0.55、特に好ましくは0.45≦x≦0.55である。
【0014】
また式中Mに係わる金属は、1種類でもまた2種類以上を組み合わせても良い。2種類以上の金属の組合せは、各金属の性質に基づいて適宜行うことができる。具体的には、Coは結晶格子を広げて平衡水素圧を下げる作用と、微粉化を防止し寿命を向上させる作用とを有する。その配合割合は、式中y、即ち(Ni+M)を1としたときのMの原子比で表して(以下の元素でも同様基準)、好ましくは0.01〜0.3原子比、特に好ましくは0.02〜0.2原子比である。Alは結晶格子を広げて平衡水素圧を下げる作用と、水素吸蔵量を増加させる作用とを有する。その配合量は、好ましくは、0.03〜0.3原子比、特に好ましくは0.05〜0.1原子比である。Mnは結晶格子を広げて平衡水素圧を下げる作用と、水素吸蔵量を増加させる作用とを有する。その配合量は、好ましくは0.03〜0.3原子比、特に好ましくは0.05〜0.2原子比である。Feは合金表面を活性化させて水素吸収放出速度を高める作用を有する。その配合量は、好ましくは0.03原子比以下、特に好ましくは0.01〜0.02原子比である。Cuは結晶格子を広げて平衡水素圧を下げる作用を有する。その配合量は、好ましくは0.01〜0.3原子比、特に好ましくは0.02〜0.2原子比である。ZrはPCT曲線(水素解離圧−組成等温線)のヒステリシス特性を改善する作用と、粒界に析出し割れを防止して寿命を向上させる作用とを有する。その配合量は、好ましくは0.1原子比以下、特に好ましくは0.01〜0.03原子比である。TiはPCT曲線のヒステリシス特性を改善する作用を有する。その配合量は、好ましくは0.1原子比以下、特に好ましくは0.01〜0.03原子比である。Moは活性度を上げ、水素吸収放出速度を高める作用を有する。その配合量は、好ましくは0.05原子比以下、特に好ましくは0.01〜0.02原子比である。Siは平衡水素圧を下げる作用を有する。その配合量は、好ましくは0.01〜0.25原子比、特に好ましくは0.02〜0.05原子比である。Vは逆位相境界を生じやすくする作用を有する。その配合量は、好ましくは0.01〜0.2原子比、特に好ましくは0.02〜0.05原子比である。Crは割れ防止作用を有する。その配合量は、好ましくは0.01〜0.2原子比、特に好ましくは0.03〜0.1原子比である。Nbは割れ防止作用を有する。その配合量は、好ましくは0.01〜0.05原子比、特に好ましくは0.02〜0.04原子比である。Hfはヒステリシス特性を改善する作用を有する。その配合量は、好ましくは0.05原子比以下、特に好ましくは0.01〜0.03原子比である。Taはヒステリシス特性を改善する作用を有する。その配合量は、好ましくは0.01〜0.05原子比、特に好ましくは0.02〜0.03原子比である。Wは活性度を上げ、水素吸収放出速度を高める作用を有する。その配合量は、好ましくは0.05原子比以下、特に好ましくは0.01〜0.03原子比である。Bは活性度を上げ、水素吸収放出速度を高める作用を有する。その配合量は、好ましくは0.03原子比以下、特に好ましくは0.01〜0.02原子比である。Cは水素吸収放出速度を高める作用を有する。その配合量は、好ましくは0.03原子比以下、特に好ましくは0.01〜0.02原子比である。
【0015】
本発明の水素吸蔵合金Bには、前記組成Aの各原料成分中又は水素吸蔵合金Bの製造時等に不可避的に含有される不純物が含有されていてもよい。
【0016】
前記一般式(1)で表される組成Aの具体例としては、下記合金組成等を好ましく挙げることができる。
【0017】
La0.16Ce0.32Pr0.03Nd0.13Gd0.25Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.16Ce0.32Pr0.03Nd0.13Gd0.35Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Gd0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Dy0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Er0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Yb0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Y0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Sc0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Mg0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Ca0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Ti0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Zr0.5Ni1.5Al0.09Co0.2Mn0.2Fe0.02
La0.12Ce0.25Pr0.03Nd0.1Gd0.5Ni1.5Al0.07Co0.2Mn0.2Fe0.02B0.02
La0.12Ce0.25Pr0.03Nd0.1Gd0.5Ni1.5Al0.07Co0.2Mn0.2Fe0.02Mo0.02
La0.12Ce0.25Pr0.03Nd0.1Gd0.5Ni1.5Al0.07Co0.2Mn0.2Fe0.02W0.02
La0.12Ce0.25Pr0.03Nd0.1Gd0.5Ni1.5Al0.07Co0.2Mn0.2Fe0.02Cu0.02
【0018】
本発明の水素吸蔵合金Bの製造法では、まず前記組成Aとなるように配合した原料金属を、溶融し、溶融物を過冷度50〜500℃、冷却速度1000〜10000℃/秒、好ましくは3000〜10000℃/秒の冷却条件下で均一に凝固させる。この際、過冷度とは、(合金の融点)−(融点以下の合金溶融物の実際の温度)の値である。更に詳細には、「過冷」とは、合金溶融物が冷却されて合金の融点に達しても凝固が実際に生じず、更に降下した温度であって、核生成温度に達すると合金溶融物中に微細な固相、即ち結晶が形成され凝固がはじめて生ずる現象をいう。このような過冷度制御は、例えばるつぼ等を用いて調製した合金溶融物の温度を制御すると共に、凝固させるための単ロールに導くまでの時間及び速度等を適宜調製することにより行うことができる。過冷度及び冷却速度が前記必須の温度範囲外の場合には、所望の逆位相境界を析出させることができる組成を有する鋳塊が得られない。
前記原料金属の溶融は、例えば真空溶融法、高周波溶融法等により、好ましくはるつぼ等を用いて、不活性ガス雰囲気下等で行うことができる。前記過冷度及び冷却速度による処理は、例えば合金溶融物を、単ロール、双ロール又は円板上等に、好ましくは連続的に供給して凝固させる方法等により行うことができる。特にロール法によって凝固させる場合には、得られる合金鋳塊の厚さが0.1〜20mmの範囲となるように、鋳造温度及び注湯速度等を適宜選択し、前記過冷度及び冷却速度となるように処理するのが最も容易な方法である。
【0019】
次に本発明の製造法では、前記得られた合金鋳塊を真空中又は不活性雰囲気中で、温度600〜750℃、好ましくは650〜730℃において、0.1〜12時間、好ましくは4〜8時間加熱処理し、所望の逆位相境界を析出させることにより水素吸蔵合金Bを調製することができる。前記必須加熱処理の条件以外の条件では、所望の逆位相境界が存在する組織が得られない。このような加熱処理の制御温度は、±10℃以内とするのが好ましく、通常の熱処理炉等により行うことができる。また前記加熱処理に供する合金鋳塊は、そのままの形状でも、粗砕片、粉砕粉等として加熱処理することができる。この加熱処理後の合金鋳塊は、通常の粉砕、微粉砕工程により、水素吸蔵用合金粉末とすることができる。
【0020】
この方法によって、逆位相境界を結晶粒のC軸と垂直方向に、C軸方向20nm当たり20本以上、40本未満含む結晶を50容量%以上、95容量%未満含有し、一般式(1)に示される置換元素Lが逆位相領域に、その置換元素Lの添加量の60%以上、95%未満配置された希土類金属−ニッケル系の水素吸蔵合金Bを調製することができる。
【0021】
本発明のニッケル水素2次電池用負極は、前記水素吸蔵合金Bと導電剤とを負極材料として含有する。
【0022】
前記水素吸蔵合金Bは、粉砕物として使用するのが好ましく、粉砕粒度は20〜100μmが好ましく、特に40〜50μmの均一粒度であるのが望ましい。この粉砕は、例えばスタンプミル等で前記合金を粗粉砕した後、遊星ボールミル等の装置を用い、ヘキサン等の非酸化性溶媒中において機械粉砕する方法等により行うことができる。前記合金の含有割合は、負極材料全量に対して、70〜95重量%、特に80〜90重量%が好ましい。70重量%未満の場合には、得られる負極の水素吸蔵量が低下し、高容量化の達成が困難であるので好ましくない。一方95重量%を越える場合には、導電性が低下し、また耐久性も悪くなるので好ましくない。
【0023】
前記導電剤としては、銅、ニッケル、コバルト、炭素等を挙げることができ、使用に際しては、1〜10μm程度の粒度の粉末として用いることができる。導電剤の含有割合は、負極材料全量に対して5〜20重量%、特に10〜20重量%が好ましい。
【0024】
本発明のニッケル水素2次電池用負極には、前記必須成分の他に結着剤を含有させることもできる。結着剤としては、4−フッ化エチレン−6−フッ化プロピレン共重合体(FEP)、ポリテトラフルオロエチレン、カルボキシメチルセルローズ等を好ましく挙げることができる。結着剤の含有割合は、負極材料全量に対して10重量%未満が望ましい。
【0025】
本発明のニッケル水素2次電池用負極を調製するには、例えば前記負極材料をニッケルメッシュ、ニッケル又は銅のエキスパンドメタル、ニッケル又は銅のパンチングメタル、発泡ニッケル、ウール状ニッケル等の集電基体に、結着成形する方法等により得ることができる。結着成形は、ロールプレス法、成形プレス法等により行うことができ、形状はシート状又はペレット状に結着成形するのが好ましい。得られた負極は、通常のニッケル水素2次電池用負極と同様に用いることで2次電池を構成させることができる。
【0026】
【発明の効果】
本発明の水素吸蔵合金Bは、特定組成を有し、その結晶粒のC軸と垂直に存在する逆位相境界をC軸方向に20nm当たり20本以上、40本未満含む結晶を50容量%以上、95容量%未満含有し、且つ置換元素Lが逆位相領域に60%以上、95%未満置換した組織を有するので、ニッケル水素2次電池負極材料として使用した場合などにおいて初期高活性、高電気容量、長寿命の全てを同時に発揮させることができる。また本発明の製造法では、このような水素吸蔵合金Bを、過冷度と冷却速度を制御し、且つ温度と時間を制御した特定の加熱処理によって、合理的に得ることができる。
【0027】
また本発明のニッケル水素2次電池用負極は、初期高活性、高電気容量、長寿命の全てを同時に発揮するので、従来の負極に代わっての需要が期待できる。
【0028】
【実施例】
以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
【0029】
【実施例1】
La9.1重量部、Ce18.4重量部、Pr1.7重量部、Nd7.7重量部、Gd16.1重量部、Ni36.0重量部、Al1.0重量部、Co4.8重量部、Mn4.5重量部、及びFe0.5重量部となるよう原料を調製し、高周波誘導溶解炉にてアルゴン雰囲気中溶融して合金溶融物とした。続いてこの合金溶融物を、過冷度150℃、冷却速度2000〜5000℃/秒の条件下、単ロール鋳造装置を用いて0.3〜0.4mmの厚さの帯状合金鋳塊を製造した。得られた合金鋳塊をアルゴン雰囲気中、700℃で4時間熱処理した。得られた合金鋳塊組成を原子比に換算したものを表1に示す。
【0030】
熱処理した合金鋳塊を、日本電子製高分解能透過電子顕微鏡(JEL4000EX)を用いて、結晶粒の(100)面を観察し結晶粒のC軸と垂直に存在する逆位相境界の20nm当たりに存在する本数と、この逆位相境界が存在する結晶粒が合金中に含有する割合とを求めた。また、高分解能EDX分析法により逆位相領域に存在する一般式(1)の置換元素Lのその添加量に対する存在量を求めた。結果を表2に示す。更に結晶粒のC軸と垂直に存在する逆位相境界の20nm当たりに存在する本数を測定するために使用した顕微鏡写真を図1に、この逆位相境界が存在する結晶粒の存在割合を測定するために使用した顕微鏡写真を図2に示す。
【0031】
続いてこの鋳塊をPCT測定用自動高圧ジーベルツ装置(レスカ製)を用いて、JIS H7201(1991)「水素吸蔵合金の圧力−組成等温線(PCT線)の測定方法」に準拠して水素吸蔵量、水素吸蔵圧を測定した。結果を表2に示す。
【0032】
次に鋳塊をスタンプミルで粗粉砕後、ヘキサン溶媒中において遊星ボールミルで平均粒径80μmに粉砕した。得られた粉末10gと、導電剤として銅粉1gと、結着剤としてFEP粉末(4フッ化エチレン−6フッ化プロピレン共重合体)0.3gとを混合し、直径20mmのペレット電極を作製した。この電極を6NのKOH溶液に浸漬し、酸化水銀参照電極を用いて電池を構成し、ポテンションガルバノスタット(北斗電工製)により電極特性を測定した。結果を表2に示す。
【0033】
初期活性および電池寿命は繰り返し充放電を行い、電池容量が定常に達した時点を基準として測定した。電池寿命は100サイクル目の容量を定常状態の容量と比較した。
【0034】
【実施例2〜16】
原料の組成を表1に示す通りとしたほかは、実施例1と全く同様に処理して、水素吸蔵合金鋳塊を製造した。得られた合金鋳塊及びこの合金鋳塊を用いた電池について、実施例1と同様な測定を行った。結果を表2に示す。
【0035】
【比較例1】
表1に示す組成の原料を、実施例1と全く同様に処理して帯状合金鋳塊を製造した。この鋳塊を熱処理炉に入れ、アルゴン気流中700℃で4時間熱処理した。この合金鋳塊及びこの合金鋳塊を用いて実施例1と同様に作成した電池について、実施例1と同様な測定を行った。結果を表2に示す。
【0036】
【比較例2】
表1に示す組成の原料を、実施例1と同様に合金溶融物とした。この組成は置換元素LとしてGdを規定する範囲を超えて配合した組成である。次いで得られた合金溶融物を実施例1と同様に処理して帯状合金鋳塊を製造した。この鋳塊をアルゴン気流中700℃で4時間熱処理した。この合金鋳塊及びこの合金鋳塊を用いて実施例1と同様に作成した電池について、実施例1と同様な測定を行った。結果を表2に示す。
【0037】
【比較例3】
実施例3と同一の合金溶融物を用い、冷却速度を300〜600℃/秒とした以外は、実施例1と全く同様に帯状合金鋳塊を得、熱処理して水素吸蔵合金鋳塊を得た。この合金鋳塊及びこの合金鋳塊を用いて実施例1と同様に作成した電池について、実施例1と同様な測定を行った。結果を表2に示す。
【0038】
【比較例4】
実施例3と同一の合金溶融物を金型鋳造法により、溶融物温度1450℃として水冷銅金型に注湯し、厚さ20mmの合金鋳塊とした以外は、実施例1と同様に処理し、合金鋳塊及び電池を作製し、測定を行った。結果を表2に示す。
【0039】
【表1】

Figure 0003737163
【0040】
【表2】
Figure 0003737163

【図面の簡単な説明】
【図1】図1は、実施例1で調製した帯状鋳塊の結晶粒内に含まれている逆位相境界の存在量を測定するための高分解能透過電子顕微鏡写真(図2のBで示す領域の拡大図)である。
【図2】図2は、実施例1で調製した帯状鋳塊の、逆位相境界が存在する結晶粒の存在割合を測定するための高分解能透過電子顕微鏡写真である。
【符号の説明】
A:逆位相境界[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rare earth metal-nickel-based hydrogen storage alloy that exhibits a high capacity and a long life by being used as a hydrogen storage container, a heat pump, a negative electrode material of a nickel metal hydride secondary battery, etc. The present invention relates to a negative electrode for a secondary battery.
[0002]
[Prior art]
As negative electrode alloys of nickel-metal hydride secondary batteries currently produced in large quantities, Mm (Misch metal), Ni, Co, Mn, and Al-based AB 5 type alloys are mainly used. This alloy has the characteristics that the hydrogen storage amount is larger than that of other alloys, and the hydrogen absorption / release pressure at normal temperature is 1 to 5 atm, which makes it easy to use.
However, the conventional AB 5 type rare earth metal-nickel alloy has low initial activity during hydrogen storage, and in order to obtain 100% hydrogen storage, hydrogen is absorbed and released several times to several tens of times in the initial stage. There must be. In addition, since this alloy expands and contracts due to absorption and release of hydrogen, there is a disadvantage that cracks occur and the powder is pulverized to deteriorate the battery characteristics.
[0003]
Recently, an electrode having a higher battery capacity has been desired, and in order to increase the battery capacity, AB 2 type, AB having a composition in which the content of transition metal containing nickel as a main component is reduced with respect to rare earth metals. Type 3 and A 2 B 7 type alloys have been studied. However, these alloys have an increased amount of hydrogen occlusion, but when they absorb hydrogen, they become amorphous and the hydrogen release temperature rises. At room temperature, there is a possibility that hydrogen is not released and cannot be used.
[0004]
As described above, it is desired that the rare earth metal-nickel-based hydrogen storage alloy used for the negative electrode material of the conventional nickel-metal hydride secondary battery has a higher capacity and a longer life.
However, for example, a method of increasing the proportion of Co or the like in order to extend the life, a method of eliminating the composition segregation by heat-treating the alloy itself, and removing strain at the time of casting have been proposed. The capacity decreases, while on the other hand, increasing the proportion of Mn to increase the capacity sacrifices longer life. Therefore, the fact is that there is no known alloy that satisfies all of the initial high activation, high battery capacity, and long life at the same time.
[0005]
As described above, the composition of the nickel-hydrogen secondary battery such as the conventional AB 5 type structure is mostly studied, but the characteristics of the alloy also affect the finer crystal state and crystal distribution. . Therefore, in recent years, attention has been paid to how such a crystalline state affects the alloy characteristics.
[0006]
By the way, it is known that the Ce 2 Ni 7 structure and the CeNi 3 structure have an antiphase boundary. This antiphase boundary is a boundary between the positive phase and the antiphase in a region called an antiphase region where the atomic arrangement on the sublattice is reversed in a superlattice structure in which the arrangement of component atoms is incomplete. It is a surface. (See pages 439-440, “Physics Dictionary Reprinted (issued October 20, 1986)” issued by Baifukan Co., Ltd.).
However, such antiphase boundary effects are not known. Therefore, it has not been known at all to apply this structure in order to improve the performance of the hydrogen storage alloy.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to simultaneously improve all of the initial activity, battery capacity and life as compared to hydrogen storage alloys, particularly rare earth metal-nickel hydrogen storage alloys that can be used as negative electrode materials for conventional nickel hydrogen secondary batteries. It is an object of the present invention to provide a rare earth metal-nickel-based hydrogen storage alloy and a method for producing the same.
Another object of the present invention is to provide a negative electrode for a nickel-metal hydride secondary battery that has all of initial high activation, high battery capacity, and long life at the same time.
[0008]
[Means for Solving the Problems]
According to the present invention, the following general formula (1)
(R 1-X L X ) (Ni 1- y My ) Z (1)
(In the formula, R represents two or more mixed elements of La and at least one of Ce, Pr, and Nd , and L represents Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc. , Mg, Ca, Ti, Zr, or a mixed element thereof, and M is Co, Al, Mn, Fe, Cu, Mo , Si, V, Cr, Nb, Hf, Ta, W, B, C, or These mixed elements are represented by a composition represented by 0.2 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.5, and 2.0 ≦ z <3.0 (hereinafter referred to as composition A). 50% or more and less than 95% by volume of crystals containing 20 or more and less than 40 anti-phase boundaries perpendicular to the C axis of the crystal grains in the alloy per 20 nm in the C axis direction. In addition, the element represented by L in the general formula (1) is disposed in the reverse phase region in an amount of 60% or more and less than 95% of the addition amount. A rare earth metal-nickel based hydrogen storage alloy (hereinafter referred to as hydrogen storage alloy B) is provided.
According to the present invention, hydrogen storage alloy B and a negative electrode for a nickel-hydrogen battery including a conductive agent as the negative electrode material is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The inventor of the present invention has been able to withstand use because the alloy of LaNi 2 type structure absorbs hydrogen conventionally, but becomes amorphous and the hydrogen release temperature increases, and the hydrogen release amount decreases at room temperature. As shown in the composition A represented by the general formula (1), a part of the rare earth metal element is substituted with a specific element (L) (hereinafter referred to as a substitution element L), and a specific antiphase boundary region It has been found that the hydrogen storage alloy B having the above property prevents amorphization and has a positive effect on the initial activation. The existence of such an antiphase boundary has a positive effect on the hydrogen storage capacity because the substitution element L is present in the antiphase region in an amount of 60% or more of the addition amount, and the rare earth element and the substitution element are facing the antiphase boundary. This is probably because the elements L are arranged and hydrogen can easily move through this boundary.
[0010]
The hydrogen storage alloy B of the present invention has the composition A represented by the general formula (1), and there are 20 or more antiphase boundaries present perpendicular to the C axis of crystal grains in the alloy per 20 nm in the C axis direction. , Rare earth metal-nickel-based hydrogen occlusion in which less than 40 crystals are contained in an amount of 50 volume% or more and less than 95 volume%, and 60% or more and less than 95% of the element represented by the substitution element L is disposed in the reverse phase region. It is an alloy. When the content of the crystal containing 20 or more and less than 40 antiphase boundaries perpendicular to the C axis of the crystal grains in the C axis direction per 20 nm is less than 50% by volume, the initial activity is lowered. . On the other hand, when it is 95% by volume or more, the battery life is reduced. Further, when the substitution element L is less than 60% in the reverse phase region, it becomes amorphous when hydrogen is occluded, the hydrogen release temperature rises, hydrogen is not released at room temperature, and cannot be used. On the other hand, if it exceeds 95%, the hydrogen storage capacity decreases.
[0011]
The measurement of the antiphase boundary is performed using a high-resolution transmission electron microscope with an acceleration voltage of 200 kV or higher, and an electron beam is incident from the [100] axis of the alloy crystal grain, and a high-resolution image of the (100) plane at a magnification of 300,000 times or more. Can be obtained by measuring the number of antiphase boundaries per unit length in the C-axis direction ([001] direction). In addition, the measurement of the abundance of crystal grains containing an antiphase boundary is performed by using a transmission electron microscope having an acceleration voltage of 200 kV or higher at a magnification of 10,000 to 50,000 times and a transmission electron microscope image of the (100) plane of the crystal grains. And measuring the area ratio of the crystal containing the antiphase boundary. The abundance of the substitution element L substituted in the antiphase region can be obtained by performing composition analysis in the antiphase region with a beam diameter of 4 nm using an EDX analyzer of a field emission high resolution transmission electron microscope.
[0012]
When the atomic ratio of (Ni 1- y My ) is less than 1.8 when z in the general formula (1), that is, (R 1-x L x ) is 1, the antiphase boundary is It does not exist and cannot be used due to phase decomposition during hydrogen storage. On the other hand, when it is 3.0 or more, the hydrogen storage amount decreases. In the general formula (1), when y, that is, the atomic ratio of the substitution element M substituted for Ni exceeds 0.5, the surface activity is lowered and the hydrogen storage amount is lowered. In the general formula (1), x, that is, when the atomic ratio of the substitution element L to be substituted with R exceeds 0.6, the hydrogen storage amount decreases, and the battery capacity is reduced when the negative electrode for a nickel metal hydride secondary battery is obtained. descend.
[0013]
In the composition A, R in the formula can be selected from one or more of La, Ce, Pr, and Nd rare earth metals. In the case of combining two or more kinds, the content ratio of each element can be suitably selected so that it is preferably La 20 to 60 atomic%, Ce 0 to 60 atomic%, Pr 0 to 50 atomic%, and Nd 0 to 50 atomic%. Misch metal can also be used as a raw material. In the formula, the substitution element L that substitutes for the rare earth metal of R preferably has an atomic radius close to that of the rare earth metal, and is substituted for the site of the rare earth metal. Substitution element L is selected from heavy rare earth metals Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and other metals Y, Sc, Mg, Ca, Ti, Zr. Actually, in the hydrogen storage alloy B, the L element may be one kind or a mixture of two or more kinds. Among these substitution elements L, those having a large hydrogen storage amount alone are preferable. In the hydrogen storage alloy B of the present invention, these substitution elements L are not present alone, but are used as substitution elements for the rare earth metal R, even if the hydrogen storage amount alone is large, This is because defects such as pulverization due to occlusion occur. Therefore, in the hydrogen storage alloy B of the present invention, by replacing the rare earth metal R with the rare earth metal R, such defects can be complemented and an alloy exhibiting a positive effect by antiphase boundary precipitation can be obtained. The blending ratio (x in the formula) of such a substitution element L is 0.2 ≦ x ≦ 0.6, preferably 0.3 ≦ x ≦ 0.55, particularly preferably 0.45 ≦ x ≦ 0.55. It is.
[0014]
In addition, the metal related to M in the formula may be one kind or a combination of two or more kinds. The combination of two or more metals can be appropriately performed based on the properties of each metal. Specifically, Co has an action of expanding the crystal lattice to lower the equilibrium hydrogen pressure and an action of preventing pulverization and improving the life. The blending ratio is represented by y in the formula, that is, the atomic ratio of M when (Ni + M) is 1 (same basis for the following elements), preferably 0.01 to 0.3 atomic ratio, particularly preferably It is 0.02-0.2 atomic ratio. Al has the effect of expanding the crystal lattice to lower the equilibrium hydrogen pressure and the effect of increasing the hydrogen storage capacity. The blending amount is preferably 0.03 to 0.3 atomic ratio, particularly preferably 0.05 to 0.1 atomic ratio. Mn has the effect of expanding the crystal lattice to lower the equilibrium hydrogen pressure and the effect of increasing the hydrogen storage capacity. The blending amount is preferably 0.03 to 0.3 atomic ratio, particularly preferably 0.05 to 0.2 atomic ratio. Fe has the effect of activating the alloy surface and increasing the rate of hydrogen absorption and release. The blending amount is preferably 0.03 atomic ratio or less, particularly preferably 0.01 to 0.02 atomic ratio. Cu has the effect of expanding the crystal lattice and lowering the equilibrium hydrogen pressure. The blending amount is preferably 0.01 to 0.3 atomic ratio, particularly preferably 0.02 to 0.2 atomic ratio. Zr has the effect of improving the hysteresis characteristic of the PCT curve (hydrogen dissociation pressure-composition isotherm) and the effect of precipitating at the grain boundary to prevent cracking and improving the life. The blending amount is preferably 0.1 atomic ratio or less, and particularly preferably 0.01 to 0.03 atomic ratio. Ti has the effect of improving the hysteresis characteristics of the PCT curve. The blending amount is preferably 0.1 atomic ratio or less, and particularly preferably 0.01 to 0.03 atomic ratio. Mo has the effect of increasing the activity and increasing the hydrogen absorption / release rate. The blending amount is preferably 0.05 atomic ratio or less, particularly preferably 0.01 to 0.02 atomic ratio. Si has the effect of lowering the equilibrium hydrogen pressure. The blending amount is preferably 0.01 to 0.25 atomic ratio, particularly preferably 0.02 to 0.05 atomic ratio. V has an effect of easily generating an antiphase boundary. The blending amount is preferably 0.01 to 0.2 atomic ratio, particularly preferably 0.02 to 0.05 atomic ratio. Cr has a crack preventing effect. The blending amount is preferably 0.01 to 0.2 atomic ratio, particularly preferably 0.03 to 0.1 atomic ratio. Nb has a crack preventing effect. The blending amount is preferably 0.01 to 0.05 atomic ratio, particularly preferably 0.02 to 0.04 atomic ratio. Hf has the effect of improving the hysteresis characteristics. The blending amount is preferably 0.05 atomic ratio or less, particularly preferably 0.01 to 0.03 atomic ratio. Ta has the effect of improving the hysteresis characteristics. The blending amount is preferably 0.01 to 0.05 atomic ratio, particularly preferably 0.02 to 0.03 atomic ratio. W has the effect of increasing the activity and increasing the hydrogen absorption / release rate. The blending amount is preferably 0.05 atomic ratio or less, particularly preferably 0.01 to 0.03 atomic ratio. B has the effect of increasing the activity and increasing the hydrogen absorption / release rate. The blending amount is preferably 0.03 atomic ratio or less, particularly preferably 0.01 to 0.02 atomic ratio. C has the effect of increasing the hydrogen absorption / release rate. The blending amount is preferably 0.03 atomic ratio or less, particularly preferably 0.01 to 0.02 atomic ratio.
[0015]
The hydrogen storage alloy B of the present invention may contain impurities inevitably contained in each raw material component of the composition A or during the production of the hydrogen storage alloy B.
[0016]
Specific examples of the composition A represented by the general formula (1) include the following alloy compositions.
[0017]
La 0.16 Ce 0.32 Pr 0.03 Nd 0.13 Gd 0.25 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.16 Ce 0.32 Pr 0.03 Nd 0.13 Gd 0.35 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Gd 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Dy 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Er 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Yb 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Y 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Sc 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Mg 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Ca 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Ti 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Zr 0.5 Ni 1.5 Al 0.09 Co 0.2 Mn 0.2 Fe 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Gd 0.5 Ni 1.5 Al 0.07 Co 0.2 Mn 0.2 Fe 0.02 B 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Gd 0.5 Ni 1.5 Al 0.07 Co 0.2 Mn 0.2 Fe 0.02 Mo 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Gd 0.5 Ni 1.5 Al 0.07 Co 0.2 Mn 0.2 Fe 0.02 W 0.02 ,
La 0.12 Ce 0.25 Pr 0.03 Nd 0.1 Gd 0.5 Ni 1.5 Al 0.07 Co 0.2 Mn 0.2 Fe 0.02 Cu 0.02
[0018]
In the method for producing the hydrogen storage alloy B of the present invention, the raw material metal blended so as to have the composition A is first melted, and the melt is subcooled to 50 to 500 ° C., and the cooling rate is 1000 to 10000 ° C./second, preferably Is uniformly solidified under cooling conditions of 3000 to 10000 ° C./second. In this case, the degree of supercooling is a value of (melting point of alloy) − (actual temperature of alloy melt below melting point). More specifically, “undercooling” refers to a temperature at which solidification does not actually occur even when the alloy melt is cooled and reaches the melting point of the alloy, and further decreases, and when the nucleation temperature is reached, the alloy melt This is a phenomenon in which a solid phase, that is, a crystal is formed and solidification occurs for the first time. Such supercooling degree control can be performed, for example, by controlling the temperature of the alloy melt prepared using a crucible or the like, and by appropriately adjusting the time and speed until it leads to a single roll for solidification. it can. When the degree of supercooling and the cooling rate are outside the essential temperature range, an ingot having a composition capable of depositing a desired antiphase boundary cannot be obtained.
The raw metal can be melted by, for example, a vacuum melting method, a high-frequency melting method, or the like, preferably using a crucible or the like in an inert gas atmosphere or the like. The treatment based on the degree of supercooling and the cooling rate can be carried out, for example, by a method in which an alloy melt is preferably continuously fed and solidified on a single roll, a twin roll or a disk. In particular, when solidifying by the roll method, the casting temperature and the pouring speed are appropriately selected so that the thickness of the resulting alloy ingot is in the range of 0.1 to 20 mm, and the degree of supercooling and cooling rate are selected. It is the easiest method to process so that
[0019]
Next, in the production method of the present invention, the obtained alloy ingot is vacuum or in an inert atmosphere at a temperature of 600 to 750 ° C., preferably 650 to 730 ° C., for 0.1 to 12 hours, preferably 4 The hydrogen storage alloy B can be prepared by heat treatment for ˜8 hours to precipitate a desired antiphase boundary. Under conditions other than the conditions for the essential heat treatment, a tissue having a desired antiphase boundary cannot be obtained. The control temperature of such heat treatment is preferably within ± 10 ° C., and can be performed by a normal heat treatment furnace or the like. The alloy ingot to be subjected to the heat treatment can be heat-treated as a coarsely crushed piece, a pulverized powder or the like even if it is in a shape as it is. The alloy ingot after the heat treatment can be made into a hydrogen storage alloy powder by ordinary pulverization and fine pulverization processes.
[0020]
By this method, crystals containing 20 or more and less than 40 antiphase boundaries in the direction perpendicular to the C-axis of the crystal grains in the direction of the C-axis and 20 nm or less are contained in an amount of 50 to 95 vol%. It is possible to prepare a rare earth metal-nickel-based hydrogen storage alloy B in which the substitution element L shown in FIG. 5 is disposed in the antiphase region by 60% or more and less than 95% of the addition amount of the substitution element L.
[0021]
The negative electrode for a nickel metal hydride secondary battery of the present invention contains the hydrogen storage alloy B and a conductive agent as negative electrode materials.
[0022]
The hydrogen storage alloy B is preferably used as a pulverized product, and the pulverized particle size is preferably 20 to 100 μm, and particularly preferably a uniform particle size of 40 to 50 μm. This pulverization can be performed, for example, by roughly pulverizing the alloy with a stamp mill or the like and then mechanically pulverizing the alloy in a non-oxidizing solvent such as hexane using an apparatus such as a planetary ball mill. The content of the alloy is preferably 70 to 95% by weight, particularly 80 to 90% by weight, based on the total amount of the negative electrode material. If it is less than 70% by weight, the amount of hydrogen occluded in the obtained negative electrode is lowered, and it is difficult to achieve high capacity, which is not preferable. On the other hand, if it exceeds 95% by weight, the conductivity is lowered and the durability is also deteriorated.
[0023]
Examples of the conductive agent include copper, nickel, cobalt, carbon, and the like. In use, the conductive agent can be used as a powder having a particle size of about 1 to 10 μm. The content of the conductive agent is preferably 5 to 20% by weight, particularly preferably 10 to 20% by weight, based on the total amount of the negative electrode material.
[0024]
In addition to the above essential components, the negative electrode for a nickel metal hydride secondary battery of the present invention can contain a binder. Preferred examples of the binder include 4-fluoroethylene-6-fluoropropylene copolymer (FEP), polytetrafluoroethylene, carboxymethyl cellulose, and the like. The content ratio of the binder is preferably less than 10% by weight with respect to the total amount of the negative electrode material.
[0025]
In order to prepare the negative electrode for a nickel metal hydride secondary battery of the present invention, for example, the negative electrode material is applied to a current collecting substrate such as nickel mesh, nickel or copper expanded metal, nickel or copper punching metal, foamed nickel, woolen nickel or the like. It can be obtained by a method of binding molding. The binder molding can be performed by a roll press method, a molding press method, or the like, and the shape is preferably binder-molded into a sheet shape or a pellet shape. The obtained negative electrode can be used in the same manner as a normal nickel-hydrogen secondary battery negative electrode to form a secondary battery.
[0026]
【The invention's effect】
The hydrogen storage alloy B of the present invention has a specific composition, and contains 50 or more vol% of crystals containing 20 or more and less than 40 antiphase boundaries perpendicular to the C axis of the crystal grains per 20 nm in the C axis direction. , And the substitutional element L has a structure in which the substitution element L is substituted in the reverse phase region by 60% or more and less than 95%, so that it has an initial high activity and high electricity when used as a negative electrode material for a nickel metal hydride secondary battery. All of capacity and long life can be exhibited at the same time. Moreover, in the manufacturing method of this invention, such a hydrogen storage alloy B can be obtained reasonably by the specific heat processing which controlled supercooling degree and cooling rate, and controlled temperature and time.
[0027]
Moreover, since the negative electrode for nickel metal hydride secondary batteries of the present invention exhibits all of initial high activity, high electric capacity, and long life at the same time, demand for replacing the conventional negative electrode can be expected.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these.
[0029]
[Example 1]
La 9.1 parts by weight, Ce 18.4 parts by weight, Pr 1.7 parts by weight, Nd 7.7 parts by weight, Gd 16.1 parts by weight, Ni 36.0 parts by weight, Al 1.0 part by weight, Co 4.8 parts by weight, Mn 4. The raw materials were prepared so as to be 5 parts by weight and 0.5 parts by weight of Fe, and melted in an argon atmosphere in a high frequency induction melting furnace to obtain an alloy melt. Subsequently, this alloy melt is manufactured into a strip-shaped alloy ingot having a thickness of 0.3 to 0.4 mm using a single roll casting apparatus under conditions of a supercooling degree of 150 ° C. and a cooling rate of 2000 to 5000 ° C./second. did. The obtained alloy ingot was heat-treated at 700 ° C. for 4 hours in an argon atmosphere. Table 1 shows the obtained alloy ingot composition converted into an atomic ratio.
[0030]
The heat-treated alloy ingot is observed per 20 nm of the antiphase boundary existing perpendicular to the C axis of the crystal grain by observing the (100) plane of the crystal grain using a high resolution transmission electron microscope (JEL4000EX) manufactured by JEOL. And the ratio of the crystal grains having the antiphase boundary contained in the alloy. Moreover, the abundance with respect to the addition amount of the substitution element L of the general formula (1) existing in the antiphase region was determined by a high resolution EDX analysis method. The results are shown in Table 2. Further, FIG. 1 shows a micrograph used for measuring the number of anti-phase boundaries present per 20 nm perpendicular to the C-axis of the crystal grains, and the proportion of the crystal grains having the anti-phase boundaries is measured. A photomicrograph used for this purpose is shown in FIG.
[0031]
Subsequently, this ingot was subjected to hydrogen occlusion in accordance with JIS H7201 (1991) “Method for measuring pressure-composition isotherm (PCT line) of hydrogen storage alloy” using an automatic high-pressure Siebelz apparatus for PCT measurement (manufactured by Reska). The amount and the hydrogen storage pressure were measured. The results are shown in Table 2.
[0032]
Next, the ingot was coarsely pulverized with a stamp mill, and then pulverized to an average particle size of 80 μm with a planetary ball mill in a hexane solvent. 10 g of the obtained powder, 1 g of copper powder as a conductive agent, and 0.3 g of FEP powder (tetrafluoroethylene-6fluoropropylene copolymer) as a binder are mixed to produce a pellet electrode having a diameter of 20 mm. did. This electrode was immersed in a 6N KOH solution, a battery was constructed using a mercury oxide reference electrode, and electrode characteristics were measured with a potention galvanostat (manufactured by Hokuto Denko). The results are shown in Table 2.
[0033]
The initial activity and the battery life were measured based on the time when the battery capacity reached a steady state after repeated charge and discharge. For battery life, the capacity at the 100th cycle was compared with the capacity at the steady state.
[0034]
Examples 2 to 16
A hydrogen storage alloy ingot was manufactured in the same manner as in Example 1 except that the composition of the raw material was as shown in Table 1. About the obtained alloy ingot and the battery using this alloy ingot, the same measurement as Example 1 was performed. The results are shown in Table 2.
[0035]
[Comparative Example 1]
The raw material having the composition shown in Table 1 was processed in exactly the same manner as in Example 1 to produce a strip-shaped alloy ingot. This ingot was put into a heat treatment furnace and heat-treated at 700 ° C. for 4 hours in an argon stream. The same measurement as in Example 1 was performed on this alloy ingot and a battery prepared using this alloy ingot in the same manner as in Example 1. The results are shown in Table 2.
[0036]
[Comparative Example 2]
The raw material having the composition shown in Table 1 was made into an alloy melt in the same manner as in Example 1. This composition is a composition blended beyond the range that defines Gd as the substitution element L. Subsequently, the obtained alloy melt was processed in the same manner as in Example 1 to produce a strip-shaped alloy ingot. This ingot was heat-treated in an argon stream at 700 ° C. for 4 hours. The same measurement as in Example 1 was performed on this alloy ingot and a battery prepared using this alloy ingot in the same manner as in Example 1. The results are shown in Table 2.
[0037]
[Comparative Example 3]
Except using the same alloy melt as in Example 3 and using a cooling rate of 300 to 600 ° C./second, a band-shaped alloy ingot is obtained in the same manner as in Example 1 and heat-treated to obtain a hydrogen storage alloy ingot. It was. The same measurement as in Example 1 was performed on this alloy ingot and a battery prepared using this alloy ingot in the same manner as in Example 1. The results are shown in Table 2.
[0038]
[Comparative Example 4]
The same alloy melt as in Example 3 was treated in the same manner as in Example 1 except that the melt was poured into a water-cooled copper mold at a melt temperature of 1450 ° C. by a mold casting method to form an alloy ingot having a thickness of 20 mm. Then, an alloy ingot and a battery were produced and measured. The results are shown in Table 2.
[0039]
[Table 1]
Figure 0003737163
[0040]
[Table 2]
Figure 0003737163

[Brief description of the drawings]
FIG. 1 is a high-resolution transmission electron micrograph (shown as B in FIG. 2) for measuring the abundance of antiphase boundaries contained in crystal grains of a strip-shaped ingot prepared in Example 1; FIG.
FIG. 2 is a high-resolution transmission electron micrograph for measuring the abundance of crystal grains having antiphase boundaries in the banded ingot prepared in Example 1.
[Explanation of symbols]
A: Antiphase boundary

Claims (2)

下記一般式(1)
(R1-XX)(Ni1-yy)Z・・・(1)
(式中Rは、Laと、Ce、Pr、Ndの少なくとも1種との2種以上の混合元素を示し、LはGd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Sc、Mg、Ca、Ti、Zr、またはこれらの混合元素を示し、MはCo、Al、Mn、Fe、Cu、Mo、Si、V、Cr、Nb、Hf、Ta、W、B、C、またはこれらの混合元素を示す。また、0.2≦x≦0.6、0≦y≦0.5、2.0≦z<3.0である。)で表される組成を示し、合金中の結晶粒のC軸と垂直に存在する逆位相境界がC軸方向に20nm当たり20本以上、40本未満含まれる結晶を50容量%以上、95容量%未満含有し、且つ一般式(1)中のLで示された元素を、前記逆位相領域にその添加量の60%以上、95%未満配置した希土類金属−ニッケル系水素吸蔵合金。
The following general formula (1)
(R 1-X L X ) (Ni 1- y My ) Z (1)
(In the formula, R represents two or more mixed elements of La and at least one of Ce, Pr, and Nd , and L represents Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc. , Mg, Ca, Ti, Zr, or a mixed element thereof, where M is Co, Al, Mn, Fe, Cu, Mo , Si, V, Cr, Nb, Hf, Ta, W, B, C, or These mixed elements are represented by 0.2 ≦ x ≦ 0.6, 0 ≦ y ≦ 0.5, and 2.0 ≦ z <3.0. The crystal grains containing 20% or more and less than 40% of crystals having an antiphase boundary perpendicular to the C-axis in the direction of the C-axis in the C-axis direction of 50% or more and less than 95% by volume, and the general formula (1) The element represented by L is disposed in the antiphase region in a rare earth metal-ni having 60% or more and less than 95% of the amount added. A nickel-based hydrogen storage alloy.
請求項1に記載の希土類金属−ニッケル系水素吸蔵合金と導電剤とを負極材料として含むニッケル水素2次電池用負極。  A negative electrode for a nickel metal hydride secondary battery comprising the rare earth metal-nickel-based hydrogen storage alloy according to claim 1 and a conductive agent as negative electrode materials.
JP19572195A 1995-07-10 1995-07-10 Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery Expired - Lifetime JP3737163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19572195A JP3737163B2 (en) 1995-07-10 1995-07-10 Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19572195A JP3737163B2 (en) 1995-07-10 1995-07-10 Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery

Publications (2)

Publication Number Publication Date
JPH0925529A JPH0925529A (en) 1997-01-28
JP3737163B2 true JP3737163B2 (en) 2006-01-18

Family

ID=16345870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19572195A Expired - Lifetime JP3737163B2 (en) 1995-07-10 1995-07-10 Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery

Country Status (1)

Country Link
JP (1) JP3737163B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490477B2 (en) 2012-09-27 2016-11-08 Gs Yuasa International Ltd. Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401941B2 (en) * 1997-06-17 2014-01-29 株式会社Gsユアサ Hydrogen storage alloy and secondary battery
US6703164B2 (en) 1997-11-28 2004-03-09 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy, secondary battery, hybrid car and electromobile
KR100276018B1 (en) * 1997-11-28 2000-12-15 니시무로 타이죠 Ni-MH Secondary Battery
US6268084B1 (en) * 1997-11-28 2001-07-31 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy and secondary battery
CN1330025C (en) * 1999-12-27 2007-08-01 株式会社东芝 Hydrogen-storage alloy, secondary battery, hybrid automobile and electric automobile
JP2002164045A (en) * 2000-11-27 2002-06-07 Toshiba Corp Hydrogen storage alloy, secondary battery, hybrid vehicle, and electric vehicle
JP4503915B2 (en) * 2002-09-26 2010-07-14 株式会社三徳 Hydrogen storage alloy and method for producing the same
JP3861788B2 (en) * 2002-09-30 2006-12-20 株式会社ユアサ開発 Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
CN100351413C (en) * 2005-12-01 2007-11-28 广州有色金属研究院 Preparation method of high capacity rare earth magnesium base hydrogen storage alloy
JP5196932B2 (en) * 2007-09-26 2013-05-15 三洋電機株式会社 Hydrogen storage alloy, hydrogen storage alloy electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery
WO2010057367A1 (en) * 2008-11-21 2010-05-27 包头稀土研究院 RE-Fe-B SERIES HYDROGEN STORAGE ALLOY AND USE THEREOF
WO2016029861A1 (en) * 2014-08-28 2016-03-03 包头稀土研究院 Rare-earth based hydrogen storage alloy and application thereof
TWI612538B (en) * 2016-08-03 2018-01-21 國立屏東科技大學 Alloy thin film resistor
CN109628756A (en) * 2019-01-04 2019-04-16 江苏理工学院 A method of purification small size aluminium and aluminium alloy melt
CN111471893B (en) * 2020-04-14 2021-09-03 包头稀土研究院 Doped A5B19Gadolinium-containing hydrogen storage alloy, electrode, battery and preparation method thereof
CN111471910B (en) * 2020-04-14 2021-12-03 包头稀土研究院 AB3Gadolinium-containing hydrogen storage alloy, electrode, battery and preparation method thereof
CN111471912B (en) * 2020-04-14 2022-01-11 包头稀土研究院 Doped AB3Hydrogen storage alloy, negative electrode, battery and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490477B2 (en) 2012-09-27 2016-11-08 Gs Yuasa International Ltd. Nickel-metal hydride storage battery including negative electrode containing yttrium substituted hydrogen storage alloy and electrolyte solution containing sodium hydroxide

Also Published As

Publication number Publication date
JPH0925529A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
JP3993890B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
JP3688716B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
JP3737163B2 (en) Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery
JP5146934B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP3869003B2 (en) Rare earth metal-nickel metal hydride alloy, process for producing the same, and negative electrode for nickel metal hydride secondary battery
JP5466015B2 (en) Nickel metal hydride storage battery and method for producing hydrogen storage alloy
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JP5718006B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery
EP0751229B1 (en) Age precipitation-containing rare earth metal-nickel alloy, method of producing the alloy, and anode for nickel-hydrogen rechargeable battery
JP5119551B2 (en) Hydrogen storage alloy, method for producing the same, and secondary battery
JP4647910B2 (en) Hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
WO2002081763A1 (en) Hydrogen storage alloy, production method therefor and ickel-hydrogen secondary battery-use cathode
JP5437544B2 (en) Manufacturing method of negative electrode for secondary battery
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP3924319B2 (en) Aging-precipitated rare earth metal-nickel alloy, process for producing the same, and negative electrode for nickel metal hydride secondary battery
JP2000087102A (en) Hydrogen storage alloy powder and electrode using same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term