WO2001069700A1 - Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell - Google Patents

Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell Download PDF

Info

Publication number
WO2001069700A1
WO2001069700A1 PCT/JP2001/001719 JP0101719W WO0169700A1 WO 2001069700 A1 WO2001069700 A1 WO 2001069700A1 JP 0101719 W JP0101719 W JP 0101719W WO 0169700 A1 WO0169700 A1 WO 0169700A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
negative electrode
nickel
hydrogen storage
secondary battery
Prior art date
Application number
PCT/JP2001/001719
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Tanibuchi
Yasushi Asahi
Toshimi Tokui
Kiyofumi Takamaru
Original Assignee
Santoku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corporation filed Critical Santoku Corporation
Publication of WO2001069700A1 publication Critical patent/WO2001069700A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a hydrogen storage alloy which has excellent corrosion resistance and can be used for a negative electrode material of a nickel hydrogen secondary battery to improve the battery life, and a nickel hydrogen secondary battery using the alloy. For negative electrodes.
  • Mm- N i- C o-A l- Mn -based AB 5 alloys are mainly used.
  • This alloy has a feature that it has a large hydrogen storage capacity compared to other alloys, and has a hydrogen absorption and release pressure at room temperature of 1 to 5 atm, making it easy to use. And then force, rare earth twelve Tsu Kell-based alloy of a conventional AB 5 type structure, the alloy contains the expansion and shrinkage crack by hydrogen absorption and release, there is a drawback of deteriorating the battery characteristics micronized.
  • the transition metal is composed of 4.5 to 5 transition metals in comparison with the rare-earth element 1 in atomic ratio. Alloys with increased La content in rare earth metals and Mn content in transition metals have been developed. However, there is a problem in that, as the electric capacity increases, pulverization and deterioration of corrosion resistance occur, and the battery life characteristics decrease.
  • Japanese Patent Application Laid-Open No. Hei 6-215765 in which at least one additive of an indium and a lithium compound is coated on the negative electrode surface, or A method of adding the compound to the inside of the negative electrode has been proposed.
  • Japanese Patent Publication No. 2713881 proposes that rare earths contain yttrium as an alloying element.
  • Japanese Patent Application Laid-Open No. H10-255529 proposes a hydrogen storage alloy excellent in initial activity, low-temperature characteristics, and high-rate discharge characteristics and containing 100 ppm or less of alkaline earth metal as an impurity. Those having a Vickers hardness of 600 kg mm 2 or more have been proposed.
  • the secondary battery negative electrode alloy has higher corrosion resistance during use and longer battery life as the hardness of the alloy is higher. Therefore, such alloys are being developed, but no alloys with a Vickers hardness of 900 kg Zinni 2 or more have been obtained. Disclosure of the invention
  • An object of the present invention is to provide a hydrogen storage alloy which has excellent alloy strength, suppresses fine powdering when used as a negative electrode material of a nickel-metal hydride secondary battery, and exhibits high corrosion resistance and high capacity. To provide a negative electrode for a nickel-metal hydride secondary battery.
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by appropriately selecting cooling conditions, heat treatment conditions, and the like with respect to a molten alloy having a specific composition, a Vickers hardness of 900 kgZmm
  • the present inventors have found that two or more hydrogen storage alloys can be obtained and that such an alloy can be used as a negative electrode material of a nickel hydrogen secondary battery to obtain a nickel hydrogen secondary battery that exhibits excellent performance.
  • a hydrogen storage alloy having a composition represented by the formula (1) and a Vickers hardness of 90 Ok gZmm 2 or more.
  • A is Y, Gd, Tb, Dy or a mixture thereof
  • R is La, Ce, Pr, Nd or a mixture thereof
  • M is Co, A1, Mn, Fe, Cu, Z r, T i, Mo, W, B or a mixed element thereof
  • x, y and n are 0.011 ⁇ x ⁇ 0.1, 0.011y ⁇ 0.5, 4. 9 ⁇ n ⁇ 5.4
  • a negative electrode for a nickel-metal hydride secondary battery including the hydrogen storage alloy and a conductive material.
  • the hydrogen storage alloy for manufacturing a negative electrode for a nickel-metal hydride secondary battery.
  • the hydrogen storage alloy of the present invention has a composition represented by the above formula (1), and has a Vickers hardness (hereinafter, referred to as Hv) of 900 kg / mm 2 or more, preferably 900 to 1500 kgZmm 2 , particularly preferably. is of 900 ⁇ 1200 k gZmm 2 alloy.
  • Hv Vickers hardness
  • A is Y (ittrium), Gd (gadmium), Tb (terbium), Dy (dysprosium) or a mixture thereof
  • R is La (lantern), Ce (cellium), P ⁇ ( (Praseodymium), Nd (neodymium) or a mixture thereof
  • M is Co (cobalt), A1 (anorenium), Mn (manganese), Fe (iron), Cu (copper), Zr (zirconium), Tr i Tan), Mo (molybdenum), W (tandasten), B (boron) or a mixture thereof.
  • xy and n are each such that X is 0.011 ⁇ x ⁇ 0.1, preferably 0.03 ⁇ x ⁇ 0.08, more preferably 0.03 ⁇ x ⁇ 0.05 y force 0.011 ⁇ y ⁇ 0.5 n is 4.9 ⁇ n ⁇ 5.4.
  • X is less than 0.01, the mechanical strength and corrosion resistance of the obtained alloy will be reduced, and the battery life will be significantly reduced when used as a negative electrode material for a secondary battery.
  • X exceeds 0.1, no improvement in mechanical strength and corrosion resistance of the obtained alloy is observed.
  • n is outside the above range, the second phase will precipitate and the corrosion resistance will be significantly reduced.
  • composition of the hydrogen storage alloy of the present invention is not particularly limited as long as the above formula is satisfied, and the following composition is preferably used.
  • the hydrogen-absorbing alloy of the present invention when producing a secondary battery using the alloy as a negative electrode material for a nickel-metal hydride secondary battery, has a constant temperature of 1.0 mAcm- 2 at a constant temperature of 25 ° C. It is preferable that the oxidation rate ((oxygen value after 200 cycles) Z (initial oxygen value)) after repeating charge / discharge for 200 cycles by electric current is 10.0% or less.
  • the average particle size is usually 60 m or less, preferably 10 to 50 im.
  • the method for producing the hydrogen storage alloy of the present invention is not particularly limited as long as an alloy having the composition represented by the above formula (1) and having an Hv of 900 kg / mm 2 or more can be obtained. Not done. For example, it can be obtained by appropriately selecting conditions from the conditions shown below with reference to the conditions of the examples described later. At this time, the important point is the value of X in the composition represented by the above formula (1). In short, the composition in which R is replaced with A is important, and the hydrogen storage alloy of the present invention can be obtained by adopting this composition and appropriately selecting cooling conditions and the like.
  • the molten alloy having the above composition is supplied to a single-roll cooling device or the like via a tundish, and a supercooling degree of 50 to 500 ° C and a cooling rate of 100 to L0000 ° C / sec are particularly preferable. Is solidified uniformly to a thickness of about 0.1 to 0.5 mm under cooling conditions of SOOO lOOOOtTC / sec.
  • the obtained alloy ribbon is subjected to a vacuum or an inert atmosphere at 600 to 1100.
  • C preferably 800-150.
  • C more preferably 850-1000.
  • the hydrogen storage alloy of the present invention is ground to a desired particle size by a pole mill, a disc mill, a hammer mill, or the like. It can be done by doing. This pulverization can be performed in an inert atmosphere, a hydrogen atmosphere, a vacuum, or the like.
  • a negative electrode for a nickel-metal hydride secondary battery of the present invention includes the hydrogen storage alloy and a conductive material.
  • it is not particularly limited as long as it contains the hydrogen storage alloy powder of the present invention having the above preferred particle size and a conductive material, and can be produced using a binder or the like according to a conventional method.
  • the negative electrode for a nickel-metal hydride secondary battery of the present invention has an oxidation rate ((2 0 0 0) after repeating charging and discharging 200 cycles at a constant temperature of 25 ° C. and a constant current of 1.0 mA′cm ⁇ 2 . Those having an oxygen value after cycle (initial oxygen value) of 10.0% or less are preferred. Since the hydrogen storage alloy of the present invention has a specific composition and excellent Hv, it has excellent alloy strength, and when used as a negative electrode material of a nickel-metal hydride secondary battery, pulverization is suppressed and high It shows insect resistance and high capacity.
  • the negative electrode for a nickel-hydrogen secondary battery of the present invention uses the above-mentioned hydrogen storage alloy, so that the battery life of the nickel-hydrogen secondary battery can be improved.
  • the obtained molten alloy was subjected to subcooling of 150 ° C. and a cooling rate of 200 to 500 ° C. for 0 seconds using a single roll forming apparatus equipped with a tundish. Strip alloys of 1-0.3 mm were produced. The obtained alloy was heat-treated at 950 ° C. for 6 hours in an argon gas atmosphere. Next, the obtained heat-treated alloy was mirror-polished, and the Hv of the alloy was measured using a micro hardness tester (manufactured by Akashi Seisakusho Co., Ltd.). Table 1 shows the results.
  • a hydrogen storage alloy was prepared in the same manner as in Example 1 except that the raw material composition was changed as shown in Table 1, and ⁇ was measured. Table 1 shows the results.
  • Example 1 the molten alloy was cooled by a single-roll forming apparatus by pouring into a water-cooled copper mold to obtain a 20-mm-thick alloy ingot, and heat-treated and pulverized as in Example 1. A hydrogen storage alloy was prepared and Hv was measured. Table 1 shows the results. Alloy composition ( ⁇ child ratio) AB x
  • Example 1 0.30 0.44 0.04 0.17 0.05 3.55 0.75 0.30 0.40 5.00 Single roll 990
  • Example 2 0.30 0.44 0.04 0. 17 0.05 3.40 0.80 0.30 0.40 4.90 Single roll 990
  • Example 3 0.35 0.42 0.03 0.15 0.05 3.75 0.60 0.30 0 45 5.10 980
  • Example 4 0.38 0.40 0.03 0.14 0.05 3.90 0.50 0.30 0.50 5.20
  • Example 5 0.42 0.40 0.02 0.11 0.05 4.20 0.40 0.30 0.50 5.40 Single roll 956
  • Example 6 0.30 0.45 0.04 0.18 0.03 3.
  • Example 7 0 30 0.45 0.04 0.18 0 03 0 50 0 50 5.20 Single roll 932
  • Example 8 0.28 0.47 0.05 0.19 0.01 3.55 0.75 0.30 0.40 5.00
  • Single roll 912 Example 9 0.28 0.47 0.05 0.19 0.01 3. 65 0.65 0.30 0.40 5.00
  • Single roll 900 Example 10 0.46 0.33 0.02 0.09 0.01 3.55 0.75 0.30 0.40 5.00
  • Example 11 0.30 0.44 0.04 0.17 0.03 3.55 0.7.5 5 0.30 0.40 5.00 Single Roll 940
  • Example 12 0.30 0.44 0. 04 0.17 0.
  • the alloy prepared in Example 1 was pulverized with a hammer mill, and the alloy powder (10 g), copper powder (1 g) as a conductive agent, and FEP (tetrafluoroethylene / tetrafluoropropylene copolymer) powder 0.3 were used. g was mixed to produce a 20 mm diameter pellet electrode.
  • the obtained electrode was immersed in a 6N KOH solution, a battery was constructed using a mercury oxide reference electrode, and the electrode characteristics were measured using a potentiogalvanostat (manufactured by Hokuto Denko). The measurement was conducted at a constant temperature of 25 ° C. and at a constant current of 60 mA / g for 200 cycles of charge / discharge.
  • oxidation rate (oxygen value after 200 cycles) / (initial oxygen value).
  • Example 16 in place of the alloy prepared in Example 1, the alloy prepared in Example 2 (Example 17), the alloy prepared in Example 4 (Example 18), and the alloy prepared in Example 6 were used.
  • the prepared alloy (Example 19), the alloy prepared in Example 7 ( ⁇ Example 20), the alloy prepared in Example 8 (Example 21), the alloy prepared in Comparative Example 1 (Comparative Example 5), the alloy prepared in Comparative Example 2 (Comparative Example 6), or the alloy prepared in Comparative Example 4 (Comparative Example 7), a pellet electrode was prepared in the same manner, and various measurements were performed. . Table 2 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

A hydrogen absorbing alloy having a chemical composition represented by the formula (1): AxR1-x(MyNi1-y)n wherein A represents Y, Gd, Tb, Dy or a mixture thereof, R represents La, Ce, Pr, Nd or a mixture thereof, M represents Co, Al, Mn, Fe, Cu, Zr, Ti, Mo, W, B or a mixture thereof, x, y and n are each a number independently satisfying 0.01 ≤ x ≤ 0.1, 0.01 ≤ y ≤ 0.5, or 4.9 ≤ n ≤ 5.4, and exhibits a Hv of 900 kg/mm2 or more; and a nickel-metal hydride secondary cell using the alloy. The hydrogen absorbing alloy is excellent in strength and, when used as the material of a negative electrode of a nickel-metal hydride secondary cell, exhibits suppressed pulverization, high corrosion resistance and high capacity.

Description

水素吸蔵合金及び二ッケル水素 2次電池用負極  Negative electrode for hydrogen storage alloy and nickel hydrogen secondary battery
技術分野 Technical field
本発明は、 耐蝕性に優れ、 二ッケル水素 2次電池の負極材料に利用することに より、 電池寿命を向上させることができる水素吸蔵合金及ぴ該合金を用いた二ッ ケル水素 2次電池用負極に関する。  The present invention relates to a hydrogen storage alloy which has excellent corrosion resistance and can be used for a negative electrode material of a nickel hydrogen secondary battery to improve the battery life, and a nickel hydrogen secondary battery using the alloy. For negative electrodes.
背景技術 Background art
現在生産されているニッケル水素 2次電池の負極合金としては、 Mm— N i— C o—A l— Mn系の A B 5合金が主に使用されている。 この合金は水素吸蔵量 が他の合金に比べて大きく、 常温における水素吸収放出圧が 1〜 5気圧と使用に 供し易いという特徴を有している。 し力 し、 従来の A B 5型構造の希土類一二ッ ケル系合金は、 水素吸収放出によって合金が膨張収縮しクラックが入り、 微粉化 して電池特性を劣化させるという欠点がある。 また、 近年、 高電気容量の電極が 望まれており、 電気容量を増加させるために合金組成を原子比で希土類元素 1に 対して、 遷移金属 4 . 5〜 5とした、 希土類元素を多く含有させた合金、 あるい は希土類金属中の L a量や、 遷移金属中の Mn量を増加させた合金が開発されて いる。 しかし、 電気容量の増加に伴い、 微粉化、 耐蝕性の劣化が生じ電池寿命特 性が低下するという問題がある。 As the negative electrode alloys of the nickel-hydrogen secondary battery which is currently produced, Mm- N i- C o-A l- Mn -based AB 5 alloys are mainly used. This alloy has a feature that it has a large hydrogen storage capacity compared to other alloys, and has a hydrogen absorption and release pressure at room temperature of 1 to 5 atm, making it easy to use. And then force, rare earth twelve Tsu Kell-based alloy of a conventional AB 5 type structure, the alloy contains the expansion and shrinkage crack by hydrogen absorption and release, there is a drawback of deteriorating the battery characteristics micronized. In recent years, high-capacity electrodes have been desired, and in order to increase the electric capacity, the transition metal is composed of 4.5 to 5 transition metals in comparison with the rare-earth element 1 in atomic ratio. Alloys with increased La content in rare earth metals and Mn content in transition metals have been developed. However, there is a problem in that, as the electric capacity increases, pulverization and deterioration of corrosion resistance occur, and the battery life characteristics decrease.
電池寿命の改善に関しては、 C o量を増大させる方法、 また、 特開平 6— 2 1 5 7 6 5号公報に、 イツトリゥム及ぴィットリゥム化合物の少なくとも一種の添 加物を負極表面に塗布、 あるいは負極内部へ添加する方法が提案されている。 更 に、 日本国特許公報第 2 7 1 3 8 8 1号には、 合金元素として希土類中にィット リゥムを含ませることが提案されている。 特開平 1 0— 2 5 5 2 9号公報には、 初期活性、 低温特性、 高率放電特性に優れた、 不純物としてアルカリ土類金属が 1 0 0 p p m以下の水素吸蔵合金が提案され、 そのビッカース硬度が 6 0 0 k g mm 2以上のものが提案されている。 Regarding the improvement of the battery life, a method of increasing the amount of Co is disclosed in Japanese Patent Application Laid-Open No. Hei 6-215765, in which at least one additive of an indium and a lithium compound is coated on the negative electrode surface, or A method of adding the compound to the inside of the negative electrode has been proposed. Further, Japanese Patent Publication No. 2713881 proposes that rare earths contain yttrium as an alloying element. Japanese Patent Application Laid-Open No. H10-255529 proposes a hydrogen storage alloy excellent in initial activity, low-temperature characteristics, and high-rate discharge characteristics and containing 100 ppm or less of alkaline earth metal as an impurity. Those having a Vickers hardness of 600 kg mm 2 or more have been proposed.
ところで、 2次電池負極用合金は、 合金の硬度が高い程使用時における耐蝕性 に優れ、電池寿命が向上する。 そこで、 このような合金開発が進められているが、 現在、 ビッカース硬度が 9 0 0 k g Zinni 2以上のものは得られていない。 発明の開示 By the way, the secondary battery negative electrode alloy has higher corrosion resistance during use and longer battery life as the hardness of the alloy is higher. Therefore, such alloys are being developed, but no alloys with a Vickers hardness of 900 kg Zinni 2 or more have been obtained. Disclosure of the invention
本発明の目的は、 合金強度に優れ、 ニッケル水素 2次電池の負極材料として使 用した際に、 微粉ィ匕が抑制され、 高耐蝕性並びに高容量を示す水素吸蔵合金及ぴ 該合金を用いたニッケル水素 2次電池用負極を提供することにある。  An object of the present invention is to provide a hydrogen storage alloy which has excellent alloy strength, suppresses fine powdering when used as a negative electrode material of a nickel-metal hydride secondary battery, and exhibits high corrosion resistance and high capacity. To provide a negative electrode for a nickel-metal hydride secondary battery.
本発明者らは、 上記課題を解決するために、 鋭意検討した結果、 特定の組成を 有する合金溶湯に対して、 冷却条件、 熱処理条件等を適宜組合せて選択すること により、 ビッカース硬度 900 k gZmm2以上の水素吸蔵合金が得られること、 このような合金を二ッケル水素 2次電池の負極材料に用いることにより優れた性 能を示す-ッケル水素 2次電池が得られることを見出し、 本発明を完成した。 すなわち、 本発明によれば、 式(1)で表される組成を有し、 且つビッカース硬 度が 90 Ok gZmm2以上である水素吸蔵合金が提供される。 The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, by appropriately selecting cooling conditions, heat treatment conditions, and the like with respect to a molten alloy having a specific composition, a Vickers hardness of 900 kgZmm The present inventors have found that two or more hydrogen storage alloys can be obtained and that such an alloy can be used as a negative electrode material of a nickel hydrogen secondary battery to obtain a nickel hydrogen secondary battery that exhibits excellent performance. Was completed. That is, according to the present invention, there is provided a hydrogen storage alloy having a composition represented by the formula (1) and a Vickers hardness of 90 Ok gZmm 2 or more.
ΑΧΙ^— x(MyN iい y)n ···(!) Α Χ Ι ^ — x (M y N i y y ) n
(式中、 Aは Y、 Gd、 Tb、 Dy又はこれらの混合物、 Rは La、 C e、 P r、 Nd又はこれらの混合物、 Mは C o、 A 1、 Mn、 F e、 Cu、 Z r、 T i、 M o、 W、 B又はこれらの混合元素を示す。 x、 y及ぴ nは、 それぞれ 0. 01≤ x≤0. 1、 0. 01≤y≤0. 5、 4. 9≤ n≤ 5. 4である)  (Wherein, A is Y, Gd, Tb, Dy or a mixture thereof, R is La, Ce, Pr, Nd or a mixture thereof, M is Co, A1, Mn, Fe, Cu, Z r, T i, Mo, W, B or a mixed element thereof, x, y and n are 0.011≤x≤0.1, 0.011y≤0.5, 4. 9≤n≤5.4)
また本発明によれば、 前記水素吸蔵合金と、 導電材とを含むニッケル水素 2次 電池用負極が提供される。  Further, according to the present invention, there is provided a negative electrode for a nickel-metal hydride secondary battery including the hydrogen storage alloy and a conductive material.
更に本発明によれば、 前記水素吸蔵合金の、 ニッケル水素 2次電池用負極の製 造への使用が提供される。  Further, according to the present invention, there is provided use of the hydrogen storage alloy for manufacturing a negative electrode for a nickel-metal hydride secondary battery.
発明の好ましい実施の態様 Preferred embodiments of the invention
以下、 本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明の水素吸蔵合金は、 上記式(1)で表される組成を有し、 且つビッカース 硬度 (以下、 Hvという)が 900 k g/mm2以上、好ましくは 900〜 1500 k gZmm2、 特に好ましくは 900〜1200 k gZmm2の合金である。 The hydrogen storage alloy of the present invention has a composition represented by the above formula (1), and has a Vickers hardness (hereinafter, referred to as Hv) of 900 kg / mm 2 or more, preferably 900 to 1500 kgZmm 2 , particularly preferably. is of 900~1200 k gZmm 2 alloy.
式(1)中 Aは、 Y (イツトリゥム)、 Gd (ガドミゥム)、 Tb (テルビウム)、 Dy (ジ スプロシゥム)又はこれらの混合物、 Rは L a (ランタン)、 C e (セリゥム)、 P τ (プ ラセオジム)、 Nd (ネオジム)又はこれらの混合物、 Mは Co (コバルト)、 A 1 (ァ ノレミニゥム)、 Mn (マンガン)、 F e (鉄)、 Cu (銅)、 Z r (ジルコニウム)、 T i (チ タン)、 M o (モリブデン)、 W (タンダステン)、 B (ホウ素)又はこれらの混合物を示 す。 x y及び nは、 それぞれ Xが、 0. 01^x^0. 1、 好ましくは 0. 0 3≤x≤0. 08、 更に好ましくは 0. 03≤x≤0. 05 y力 0. 01≤y ≤0. 5 nが 4. 9≤n≤ 5. 4である。 In the formula (1), A is Y (ittrium), Gd (gadmium), Tb (terbium), Dy (dysprosium) or a mixture thereof, and R is La (lantern), Ce (cellium), P τ ( (Praseodymium), Nd (neodymium) or a mixture thereof, M is Co (cobalt), A1 (anorenium), Mn (manganese), Fe (iron), Cu (copper), Zr (zirconium), Tr i Tan), Mo (molybdenum), W (tandasten), B (boron) or a mixture thereof. xy and n are each such that X is 0.011 ^ x ^ 0.1, preferably 0.03≤x≤0.08, more preferably 0.03≤x≤0.05 y force 0.011≤ y ≤ 0.5 n is 4.9 ≤ n ≤ 5.4.
Xが 0. 01未満では、 得られる合金の機械的強度及び耐蝕性が低下し、 2次 電池の負極材料とした際に電池寿命が著しく低下する。 Xが 0. 1を超える場合、 得られる合金の機械的強度及び耐蝕性の向上は見られない。 nが上記範囲外では、 第二相が析出し耐蝕性が著しく低下する。  If X is less than 0.01, the mechanical strength and corrosion resistance of the obtained alloy will be reduced, and the battery life will be significantly reduced when used as a negative electrode material for a secondary battery. When X exceeds 0.1, no improvement in mechanical strength and corrosion resistance of the obtained alloy is observed. If n is outside the above range, the second phase will precipitate and the corrosion resistance will be significantly reduced.
本発明の水素吸蔵合金の組成としては、 上記式を充足すれば特に限定されず、 以下の,組成が好ましく拳げられる。
Figure imgf000004_0001
The composition of the hydrogen storage alloy of the present invention is not particularly limited as long as the above formula is satisfied, and the following composition is preferably used.
Figure imgf000004_0001
La0. 3 5Ce0. 4 0. 03Nd0. Y o5(Ni3. 75 Co 0. 60-^-0. 3 0Mn0. 45)5. 1 ... La 0 3 5 Ce 0 4 0. 03 Nd 0 Y o 5. (Ni 3 75 Co 0. 60 -. ^ -.. 0 3 0 Mn 0 45) 5 1
La 3 8Ce0, 4 0. 03Nd0. 05( i3. 9 o^00 t 50-^-0. 3 0 n0. 50)5, 2 . La 3 8 Ce 0, 4 0. 03 Nd 0 05 (i 3 9 o ^ 0 0 t 50 -. ^ -.. 0 3 0 n 0 50) 5, 2
La0. 4 2Ce0< 40 r 0. 02Nd0. 1 1 Y x 0. 05( i4. 20
Figure imgf000004_0002
3 0 n0. 50)5 * 40
La 0. 4 2 Ce 0 < 40 r 0. 02 Nd 0. 1 1 Y x 0. 05 (i 4. 20
Figure imgf000004_0002
3 0 n 0 .50) 5 * 40
La0. 3 0Ce0, 45 x A 0. 04NdQ. Y o3(Ni3. 55C00. 75-^0. 3 0Mn0. 40)5 La 0. 3 0 Ce 0, 45 x A 0. 04 Nd Q. Y o 3 (Ni 3. 55C00. 75- ^ 0. 3 0 Mn 0. 40) 5
La0. 3 0Ce0. 45 0. 04Nd0. 1 8 Y 10. o3( i3. 90 Co o , 50-^-0. 3 0 n0. 50)5· 2
Figure imgf000004_0003
3 0Mn0. 40 5
... La 0 3 0 Ce 0 45 0. 04 Nd 0 1 8 Y 1 0. o 3 (i 3 90 Co o, 50 -. ^ -.. 0 3 0 n 0 50) 5 · 2
Figure imgf000004_0003
3 0 Mn 0. 40 5
0. 28 Pr0. 05Nd0. 19 Y 10. 0具. 65 Co0.6 5A10. 3 o n0. 40) 5ヽ 0. 28 Pr 0. 05 Nd 0 . 19 Y 1 0. 0 immediately. 65 Co 0. 6 5 A1 0. 3 on 0. 40) 5ヽ
La0.4 e Cec Pr0. 02Nd0. 09 Y 0. 1 o( i3. 55 Co0.7 5AI0. 40)5ヽ Lan ¾nCef Pr0. 04Nd0. 3 0Mn0 . 40) 5ヽ La 0 .4 e Ce c Pr 0 . 02 Nd 0. 09 Y 0. 1 o (i 3. 55 Co 0. 7 5 AI 0. 40) 5ヽ La n ¾n Ce f Pr 0. 04 Nd 0. 3 0 Mn 0. 40) 5 ヽ
La ,Ce( Pr0. 04Nd0,
Figure imgf000004_0004
30Mn0 . 40)5、 La ,Ce( Pr0. 04Nd0. i 7Dy0. 03(Ni3 . 5 5Co0. 75 0 , 30Mn0 • 40)5、 La 0. 3 ,Ce( Pr0. o4Nd0. i 7Dy0. 05(Ni3 . 40)5、
La, Ce (Pr 0. 04 Nd 0,
Figure imgf000004_0004
3 0 Mn 0. 40) 5 , La, Ce (Pr 0. 04 Nd 0. I 7 Dy 0. 03 (Ni 3. 5 5 Co 0. 75 0, 30 Mn 0 • 40) 5, La 0. 3 , Ce (Pr 0. o 4 Nd 0. i 7 Dy 0. 05 (Ni 3. 40) 5,
La 0. 30 Ce o . Pr0. 04Nd0.1 7 T xbuo . 05(Ni3 .
Figure imgf000004_0005
40)5 本発明の水素吸蔵合金は、 該合金をニッケル水素 2次電池用負極材料とした 2 次電池を作製した際に、 25°Cの恒温で、 1. 0 mA · cm— 2の定電流により充 放電を 200サイクル繰返した後の酸化率 ((200サイクル後の酸素値) Z (初期 酸素値))が 10. 0 %以下を示すことが好ましい。 本発明の水素吸蔵合金をニッケル水素 2次電池負極の製造に使用する際には、 その粒度は、 平均粒度で通常 6 0 m以下、 好ましくは 1 0〜 5 0 i mである。 本発明の水素吸蔵合金を製造する方法としては、 上記式(1 )で示される組成を 有し、 且つ H vが 9 0 0 k g /mm 2以上を示す合金が得られ方法であれば特に 限定されない。 例えば、 以下に示す条件から、 後述する実施例の条件等を参照し て適宜条件を選択することにより得ることができる。 この際、 重要な点は、 上記 式(1 )で示される組成における Xの値である。 要するに、 Rを Aで置換する組成 が重要であり、 この組成を採用し冷却条件等を適宜選択することにより本発明の 水素吸蔵合金を得ることができる。
La 0. 30 Ce o. Pr 0 . 04 Nd 0 .1 7 T x b u o. 05 (Ni 3.
Figure imgf000004_0005
40) 5 The hydrogen-absorbing alloy of the present invention, when producing a secondary battery using the alloy as a negative electrode material for a nickel-metal hydride secondary battery, has a constant temperature of 1.0 mAcm- 2 at a constant temperature of 25 ° C. It is preferable that the oxidation rate ((oxygen value after 200 cycles) Z (initial oxygen value)) after repeating charge / discharge for 200 cycles by electric current is 10.0% or less. When the hydrogen storage alloy of the present invention is used for the production of a negative electrode for a nickel-hydrogen secondary battery, the average particle size is usually 60 m or less, preferably 10 to 50 im. The method for producing the hydrogen storage alloy of the present invention is not particularly limited as long as an alloy having the composition represented by the above formula (1) and having an Hv of 900 kg / mm 2 or more can be obtained. Not done. For example, it can be obtained by appropriately selecting conditions from the conditions shown below with reference to the conditions of the examples described later. At this time, the important point is the value of X in the composition represented by the above formula (1). In short, the composition in which R is replaced with A is important, and the hydrogen storage alloy of the present invention can be obtained by adopting this composition and appropriately selecting cooling conditions and the like.
製造条件としては、 例えば、 上記組成の合金溶湯を、 タンディッシュを介して 単ロール冷却装置等に供給し、過冷度 50〜500°C、冷却速度 100〜; L0000°C/秒、 特に好ましくは SOOO lOOOtTC/秒の冷却条件で厚さ 0 . l〜 0 . 5 mm程度に 均一に凝固させる。 次いで、 得られた合金薄帯を真空中若しくは不活性雰囲気中 で、 600〜: 1100。C、 好ましくは 800〜1050。C、 更に好ましくは 850〜1000。Cで、 0 . :!〜 1 2時間、 好ましくは 1〜 8時間、 更に好ましくは 4〜 6時間加熱処理 する方法等の各条件を適宜選定することにより得ることができる。  As the production conditions, for example, the molten alloy having the above composition is supplied to a single-roll cooling device or the like via a tundish, and a supercooling degree of 50 to 500 ° C and a cooling rate of 100 to L0000 ° C / sec are particularly preferable. Is solidified uniformly to a thickness of about 0.1 to 0.5 mm under cooling conditions of SOOO lOOOOtTC / sec. Next, the obtained alloy ribbon is subjected to a vacuum or an inert atmosphere at 600 to 1100. C, preferably 800-150. C, more preferably 850-1000. In C, 0.:! It can be obtained by appropriately selecting each condition such as a heat treatment method for up to 12 hours, preferably 1 to 8 hours, more preferably 4 to 6 hours.
この際、 冷却速度が 100°C/秒未満では、 得られる合金の強度及ぴ耐蝕性の向 上は期待できない。  At this time, if the cooling rate is less than 100 ° C / sec, improvement in the strength and corrosion resistance of the obtained alloy cannot be expected.
本発明の水素吸蔵合金を、 例えば、 ニッケル水素 2次電池負極の製造に使用す るために合金粉末とするには、 水素吸蔵合金を、 ポールミル、 ディスクミル、 ハ ンマーミル等により所望粒度に粉砕することにより行うことができる。 この粉砕 は、 不活性雰囲気中、 水素雰囲気中、 真空中等で実施できる。  In order to make the hydrogen storage alloy of the present invention into an alloy powder for use in, for example, manufacturing a negative electrode of a nickel-metal hydride secondary battery, the hydrogen storage alloy is ground to a desired particle size by a pole mill, a disc mill, a hammer mill, or the like. It can be done by doing. This pulverization can be performed in an inert atmosphere, a hydrogen atmosphere, a vacuum, or the like.
本発明のニッケル水素 2次電池用負極は、 前記水素吸蔵合金と、 導電材とを含 む。 好ましくは、 前記好ましい粒度を有する本発明の水素吸蔵合金粉末と、 導電 材とを含んでおれば特に限定されず、 常法にしたがって結着剤等を用いて製造で きる。  A negative electrode for a nickel-metal hydride secondary battery of the present invention includes the hydrogen storage alloy and a conductive material. Preferably, it is not particularly limited as long as it contains the hydrogen storage alloy powder of the present invention having the above preferred particle size and a conductive material, and can be produced using a binder or the like according to a conventional method.
本発明のニッケル水素 2次電池用負極は、 2 5 °Cの恒温で、 1 . 0 mA ' c m 一2の定電流により充放電を 2 0 0サイクル繰返した後の酸化率 ((2 0 0サイクル 後の酸素値)ノ(初期酸素値))が 1 0 . 0 %以下を示すものが好ましい。 本発明の水素吸蔵合金は、 特定組成を有し、 且つ優れた H vを有するので、 合 金強度に優れ、 ニッケル水素 2次電池の負極材料として使用した際に、 微粉化が 抑制され、 高耐食虫性並びに高容量を示す。 The negative electrode for a nickel-metal hydride secondary battery of the present invention has an oxidation rate ((2 0 0 0) after repeating charging and discharging 200 cycles at a constant temperature of 25 ° C. and a constant current of 1.0 mA′cm− 2 . Those having an oxygen value after cycle (initial oxygen value) of 10.0% or less are preferred. Since the hydrogen storage alloy of the present invention has a specific composition and excellent Hv, it has excellent alloy strength, and when used as a negative electrode material of a nickel-metal hydride secondary battery, pulverization is suppressed and high It shows insect resistance and high capacity.
本発明のニッケル水素 2次電池用負極は、 上記水素吸蔵合金を用いるので、 二 ッケル水素 2次電池の電池寿命を向上させることができる。  The negative electrode for a nickel-hydrogen secondary battery of the present invention uses the above-mentioned hydrogen storage alloy, so that the battery life of the nickel-hydrogen secondary battery can be improved.
実施例 Example
以下、 本発明を実施例及び比較例により更に詳細に説明するが、 本発明はこれ らに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
実施例 1  Example 1
出発原料として、 三徳金属工業 (株) (現 (株)三徳、 以下同様)製のィットリウムメ タル、 ランタンメタル、 セリウムメタル、 プラセオジムメタル及びネオジムメタ ルと、 希土類組成が L a 2 5容量%、 C e 5 0容量0 /0、 P r 5容量%及ぴ 3 2 0容量%である、三徳金属工業 (株)製の Mm (ミッシュメタル)と、鈍度 9 9 . 9 % の N iと、 純度 9 9 . 9 %の A 1、 M n及ぴ C oとを、 表 1に示す組成になるよ うに配合し、 アルゴンガス雰囲気中で高周波溶解し、 合金溶湯を調製した。 続い て、 得られた合金溶湯を、 タンディッシュを備えた単ロール铸造装置を用いて過 冷度 1 5 0 °C、 冷却速度 2 0 0 0〜 5 0 0 0 °CZ秒の条件で、 0 . 1〜 0 . 3 m mの帯状合金を製造した。 得られた合金をアルゴンガス雰囲気中、 9 5 0 °C、 6 時間熱処理した。 次いで、 得られた熱処理後の合金を、 鏡面研磨し、 合金の H v を、 微小硬度測定機 ((株)明石製作所製)を用いて測定した。 結果を表 1に示す。 As starting materials, yttrium metal, lanthanum metal, cerium metal, praseodymium metal and neodymium metal manufactured by Santoku Metal Industry Co., Ltd. (currently Santoku Co., Ltd., same hereafter), rare earth composition of La 25 vol. 5 0 volume 0/0, P r 5 volume%及Pi 3 2 0 volume%, and Santoku metal industry Co., Ltd. Mm (misch metal), and Dondo 9 9.9% of N i, purity 99.9% of A1, Mn and Co were blended so as to have the composition shown in Table 1, and were subjected to high frequency melting in an argon gas atmosphere to prepare a molten alloy. Subsequently, the obtained molten alloy was subjected to subcooling of 150 ° C. and a cooling rate of 200 to 500 ° C. for 0 seconds using a single roll forming apparatus equipped with a tundish. Strip alloys of 1-0.3 mm were produced. The obtained alloy was heat-treated at 950 ° C. for 6 hours in an argon gas atmosphere. Next, the obtained heat-treated alloy was mirror-polished, and the Hv of the alloy was measured using a micro hardness tester (manufactured by Akashi Seisakusho Co., Ltd.). Table 1 shows the results.
実施例 2〜: L 5、 比較例 1〜 3  Examples 2 to: L5, Comparative Examples 1 to 3
原料組成を表 1に示すとおり代えた以外は、 実施例 1と同様に水素吸蔵合金を 調製し、 Η νを測定した。 結果を表 1に示す。  A hydrogen storage alloy was prepared in the same manner as in Example 1 except that the raw material composition was changed as shown in Table 1, and Δν was measured. Table 1 shows the results.
比較例 4  Comparative Example 4
実施例 1において、 単ロール铸造装置による合金溶湯の冷却を、 水冷式銅型に 注湯し、 厚さ 2 0 mmの合金铸塊を得、 実施例 1と同様に熱処理及び粉砕を行な つて、 水素吸蔵合金を調製し、 H vを測定した。 結果を表 1に示す。 合 金 組 成 (^子比) AB x In Example 1, the molten alloy was cooled by a single-roll forming apparatus by pouring into a water-cooled copper mold to obtain a 20-mm-thick alloy ingot, and heat-treated and pulverized as in Example 1. A hydrogen storage alloy was prepared and Hv was measured. Table 1 shows the results. Alloy composition (^ child ratio) AB x
L a C e P r N d γ G d D y T b N i C o A l Mn の X  L a C e P r N d γ G d D y T b N i C o A l Mn X
実施例 1 0. 30 0. 44 0. 04 0. 17 0. 05 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 990 実施例 2 0. 30 0. 44 0. 04 0. 17 0. 05 3. 40 0. 80 0. 30 0. 40 4. 90 単ロール 990 実施例 3 0. 35 0. 42 0. 03 0. 15 0. 05 3. 75 0. 60 0. 30 0. 45 5. 10 ール 980 実施例 4 0. 38 0. 40 0. 03 0. 14 0. 05 3. 90 0. 50 0. 30 0. 50 5. 20 単ロール 976 実施例 5 0. 42 0. 40 0. 02 0. 11 0. 05 4. 20 0. 40 0. 30 0. 50 5. 40 単ロール 956 実施例 6 0. 30 0. 45 0. 04 0. 18 0. 03 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 9^0 実施例 7 0 30 0. 45 0. 04 0. 18 0 03 0 50 0 50 5. 20 単ロール 932 実施例 8 0. 28 0. 47 0. 05 0. 19 0. 01 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 912 実施例 9 0. 28 0. 47 0. 05 0. 19 0. 01 3. 65 0. 65 0. 30 0. 40 5. 00 単ロール 900 実施例 10 0. 46 0. 33 0. 02 0. 09 0. 01 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 1000 実施例 11 0. 30 0. 44 0. 04 0. 17 0. 03 3. 55 0. 7 5 0. 30 0. 40 5. 00 単ロール 940 実施例 12 0. 30 0. 44 0. 04 0. 17 0. 05 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 978 実施例 13 0. 30 0. 44 0. 04 0. 17 0. 03 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 942 実施例 14 0. 30 0. 44 0. 04 0. 17 0. 05 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 980 実施例 15 0. 30 0. 44 0. 04 0. 17 0. 05 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 985 比較例 1 0. 32 0. 46 0. 04 0. 18 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 850 比較例 2 0. 41 0. 42 0. 03 0. 14 3. 90 0. 50 0. 30 0. 50 5. 20 単ロール 813 比較例 3 0. 48 0. 30 0. 02 0. 05 0. 15 3. 55 0. 75 0. 30 0. 40 5. 00 単ロール 855 比較例 4 0. 30 0. 44 0. 04 0. 17 0. 05 3. 55 0. 75 0. 30 0. 40 5. 00 840 Example 1 0.30 0.44 0.04 0.17 0.05 3.55 0.75 0.30 0.40 5.00 Single roll 990 Example 2 0.30 0.44 0.04 0. 17 0.05 3.40 0.80 0.30 0.40 4.90 Single roll 990 Example 3 0.35 0.42 0.03 0.15 0.05 3.75 0.60 0.30 0 45 5.10 980 Example 4 0.38 0.40 0.03 0.14 0.05 3.90 0.50 0.30 0.50 5.20 Single roll 976 Example 5 0.42 0.40 0.02 0.11 0.05 4.20 0.40 0.30 0.50 5.40 Single roll 956 Example 6 0.30 0.45 0.04 0.18 0.03 3. 55 0.75 0.30 0.40 5.00 Single roll 9 ^ 0 Example 7 0 30 0.45 0.04 0.18 0 03 0 50 0 50 5.20 Single roll 932 Example 8 0.28 0.47 0.05 0.19 0.01 3.55 0.75 0.30 0.40 5.00 Single roll 912 Example 9 0.28 0.47 0.05 0.19 0.01 3. 65 0.65 0.30 0.40 5.00 Single roll 900 Example 10 0.46 0.33 0.02 0.09 0.01 3.55 0.75 0.30 0.40 5.00 Single Roll 1000 Example 11 0.30 0.44 0.04 0.17 0.03 3.55 0.7.5 5 0.30 0.40 5.00 Single Roll 940 Example 12 0.30 0.44 0. 04 0.17 0. 05 3.55 0.75 0.30 0.40 5.00 Single roll 978 Example 13 0.30 0.44 0.04 0.17 0.03 3.55 0.75 0.30 0.405 00 Single Roll 942 Example 14 0.30 0.44 0.04 0.17 0.05 3.55 0.75 0.30 0.40 5.00 Single Roll 980 Example 15 0.30 0.34 0.04 0.17 0.05 3.55 0.75 0.30 0.40 5.00 Single roll 985 Comparative example 1 0.32 0.46 0.04 0.18 3.55 0.75 0. 30 0.40 5.00 Single roll 850 Comparative example 2 0.41 0.42 0.03 0.14 3.90 0.50 0.30 0.50 5.20 Single roll 813 Comparative example 3 0.48 0 30 0.02 0.05 0.15 3.55 0.75 0.30 0.40 5.00 Single roll 855 Comparative example 4 0.30 0.44 0.04 0.17 0.05 3.55 0.75 0.30 0.40 5.00 840
実施例 1 6 Example 16
実施例 1で調製した合金をハンマーミルにて粉碎し、 その合金粉末 1 0 gと、 導電剤として銅粉 1 gと、 F E P (4フッ化工チレン 6フッ化プロピレン共重合 体)粉末 0 . 3 gとを混合し、直径 2 0 mmのペレツト電極を作製した。 得られた 電極を 6規定の KO H溶液に浸漬し、 酸化水銀参照電極を用いて電池を構成し、 ポテンショガルバノスタツト (北斗電工製)により電極特性を測定した。 測定条件 は、 2 5 °Cの恒温、 6 0 m A/ gの定電流で充放電を 2 0 0サイクル行なった。 また、 測定前及ぴ 2 0 0サイクル後のペレツ ト電極の酸素値について、 HORIBA製酸素分析装置を用いて酸素値を測定した。更に、 2 0 0サイクル後の ペレット電極中における合金粉末の粒度分布を、 日機装マイクロトラックで測定 した。 結果を表 2に示す。 なお、 表 2中の酸ィヒ率は、酸化率 =(2 0 0サイクル後 の酸素値)/ (初期酸素値)により求めた。  The alloy prepared in Example 1 was pulverized with a hammer mill, and the alloy powder (10 g), copper powder (1 g) as a conductive agent, and FEP (tetrafluoroethylene / tetrafluoropropylene copolymer) powder 0.3 were used. g was mixed to produce a 20 mm diameter pellet electrode. The obtained electrode was immersed in a 6N KOH solution, a battery was constructed using a mercury oxide reference electrode, and the electrode characteristics were measured using a potentiogalvanostat (manufactured by Hokuto Denko). The measurement was conducted at a constant temperature of 25 ° C. and at a constant current of 60 mA / g for 200 cycles of charge / discharge. Further, the oxygen value of the pellet electrode before and after the 200 cycles was measured using a HORIBA oxygen analyzer. Further, the particle size distribution of the alloy powder in the pellet electrode after 200 cycles was measured by Nikkiso Microtrack. Table 2 shows the results. The acid rate in Table 2 was determined by the following equation: oxidation rate = (oxygen value after 200 cycles) / (initial oxygen value).
実施例 1 7〜 2 1及ぴ比較例 5〜 6  Examples 17 to 21 and Comparative Examples 5 to 6
実施例 1 6において、 実施例 1で調製した合金の代わりに、 実施例 2で調製し た合金 (実施例 1 7 )、実施例 4で調製した合金 (実施例 1 8 )、実施例 6で調製した 合金 (実施例 1 9 )、実施例 7で調製した合金 (^施例 2 0 )、実施例 8で調製した合 金 (実施例 2 1 )、比較例 1で調製した合金 (比較例 5 )、比較例 2で調製した合金 (比 較例 6 )、 又は比較例 4で調製した合金 (比較例 7 )を用いた以外は、 同様にペレツ ト電極を作製し、 各種測定を行なった。 結果を表 2に示す。 In Example 16, in place of the alloy prepared in Example 1, the alloy prepared in Example 2 (Example 17), the alloy prepared in Example 4 (Example 18), and the alloy prepared in Example 6 were used. The prepared alloy (Example 19), the alloy prepared in Example 7 (^ Example 20), the alloy prepared in Example 8 (Example 21), the alloy prepared in Comparative Example 1 (Comparative Example 5), the alloy prepared in Comparative Example 2 (Comparative Example 6), or the alloy prepared in Comparative Example 4 (Comparative Example 7), a pellet electrode was prepared in the same manner, and various measurements were performed. . Table 2 shows the results.
表 2 電池容量 (mAh/g) 容量低下率 酸素値 (P m) 酸化率 (%) Table 2 Battery capacity (mAh / g) Capacity decrease rate Oxygen value (P m) Oxidation rate (%)
5サイクル時 200サイク (200サイク 初期 200サイク难 初期 200サイク膽 実施例 16 310 285 91. 9 670 5200 7. 8 50 45 実施例 17 320 293 91. 6 690 4800 7. 0 50 43 実施例 18 305 282 92. 5 610 4600 7. 5 50 44 実施例 19 310 280 90. 3 590 5400 9. 2 50 44 実施例 20 300 275 91. 7 640 5200 8. 1 50 41 実施例 21 315 285 90. 5 620 4900 7. 9 50 46 比較例 5 315 185 58. 7 740 9500 12. 8 50 21 比較例 6 310 160 51. 6 755 12000 15. 9 50 15 比較例 7 310 240 77. 4 720 8300 11. 5 50 19  5 cycles 200 cycles (200 cycles initial 200 cycles 难 initial 200 cycles) Example 16 310 285 91. 9 670 5200 7.8 50 45 Example 17 320 293 91. 6 690 4800 7.0 50 43 Example 18 305 282 92.5 610 4600 7.5 50 44 Example 19 310 280 90.3 590 5400 9.2 50 44 Example 20 300 275 91.7 640 5200 8.1 50 41 Example 21 315 285 90.5 620 4900 7.95 50 Comparative example 5 315 185 58.7 740 9500 12.8 50 21 Comparative example 6 310 160 51.6 755 12000 15.9 50 15 Comparative example 7 310 240 77.4 720 8300 11.5 50 19

Claims

請求の範囲 1)式(1)で表される組成を有し、 且つピッカース硬库が 900 k g /mm 2以上 である水素吸蔵合金。 AxR1--x(MyN i い y)n …ひ) Claims 1) A hydrogen storage alloy having a composition represented by the formula (1) and a Pickers hardness of 900 kg / mm 2 or more. AxR1--x (MyN i or y) n… hi)
(式(1)中、 Aは Y、 Gd、 Tb、 : Dy又はこれらの混合物、 Rは L a、 C e、 P r、 Nd又はこれらの混合物、 Mは Co、 A l、 Mn、 F e、 Cu、 Z r、 T i、 Mo、 W、 B又はこれらの混合元素を示す。 x、 y及び nは、 それぞれ 0. 01≤ x≤ 0. 1、 0. 01≤y≤0. 5、 4. 9≤n≤ 5. 4である。 ) (In the formula (1), A is Y, Gd, Tb, Dy or a mixture thereof, R is La, Ce, Pr, Nd or a mixture thereof, M is Co, Al, Mn, Fe , Cu, Zr, Ti, Mo, W, B or a mixed element thereof, x, y, and n are respectively 0.011≤x≤0.1, 0.011≤y≤0.5, 4. 9≤n≤5.4.)
2)式(1)中、 Xが 0. 03≤ x≤0. 08である請求の範囲 1に記載の水素吸蔵 合金。 2) The hydrogen storage alloy according to claim 1, wherein X in the formula (1) is 0.03≤x≤0.08.
3)平均粒度が 60 m以下の粉末形状である請求の範囲 1に記載の水素吸蔵合 金。  3) The hydrogen storage alloy according to claim 1, which is in the form of a powder having an average particle size of 60 m or less.
4)式(1)で表される組成を有し、 且つビッカース硬度が 900 k g/mm2以上 である水素吸蔵合金と、 導電材とを含む二ッケル水素 2次電池用負極。 4) A negative electrode for a nickel-hydrogen secondary battery comprising a hydrogen storage alloy having a composition represented by the formula (1) and a Vickers hardness of 900 kg / mm 2 or more, and a conductive material.
5)水素吸蔵合金が、平均粒度 60 μπι以下の粉末状である請求の範囲 4に記載の 負極。 5) the hydrogen storage alloy, negative electrode according to claim 4, wherein an average particle size of 60 μ πι following powder.
6) 2次電池を作製した際に、 25°Cの恒温で、 6 OmAZgの定電流により充放 電を 200サイクル繰返した後の酸化率 ((200サイクル後の酸素値)ノ (初期酸 素値))が 10. 0 %以下であるニッケル水素 2次電池負極用合金粉末。  6) Oxidation rate ((oxygen value after 200 cycles) no (initial oxygen) after repeating charge / discharge cycles for 200 cycles at a constant temperature of 25 ° C and a constant current of 6 OmAZg when a secondary battery was fabricated. Alloy powder for a negative electrode of a nickel hydride secondary battery, the value of which is below 10.0%.
7)式(1)で表される組成を有し、 且つビッカース硬度が 900 k g/mm2以上 である水素吸蔵合金の、 二ッケル水素 2次電池用負極の製造への使用。 7) Use of a hydrogen storage alloy having a composition represented by the formula (1) and a Vickers hardness of 900 kg / mm 2 or more for manufacturing a negative electrode for a nickel-hydrogen secondary battery.
PCT/JP2001/001719 2000-03-15 2001-03-06 Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell WO2001069700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-72751 2000-03-15
JP2000072751A JP2001266864A (en) 2000-03-15 2000-03-15 Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same

Publications (1)

Publication Number Publication Date
WO2001069700A1 true WO2001069700A1 (en) 2001-09-20

Family

ID=18591110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001719 WO2001069700A1 (en) 2000-03-15 2001-03-06 Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell

Country Status (2)

Country Link
JP (1) JP2001266864A (en)
WO (1) WO2001069700A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471893A (en) * 2020-04-14 2020-07-31 包头稀土研究院 Doped A5B19 type gadolinium-containing hydrogen storage alloy, electrode, battery and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979178B2 (en) * 2003-07-04 2012-07-18 三洋電機株式会社 Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same
CN1294664C (en) * 2004-06-03 2007-01-10 刘华福 Negative hydrogen storage material for high-temperature nickel hydrogen battery
JP5213314B2 (en) * 2006-05-31 2013-06-19 三洋電機株式会社 Alkaline storage battery
US10566614B2 (en) * 2014-08-28 2020-02-18 Baotou Research Institute of Rare Earths Rare earth based hydrogen storage alloy and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124702A (en) * 1992-10-09 1994-05-06 Sanyo Electric Co Ltd Evaluation method for hydrogen storage alloy
EP0790323A1 (en) * 1995-08-31 1997-08-20 Santoku Metal Industry Co., Ltd. Rare earth metal/nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
JPH10102172A (en) * 1996-09-30 1998-04-21 Toshiba Corp Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124702A (en) * 1992-10-09 1994-05-06 Sanyo Electric Co Ltd Evaluation method for hydrogen storage alloy
EP0790323A1 (en) * 1995-08-31 1997-08-20 Santoku Metal Industry Co., Ltd. Rare earth metal/nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
JPH10102172A (en) * 1996-09-30 1998-04-21 Toshiba Corp Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471893A (en) * 2020-04-14 2020-07-31 包头稀土研究院 Doped A5B19 type gadolinium-containing hydrogen storage alloy, electrode, battery and preparation method thereof

Also Published As

Publication number Publication date
JP2001266864A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP5146934B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP3993890B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
JPWO2009060666A1 (en) Nickel metal hydride storage battery and method for producing hydrogen storage alloy
JP3432873B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP5119551B2 (en) Hydrogen storage alloy, method for producing the same, and secondary battery
JP5856056B2 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
CN111471895B (en) Hydrogen storage alloy containing gadolinium and nickel, cathode, battery and preparation method
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP4828714B2 (en) Hydrogen storage alloy, method for producing the same, and negative electrode for nickel metal hydride secondary battery
JP2004263213A (en) Hydrogen-storing alloy, hydrogen-storing alloy electrode, and nickel-hydrogen storage battery using the same
JP2001040442A (en) Hydrogen storage alloy
CN112913057A (en) Hydrogen-absorbing alloy for alkaline storage battery and alkaline storage battery using the same
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JP3493516B2 (en) Hydrogen storage alloy and method for producing the same
WO2001094653A1 (en) Hydrogen-occluding alloy and process for producing the same
WO1998010107A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen rechargeable battery
CN111411262B (en) A5B19 type gadolinium-containing hydrogen storage alloy, negative electrode and preparation method
JP5773878B2 (en) RE-Fe-B hydrogen storage alloy and use thereof
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
US20010037843A1 (en) Process for producing hydrogen absorbing alloy powder and hydrogen absorbing alloy electrode
JP4441936B2 (en) Hydrogen storage electrode
JP3930638B2 (en) Hydrogen storage alloy and method for producing the same
JP2002535495A (en) AB5-type rare earth-transition intermetallic compound for secondary battery negative electrode
JP2004218017A (en) Hydrogen storage alloy
JPH10212509A (en) Production of hydrogen storage alloy powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase