JPH0641663A - Hydrogen storage alloy and its manufacture, and hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy and its manufacture, and hydrogen storage alloy electrode

Info

Publication number
JPH0641663A
JPH0641663A JP5118432A JP11843293A JPH0641663A JP H0641663 A JPH0641663 A JP H0641663A JP 5118432 A JP5118432 A JP 5118432A JP 11843293 A JP11843293 A JP 11843293A JP H0641663 A JPH0641663 A JP H0641663A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
hydrogen
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5118432A
Other languages
Japanese (ja)
Other versions
JP3266980B2 (en
Inventor
Hideya Kaminaka
秀哉 上仲
Masayuki Hara
原  正幸
Junji Kuyama
純司 久山
Koichi Kamishiro
光一 神代
Yukiteru Takeshita
幸輝 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11843293A priority Critical patent/JP3266980B2/en
Publication of JPH0641663A publication Critical patent/JPH0641663A/en
Application granted granted Critical
Publication of JP3266980B2 publication Critical patent/JP3266980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an Ni-hydrogen secondary battery having a very high discharging capacitance and maintaining a high capacitance even after repeated charging-discharging. CONSTITUTION:This is a hydrogen storage alloy having a compsn. expressed by the formula: TiaZr1-a (NibVcMndMee) [in the formula, M=one or two or more kinds of elements selected among Cr, Fe, Co, Mo, W, Al, Cu and Nb as well as 0<=a<0.60, 1.00<b<1.50, 0.10<c<0.50, 0.10<d<0.70, 0.05<e<0.30 and 1.90<=b+c+d+e<=2.30] and substantially constituted of a Laves phase only, and this is a negative electrode for an Ni-hydrogen battery using the same as negative electrode active substance. The melting of the alloy is executed by rapid solidification of 500K/sec or faster from the state of the molten soln., and after the solidification, stress relief annealing may be executed at 550 to 750 deg.C for 1 to 4hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ZrとNiをベースとする
水素吸蔵特性に優れた水素吸蔵合金とその製造方法、な
らびにこの水素吸蔵合金を負極の活物質として用いる高
容量のNi−水素二次電池用負極電極に関する。本発明の
水素吸蔵合金は、基本結晶構造がC14型 (六方晶) およ
び/またはC15型 (面心立方晶) のラーベス相のみから
なるという特徴を有する。
FIELD OF THE INVENTION The present invention relates to a hydrogen storage alloy based on Zr and Ni and having excellent hydrogen storage characteristics, a method for producing the same, and a high capacity Ni-hydrogen using the hydrogen storage alloy as an active material for a negative electrode. The present invention relates to a negative electrode for a secondary battery. The hydrogen storage alloy of the present invention is characterized in that it has a Laves phase having a basic crystal structure of C14 type (hexagonal) and / or C15 type (face centered cubic).

【0002】[0002]

【従来の技術】現在、AV機器やコンピュータのメモリ
ー・バックアップ用に用いる二次電池はNi−Cd電池が主
流である。しかし、Cdの公害問題、Cdが亜鉛精練の副産
物という資源量制約の問題、そしてより高電気容量の二
次電池開発といった観点から、Cdのかわりに水素吸蔵合
金を負極材料 (厳密には負極の活物質) に用いたNi−水
素電池と呼ばれる二次電池が開発された。この水素吸蔵
合金を用いた二次電池は、Ni−Cd電池やNi−Zn電池に比
べて容量が高く、しかも無公害元素により構成される。
そのため、Ni−水素電池は、地球環境問題から無公害
車、省エネルギー車として利用が拡大しつつある電気自
動車用の二次電池としての利用が検討されており、今ま
さに量産が始まろうとしている。
2. Description of the Related Art At present, Ni-Cd batteries are the mainstream of secondary batteries used for memory backup of AV equipment and computers. However, from the viewpoints of the pollution problem of Cd, the problem of resource limitation that Cd is a by-product of zinc refining, and the development of secondary batteries with higher electric capacity, a hydrogen storage alloy was used instead of Cd as the negative electrode material (strictly speaking, the negative electrode A secondary battery called Ni-hydrogen battery used as an active material was developed. The secondary battery using this hydrogen storage alloy has a higher capacity than Ni-Cd batteries and Ni-Zn batteries, and is composed of pollution-free elements.
Therefore, Ni-hydrogen batteries are being considered for use as secondary batteries for electric vehicles whose use is expanding as pollution-free vehicles and energy-saving vehicles due to global environmental problems, and mass production is about to begin.

【0003】二次電池用の水素吸蔵合金として最初に開
発され、現在主流となっているのは、特開昭62−20245
号や特開平1−162741号各公報に示されるような、希土
類金属とNiをベースとした水素吸蔵合金である。これら
の希土類−Ni系の水素吸蔵合金を電極とした場合、Ni−
Cd電池に対して約1.5 倍という高い電気容量が実現でき
る。しかし、AV機器のさらなる小型化や電気自動車用
途に向けて高性能の軽量二次電池の開発が進められてい
ることから、より高い放電容量が実現できるNi−水素電
池用の水素吸蔵合金の開発が要請されている。
It was first developed as a hydrogen storage alloy for secondary batteries and is currently in the mainstream.
JP-A-1-162741 and Japanese Unexamined Patent Publication (Kokai) No. 1-162741 disclose hydrogen storage alloys based on rare earth metals and Ni. When these rare earth-Ni-based hydrogen storage alloys are used as electrodes, Ni-
A high electric capacity of about 1.5 times that of a Cd battery can be realized. However, development of high-performance lightweight secondary batteries for further miniaturization of AV equipment and electric vehicle applications has led to the development of hydrogen storage alloys for Ni-hydrogen batteries that can achieve higher discharge capacities. Has been requested.

【0004】この要請に応えて、特開平2−220355号お
よび特開平2−263944号各公報に示されるような、Zrと
NiまたはZrとTiとNiをベースとしたAB2 の結晶構造
(ラーベス相) を持つ水素吸蔵合金 (以下、Zr−Ni系水
素吸蔵合金ともいう) が提案された。この種の合金は、
上記の希土類金属−Ni系のものに比べると高容量であ
る。
In response to this request, Zr and Zr as disclosed in JP-A-2-220355 and JP-A-2-263944 are used.
Crystal structure of AB 2 based on Ni or Zr, Ti and Ni
A hydrogen storage alloy having a (Laves phase) (hereinafter, also referred to as Zr-Ni system hydrogen storage alloy) has been proposed. This kind of alloy
The capacity is higher than that of the above rare earth metal-Ni system.

【0005】しかし、水素吸蔵合金の通常の溶製法であ
る高周波誘導加熱溶解により、Zr−Ni系水素吸蔵合金を
溶製すると、AB2 相以外の、充放電には寄与しない合
金相が不可避的に生成し、得られた水素吸蔵合金は、こ
のような相を含む分だけ放電容量が低下している。従っ
て、充放電に寄与しない相を存在させずに、実質的に完
全にAB2 相のみから構成することで、Zr−Ni系水素吸
蔵合金の放電容量が一層増大する可能性が残されてい
た。また、従来のZr−Ni系水素吸蔵合金は、繰り返し使
用による寿命低下が激しいという難点もあった。
However, when a Zr-Ni system hydrogen storage alloy is produced by high-frequency induction heating melting, which is a usual method for producing hydrogen storage alloys, alloy phases other than the AB 2 phase that do not contribute to charge and discharge are inevitable. The hydrogen storage alloy thus produced and produced has a reduced discharge capacity due to the inclusion of such a phase. Therefore, there is a possibility that the discharge capacity of the Zr-Ni-based hydrogen storage alloy may be further increased by forming the phase that does not contribute to charging / discharging substantially without being composed of the AB 2 phase. . In addition, the conventional Zr-Ni-based hydrogen storage alloy has a drawback that the life is severely reduced by repeated use.

【0006】[0006]

【発明が解決しようとする課題】AB2 ラーベス相を基
本結晶構造とするNi−水素電池負極用のZr−Ni系水素吸
蔵合金は、組成をAB2 の化学量論組成に厳密に調整し
ても、従来の溶製方法では、AB2 の単相にはならず、
AB2 ラーベス相と他の相が混合した状態となり、他の
相が存在する分、電極にした際の放電容量が小さかっ
た。
A Zr-Ni-based hydrogen storage alloy for a Ni-hydrogen battery negative electrode having a basic crystal structure of AB 2 Laves phase is prepared by strictly adjusting the composition to the stoichiometric composition of AB 2. However, in the conventional melting method, the AB 2 single phase was not obtained,
The AB 2 Laves phase and other phases were mixed, and the discharge capacity of the electrode was small due to the presence of the other phases.

【0007】本発明の目的は、他の相の出現を阻止し、
実質的に完全にAB2 ラーベス相のC15型もしくはC14
型単相、またはC15型とC14型の2相状態とした、高い
放電容量を持つZr−Ni系水素吸蔵合金とその製造方法を
提供することである。
The object of the present invention is to prevent the appearance of other phases,
Substantially completely AB 2 Laves phase C15 type or C14
A Zr-Ni-based hydrogen storage alloy having a high discharge capacity in a single phase type or a two-phase state of a C15 type and a C14 type and a method for producing the same.

【0008】本発明の別の目的は、高容量であって、し
かも繰り返し使用による寿命低下の少ないNi−水素電池
負極用の水素吸蔵合金とその製造方法を提供することで
ある。
Another object of the present invention is to provide a hydrogen storage alloy for a negative electrode of a Ni-hydrogen battery, which has a high capacity and has a reduced lifespan due to repeated use, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記目的を
達成するために検討を重ねたところ、ZrとNiまたはZrと
TiとNiをベースとし、さらに適量のV、Mnおよび他の元
素を添加した組成を有する水素吸蔵合金が、高容量で繰
り返し充放電での容量低下が少ないことを見出した。
Means for Solving the Problems The present inventor has conducted extensive studies to achieve the above-mentioned object and found that Zr and Ni or Zr
It has been found that a hydrogen storage alloy based on Ti and Ni and having a composition in which an appropriate amount of V, Mn and other elements are added has a high capacity and a small capacity decrease due to repeated charge and discharge.

【0010】さらに、この合金系での一層の容量向上を
目指して、溶製で得られた合金に対して、C15型または
C14型ラーベス相の単相状態か、これらの2相だけの混
相状態を得ようと、種々の条件での熱処理を試みたが、
高温長時間の熱処理でもラーベス相以外の相を完全に消
失させることはできなかった。
Further, in order to further improve the capacity of this alloy system, the alloy obtained by melting is in a single phase state of C15 type or C14 type Laves phase, or a mixed phase state of only these two phases. In order to obtain, we tried heat treatment under various conditions,
Phases other than the Laves phase could not be completely eliminated even by heat treatment at high temperature for a long time.

【0011】そこで、溶製時の凝固の過程でラーベス相
以外の他の相の析出を防止する手段について検討した結
果、一定以上の冷却速度での急冷により融液を凝固させ
ると、ラーベス相以外の他の相の析出が抑えられ、実質
的にラーベス相のみからなる水素吸蔵合金が得られるこ
とを見出し、本発明を完成させた。
Therefore, as a result of studying means for preventing the precipitation of phases other than the Laves phase during the solidification process during melting, it was found that when the melt was solidified by rapid cooling at a cooling rate above a certain level, the Laves phase The inventors have found that the precipitation of the other phases can be suppressed, and that a hydrogen storage alloy consisting essentially of the Laves phase can be obtained, and have completed the present invention.

【0012】また、ラーベス相合金については、焼結に
際しテフロン系バインダー等を用いることなく、実質的
に合金だけによって電極を得ようということが試みられ
つつある。このように焼結によって電極を作製できれ
ば、粉末の充填密度が高くなるため、高容量化が図れる
とともに、粉末間の接触面積が大きくなることで、抵抗
が下がり、大電流の充放電が可能となるというメリット
がある。
With regard to the Laves phase alloy, it has been attempted to obtain an electrode substantially only by the alloy without using a Teflon-based binder or the like during sintering. If the electrode can be produced by sintering in this way, the packing density of the powder will be high, so that the capacity can be increased and the contact area between the powders will be large, which will reduce the resistance and enable the charging and discharging of a large current. There is an advantage that

【0013】そのためには、 900℃以上という焼結温度
まで加熱してもラーベス相以外の相が析出せず、実質的
にラーベス相だけからなる合金とその製造方法が求めら
れていた。
For that purpose, there has been a demand for an alloy which does not precipitate any phase other than the Laves phase even if it is heated to a sintering temperature of 900 ° C. or higher, and which substantially consists of the Laves phase, and a method for producing the alloy.

【0014】これらの要求に対して本発明者は、さらに
特定化した合金組成範囲においては、一定以上の冷却速
度での急冷により融液を凝固させると、その後 550〜11
00℃に長時間加熱してもラーベス相以外の他の相の析出
が抑えられ、実質的にラーベス相のみからなる水素吸蔵
合金が得られることを見出し、本発明を完成した。
With respect to these requirements, the present inventor, in the more specified alloy composition range, solidifies the melt by rapid cooling at a cooling rate of a certain rate or more, and then 550 to 11
The inventors have found that even if heated to 00 ° C. for a long time, the precipitation of phases other than the Laves phase is suppressed, and a hydrogen storage alloy consisting essentially of the Laves phase is obtained, and the present invention has been completed.

【0015】ここに、本発明の要旨は、式: Tia Zr
1-a (Nib c Mnd e ) (式中、M=Cr、Fe、Co、Mo、W、Al、CuおよびNbから
成る群から選ばれた1種もしくは2種以上の元素、 0≦
a<0.60、1.00<b<1.50、0.10<c<0.50、0.10<d
<0.70、0.05<e<0.30、1.90≦b+c+d+e≦2.3
0)で表わされる組成を有し、実質的にラーベス相のみか
ら構成される、水素吸蔵合金にある。
Here, the gist of the present invention is represented by the formula: Ti a Zr
1-a (Ni b V c Mn d Me ) (wherein, one or more elements selected from the group consisting of M = Cr, Fe, Co, Mo, W, Al, Cu and Nb, 0 ≦
a <0.60, 1.00 <b <1.50, 0.10 <c <0.50, 0.10 <d
<0.70, 0.05 <e <0.30, 1.90 ≦ b + c + d + e ≦ 2.3
It is a hydrogen storage alloy having a composition represented by 0) and being substantially composed of only Laves phase.

【0016】ここで「実質的にラーベス相のみからな
る」とは、分析電子顕微鏡と電子線回折による測定で、
C14型とC15型のラーベス相以外の他の相が実質上検出
されないことを意味する。
Here, "substantially consisting of the Laves phase" means a measurement by an analytical electron microscope and electron beam diffraction.
This means that substantially no phases other than the Laves phase of C14 and C15 are detected.

【0017】この水素吸蔵合金は、上記組成の合金の溶
製時に、融液の状態から500 K/sec以上の冷却速度で急
冷して合金を凝固させ、好ましくは、次いで不活性ガス
または真空中において 550〜750 ℃で1〜4時間の熱処
理を行って、急冷凝固時の歪みを除去することにより製
造することができる。
When the alloy having the above composition is melted, this hydrogen storage alloy is rapidly cooled from the state of a melt at a cooling rate of 500 K / sec or more to solidify the alloy, preferably in an inert gas or vacuum. Can be manufactured by removing the strain during rapid solidification by heat treatment at 550 to 750 ° C. for 1 to 4 hours.

【0018】また、本発明の特定の態様にあっては、
式: Tia Zr1-a (Nib c Mnd e ) (式中、M=Cr、Fe、Co、Mo、W、Al、CuおよびNbから
成る群から選ばれた1種もしくは2種以上の元素、 0≦
a<0.20、1.00<b<1.50、0.10<c<0.50、0.10<d
<0.70、0.05<e<0.30、1.95<b+c+d+e≦2.0
5)で表わされる組成を有する水素吸蔵合金を、溶製時に
融液の状態から 1.0×103K/sec以上の冷却速度で急冷
した場合には、次いで不活性ガスまたは真空中において
550〜1100℃で1〜20時間の熱処理を行っても、ラーベ
ス相単相が維持される。以下、これを本発明の特定態様
という。
In a specific embodiment of the present invention,
Formula: Ti a Zr 1-a (Ni b V c Mn d Me ) (wherein M = Cr, Fe, Co, Mo, W, Al, Cu and Nb; More than one element, 0 ≦
a <0.20, 1.00 <b <1.50, 0.10 <c <0.50, 0.10 <d
<0.70, 0.05 <e <0.30, 1.95 <b + c + d + e ≦ 2.0
When a hydrogen storage alloy having the composition represented by 5) is rapidly cooled from the melt state at the time of melting at a cooling rate of 1.0 × 10 3 K / sec or more, it is then placed in an inert gas or vacuum.
The Laves phase single phase is maintained even after heat treatment at 550 to 1100 ° C. for 1 to 20 hours. Hereinafter, this is referred to as a specific embodiment of the present invention.

【0019】この場合には、分析電子顕微鏡と電子線回
折による測定では、C15型のラーベス相以外の他の相は
実質上検出されない。本発明はまた、上記水素吸蔵合金
を負極活物質として用いたNi−水素電池用負極電極にも
関する。
In this case, the phases other than the C15 type Laves phase are substantially not detected by the measurement using an analytical electron microscope and electron diffraction. The present invention also relates to a negative electrode for a Ni-hydrogen battery, which uses the above hydrogen storage alloy as a negative electrode active material.

【0020】[0020]

【作用】本発明の構成をその作用とともに以下に詳述す
る。まず、本発明の水素吸蔵合金の組成を上記のように
限定した詳しい理由を次に説明する。
The structure of the present invention will be described in detail below together with its operation. First, the detailed reason for limiting the composition of the hydrogen storage alloy of the present invention as described above will be described below.

【0021】(1) TiおよびZr (Tia Zr1-a , 0≦a<0.
60) 本発明合金は、基本的にはAB2 型の化合物の形態をと
っている。TiおよびZrはこのAの部分を占める元素であ
る。AB2 型の化合物を形成するためのA元素は種々あ
るが、Zr単独またはTiとZrがA元素となると、水素吸蔵
能力の高く、可逆的に水素吸収・放出が可能な水素吸蔵
合金が得られるので、A元素としてはZr単独またはZrと
Tiの組合わせを選択した。従って、上記式(I) におい
て、TiとZrの原子比は合計で1.00とする。
(1) Ti and Zr (Ti a Zr 1-a , 0 ≦ a <0.
60) The alloy of the present invention is basically in the form of an AB 2 type compound. Ti and Zr are elements that occupy this A portion. There are various A elements for forming AB 2 type compounds, but when Zr alone or Ti and Zr become A elements, a hydrogen storage alloy having a high hydrogen storage capacity and capable of reversibly absorbing and releasing hydrogen is obtained. Therefore, as the A element, Zr alone or Zr
I chose a combination of Ti. Therefore, in the above formula (I), the atomic ratio of Ti and Zr is 1.00 in total.

【0022】また、0≦a<0.60と、Ti量をA元素の0.
60未満の原子比に限定したのは、この範囲外では、前述
した急冷による溶製法を用いても、ラーベス相以外の他
の相が出現する可能性があるためである。好ましくは0
≦a≦0.30の範囲である。
Further, when 0 ≦ a <0.60, the Ti content is 0.
The reason for limiting the atomic ratio to less than 60 is that, outside of this range, phases other than the Laves phase may appear even if the melting method by rapid cooling described above is used. Preferably 0
The range is ≦ a ≦ 0.30.

【0023】また、後述するように1.95<b+c+d+
e≦2.05でかつ、凝固冷却速度が1×103 K/sec以上の
場合には、0≦a<0.20と、Ti量をA元素の0.20未満の
原子比にしておけば、その後(550〜1000) ℃×(1〜20)h
r の高温、長時間の熱処理を施してもC15型ラーベス相
単相が維持される。この点からは、0≦a≦0.10がより
望ましい。
Further, as will be described later, 1.95 <b + c + d +
When e ≦ 2.05 and the solidification cooling rate is 1 × 10 3 K / sec or more, if 0 ≦ a <0.20 and the Ti content is set to an atomic ratio of less than 0.20 of the A element, then (550- 1000) ° C × (1 to 20) h
The C15 type Laves phase single phase is maintained even when subjected to heat treatment at a high temperature of r for a long time. From this point, 0 ≦ a ≦ 0.10 is more desirable.

【0024】(2) Ni (Nib , 1.00<b<1.50) NiはAB2 型基本形態のBの部分を占める元素である。
Niは、水素吸蔵合金を電池用の電極に用いた際に、電気
化学的に水素を吸蔵したり、取り出したりするのに触媒
的な働きをする。この観点から本発明の合金系において
電池用材料として十分な量の水素を電気化学的に吸収・
放出させるのに必要なNi量を求めた結果、Niの原子比b
が1.00超で、高い放電容量が得られることが判明した。
一方、Niは電気化学的触媒作用を有するものの、あまり
多く含有させると合金の水素吸蔵量が減少し、電池を構
成した際の容量が低くなることも判明した。本発明の目
的である高容量を実現するには、Ni原子比bの上限は1.
50未満とする必要がある。好ましいbの範囲は1.10≦b
≦1.30である。
(2) Ni (Ni b , 1.00 <b <1.50) Ni is an element occupying the B portion of the AB 2 type basic form.
Ni acts as a catalyst for electrochemically storing and extracting hydrogen when the hydrogen storage alloy is used for a battery electrode. From this viewpoint, the alloy system of the present invention electrochemically absorbs a sufficient amount of hydrogen as a battery material.
As a result of obtaining the amount of Ni necessary to release it, the atomic ratio of Ni b
Was over 1.00, it was found that a high discharge capacity was obtained.
On the other hand, although Ni has an electrochemical catalytic action, it was also found that when the Ni content is too large, the hydrogen storage capacity of the alloy decreases, and the capacity when the battery is constructed becomes low. In order to realize the high capacity that is the object of the present invention, the upper limit of the Ni atomic ratio b is 1.
Must be less than 50. The preferred range of b is 1.10 ≦ b
≦ 1.30.

【0025】(3) V (Vc , 0.10<c<0.50) Vには本発明合金の水素吸蔵量を増加させる働きがあ
る。この効果を得るためにはVの原子比cを0.10超とす
る必要がある。しかし、Vには同時に水素吸蔵量が少な
い時の水素平衡圧力を下げる働きもある。このため、V
を多量に含有させると、水素吸収平衡圧力が10-3気圧以
下になる部分が出てくる。水素吸収平衡圧力が10-3気圧
以下に下がると、充電が可能でも放電できない吸蔵水素
が生じてしまい、電池を構成した際に可逆的に充電・放
電が可能な電気容量が減少してしまう。これを避けるた
めにVの原子比cを0.50未満に限定した。好ましいcの
範囲は、0.25≦c≦0.40である。
(3) V (V c , 0.10 <c <0.50) V has a function of increasing the hydrogen storage amount of the alloy of the present invention. In order to obtain this effect, the atomic ratio c of V needs to be more than 0.10. However, V also has a function of lowering the hydrogen equilibrium pressure when the hydrogen storage amount is small. Therefore, V
When a large amount of is added, the hydrogen absorption equilibrium pressure becomes 10 -3 atm or less. When the hydrogen absorption equilibrium pressure falls below 10 -3 atmospheres, stored hydrogen that can be charged but cannot be discharged is generated, and the electric capacity that can be reversibly charged / discharged when a battery is constructed decreases. In order to avoid this, the atomic ratio c of V is limited to less than 0.50. The preferable range of c is 0.25 ≦ c ≦ 0.40.

【0026】(4) Mn (Mnd , 0.10<d<0.70) Mnには本発明合金の水素吸収・放出プラトー圧力の平坦
性を改善し (プラトーの傾斜を平坦かつ長くする) 、水
素吸収・放出時の水素吸蔵量変化に伴う圧力の変動幅を
小さくする働きがある。これにより、密閉型電池を構成
して充電を行った際に水素平衡圧力が急に上昇しないこ
とから、内圧上昇を防ぎ、より多くの充電が可能とな
る。この効果を得るためには、Mnの原子比dが0.10を超
える必要がある。しかし、Mnを原子比0.70以上と多量に
含んだ場合、アルカリ電解液中の耐食性が劣化して充電
・放電の繰り返し寿命が短かくなる。そこで、Mnの原子
比は0.10<d<0.70と限定した。好ましいdの範囲は、
0.20≦d≦0.50である。
(4) Mn (Mn d , 0.10 <d <0.70) Mn improves the flatness of the hydrogen absorption / desorption plateau pressure of the alloy of the present invention (makes the plateau slope flat and long), It has the function of reducing the fluctuation range of the pressure due to the change in the hydrogen storage amount at the time of release. As a result, the hydrogen equilibrium pressure does not suddenly rise when the sealed battery is configured and charged, so that the internal pressure is prevented from rising and more charging is possible. To obtain this effect, the atomic ratio d of Mn needs to exceed 0.10. However, when Mn is contained in a large amount such as an atomic ratio of 0.70 or more, the corrosion resistance in the alkaline electrolyte is deteriorated and the repeated life of charge / discharge becomes short. Therefore, the atomic ratio of Mn is limited to 0.10 <d <0.70. The preferred range of d is
0.20 ≦ d ≦ 0.50.

【0027】(5) M=Cr、Fe、Co、Mo、W、Al、Cu、Nb
〔Me , 0.05<e<0.30〕 M元素 (Cr、Fe、Co、Mo、W、Al、CuおよびNbの1種も
しくは2種以上) には、水素吸蔵能力を低下させること
なく耐食性を向上させ、電池寿命を向上させる働きがあ
る。これらの効果を得るためには合計で原子比0.05を超
えるM元素の添加が必要である。一方、その含有量が原
子比で0.30以上になると、Vと同様に水素吸蔵量が少な
い時の水素平衡圧力を下げる働きが顕著となり、電池を
構成した際に可逆的に充電・放電が可能な電気容量が減
少してしまう。この点からM元素の合計原子比eは0.30
未満と限定した。好ましいeの範囲は0.10≦e≦0.20で
ある。
(5) M = Cr, Fe, Co, Mo, W, Al, Cu, Nb
[ Me , 0.05 <e <0.30] M element (one or more of Cr, Fe, Co, Mo, W, Al, Cu and Nb) has improved corrosion resistance without lowering hydrogen storage capacity. And has the function of improving battery life. In order to obtain these effects, it is necessary to add an M element whose atomic ratio exceeds 0.05 in total. On the other hand, when the content is 0.30 or more in atomic ratio, the function of lowering the hydrogen equilibrium pressure when the hydrogen storage amount is small becomes remarkable like V, and reversible charging / discharging is possible when the battery is constructed. The electric capacity will decrease. From this point, the total atomic ratio e of M element is 0.30.
Limited to less than. The preferred range of e is 0.10 ≦ e ≦ 0.20.

【0028】(6) 1.90≦b+c+d+e≦2.30 本発明合金は、ラーベス相を構成するAB2 型の化合物
形態をとる。b+c+d+eはこの構造のB部分を構成
するNi、V、MnおよびM元素の合計原子比であり、この
ため望ましくはb+c+d+e=2.00となることが要求
される。
(6) 1.90 ≦ b + c + d + e ≦ 2.30 The alloy of the present invention takes the form of an AB 2 type compound forming the Laves phase. b + c + d + e is the total atomic ratio of Ni, V, Mn, and M elements constituting the B portion of this structure, and therefore it is desired that b + c + d + e = 2.00.

【0029】溶製時の凝固冷却速度が500 K/secより低
い通常の高周波誘導加熱による溶製では、b+c+d+
e=2.00に調整しても、ラーベス相以外の他の相が析出
することが確認されている。これに対し、本発明により
500 K/sec以上の冷却速度で凝固させる場合には、1.90
≦b+c+d+e≦2.30の範囲内で、実質的にAB2
のラーベス相のみからなる結晶状態の水素吸蔵合金が得
られることが判明した。好ましくは、1.95≦b+c+d
+e≦2.10とする。
When the solidification cooling rate during melting is less than 500 K / sec, in the melting by ordinary high frequency induction heating, b + c + d +
It has been confirmed that phases other than the Laves phase are precipitated even if e = 2.00 is adjusted. On the other hand, according to the present invention,
1.90 when solidifying at a cooling rate of 500 K / sec or more
It was found that in the range of ≤b + c + d + e≤2.30, a hydrogen storage alloy in a crystalline state substantially consisting of AB 2 type Laves phase can be obtained. Preferably, 1.95 ≦ b + c + d
+ E ≦ 2.10.

【0030】また、本発明の特定態様によれば、0≦a
<0.20でかつ、凝固冷却速度が1.0×103 K/sec以上の
場合には、1.95<b+c+d+e≦2.05の範囲であれ
ば、その後(550〜1000) ℃×(1〜20)hr の高温、長時間
の熱処理を施してもC15型ラーベス相単相が維持され
る。この点からは1.98≦b+c+d+e≦2.02がより望
ましい。
According to a particular aspect of the present invention, 0≤a
When <0.20 and the solidification cooling rate is 1.0 × 10 3 K / sec or more, if 1.95 <b + c + d + e ≦ 2.05, then (550 to 1000) ° C. × (1 to 20) hr high temperature, The C15 type Laves phase single phase is maintained even after long-term heat treatment. From this point, 1.98 ≦ b + c + d + e ≦ 2.02 is more desirable.

【0031】(7) 冷却速度 本発明の水素吸蔵合金は、各合金元素の適当な供給源を
一緒に溶解した後、融液の状態から500 K/sec以上の冷
却速度での急冷による凝固が実現できる任意の方法によ
り製造できる。
(7) Cooling Rate The hydrogen-absorbing alloy of the present invention is solidified by rapid cooling at a cooling rate of 500 K / sec or more from the melt state after melting together appropriate sources of each alloying element. It can be manufactured by any method that can be realized.

【0032】溶解は、不活性ガス雰囲気または真空中
で、アーク溶解、プラズマ溶解、高周波誘導加熱、抵抗
加熱といった適当な方法により行うことができる。得ら
れた融液の急冷凝固は、ガスアトマイズ法、回転ドラム
上への鋳込み、回転電極法など、500 K/sec以上の冷却
速度での急冷が可能な任意の方法で実施すればよい。
The melting can be carried out by an appropriate method such as arc melting, plasma melting, high frequency induction heating, resistance heating in an inert gas atmosphere or vacuum. The rapid solidification of the obtained melt may be performed by any method capable of rapid cooling at a cooling rate of 500 K / sec or more, such as a gas atomizing method, casting on a rotating drum, and a rotating electrode method.

【0033】融液からの凝固時の冷却速度が500 K/sec
より小さくなると、凝固中にラーベス相以外の他の相が
析出するのを確実に防止することができず、本発明の実
質的にラーベス相のみからなる水素吸蔵合金を製造する
ことが困難となる。凝固時の冷却速度は、好ましくは
1.0×103(=1000) K/sec以上とする。
Cooling rate during solidification from the melt is 500 K / sec
If it becomes smaller, it is not possible to reliably prevent precipitation of phases other than the Laves phase during solidification, making it difficult to produce a hydrogen storage alloy of the present invention consisting essentially of the Laves phase. . The cooling rate during solidification is preferably
1.0 × 10 3 (= 1000) K / sec or more.

【0034】特に、0≦a<0.20、1.95<b+c+d+
e≦2.05の場合には、融液からの凝固時の冷却速度を
1.0×103 K/sec以上とすれば、それにつづく熱処理を
(550〜1100) ℃×(1〜20)hr という高温、長時間で行っ
てもC15型ラーベス相単相状態が維持される。
Particularly, 0 ≦ a <0.20, 1.95 <b + c + d +
If e ≦ 2.05, set the cooling rate during solidification from the melt
If it is 1.0 × 10 3 K / sec or more, the subsequent heat treatment
The C15 type Laves phase single-phase state is maintained even at a high temperature of (550 to 1100) ° C x (1 to 20) hr for a long time.

【0035】(8) 歪解放熱処理条件 本発明の水素吸蔵合金は、上記のように急冷凝固により
製造するため、急冷による歪が発生することがある。こ
のため、結晶格子が歪んだ状態となり、水素吸収特性が
変化することがある。この歪は、不活性ガスまたは真空
中における熱処理 (歪取り焼鈍) により除去できるが、
熱処理条件としてラーベス相以外の他の相が処理中に析
出しないような条件を採用する必要がある。このような
条件として、 550〜750 ℃で1〜4時間という熱処理条
件を採用した。
(8) Strain-releasing heat treatment conditions Since the hydrogen storage alloy of the present invention is manufactured by rapid solidification as described above, strain may occur due to rapid cooling. As a result, the crystal lattice becomes distorted and the hydrogen absorption characteristics may change. This strain can be removed by heat treatment (strain relief annealing) in an inert gas or vacuum,
As the heat treatment condition, it is necessary to adopt a condition that phases other than the Laves phase do not precipitate during the treatment. As such a condition, a heat treatment condition of 550 to 750 ° C. for 1 to 4 hours was adopted.

【0036】550 ℃は歪の解放に必要な最低の熱処理温
度である。一方、熱処理温度を750℃より高くすると、
ラーベス相以外の他の相が析出する可能性がある。ま
た、熱処理時間は、歪の解放には1時間以上が必要であ
り、4時間を超えるとラーベス相以外の他の相が析出す
る可能性がある。望ましくは、 650〜700 ℃で3時間前
後の熱処理を行う。
550 ° C. is the minimum heat treatment temperature required for strain relief. On the other hand, if the heat treatment temperature is higher than 750 ° C,
Phases other than the Laves phase may precipitate. Further, the heat treatment time needs to be 1 hour or more for releasing the strain, and if it exceeds 4 hours, phases other than the Laves phase may be precipitated. Desirably, heat treatment is performed at 650 to 700 ° C. for about 3 hours.

【0037】しかしながら、前述の特定態様に示した成
分系および凝固冷却速度では、750℃以上に加熱しても
C15型ラーベス相以外の析出が抑制される。この場合に
も550 ℃は歪の解放に必要な最低の熱処理温度である。
一方、1100℃超に加熱するとラーベス相以外の相が析出
するため、C15型ラーベス相単相状態が維持できず、Zr
−Ni相等が析出してしまう。このため、 550〜1100℃の
温度範囲で熱処理を行う必要がある。望ましくは、650
℃から1050℃の温度範囲が好ましい。また熱処理時間は
歪を解放するためには最低1時間必要であり、この凝固
冷却速度、成分系では20時間までC15型ラーベス相以外
の析出は認められなかった。したがって、1時間から20
時間までの範囲とした。しかしながら、あまり長時間の
熱処理は経済的な面で望ましくなく、好ましくは3時間
以上12時間以下である。
However, with the component system and solidification cooling rate shown in the above-mentioned specific embodiment, precipitation other than the C15 type Laves phase is suppressed even when heated to 750 ° C. or higher. In this case also, 550 ° C is the minimum heat treatment temperature required for strain relief.
On the other hand, if the temperature exceeds 1100 ° C, phases other than the Laves phase will precipitate, and the C15 type Laves phase single phase state cannot be maintained.
-Ni phase etc. will precipitate. Therefore, it is necessary to perform heat treatment within the temperature range of 550 to 1100 ° C. Desirably 650
A temperature range of ℃ to 1050 ℃ is preferred. The heat treatment time required at least 1 hour to release the strain, and no precipitation other than C15 type Laves phase was observed up to 20 hours in this solidification cooling rate and component system. Therefore, from 1 hour to 20
The range was up to time. However, heat treatment for a too long time is not economically desirable, and is preferably 3 hours or more and 12 hours or less.

【0038】本発明の水素吸蔵合金からのNi−水素電池
用の負極の製造は、当業者に周知の任意の方法で行うこ
とができる。例えば、本発明の水素吸蔵合金を、必要で
あれば、不活性雰囲気中において粉砕して粉末化し、得
られた粉末を適当なバインダー(例、ポリビニルアルコ
ール、ポリテトラフルオロエチレン等の樹脂)および水
(または他の液体)と混合してペースト状とする。この
ペーストをニッケル多孔体やニッケルめっきしたパンチ
ングメタル (有孔鋼板) に充填し、乾燥後に、所望の電
極形状に加圧成型することにより、負極を製造すること
ができる。
The production of the negative electrode for Ni-hydrogen battery from the hydrogen storage alloy of the present invention can be carried out by any method known to those skilled in the art. For example, if necessary, the hydrogen storage alloy of the present invention is pulverized into a powder in an inert atmosphere, and the obtained powder is mixed with a suitable binder (eg, a resin such as polyvinyl alcohol or polytetrafluoroethylene) and water. (Or other liquid) to form a paste. A negative electrode can be manufactured by filling this paste in a nickel porous body or a nickel-plated punching metal (a perforated steel sheet), drying and press-molding it into a desired electrode shape.

【0039】[0039]

【実施例】実施例1 表1に示す組成を有する、Zr1.0(Ni1.2 0.3Mn0.4Co
0.1)の組成をベースとし、B部元素の合計原子比 (b+
c+d+e) を種々に変化させた水素吸蔵合金を、表2
に示す凝固時の冷却速度が異なる各種の方法で溶製し
た。溶製に使用した原料は、表3に示す通りであった。
EXAMPLES Example 1 Zr 1.0 (Ni 1.2 V 0.3 Mn 0.4 Co having the composition shown in Table 1 was used.
0.1 ) based on the total atomic ratio (b +
Table 2 shows hydrogen storage alloys with various changes of c + d + e).
It was melted by various methods with different cooling rates during solidification as shown in. The raw materials used for the melting were as shown in Table 3.

【0040】こうして得た (b+c+d+e) の値およ
び凝固冷却速度が異なる各種の水素吸蔵合金について、
合金中に存在する合金相をX線回折、透過電子顕微鏡、
および電子線回折−EDX分析により同定した。結果を
表4および表5に示す。
With respect to various hydrogen storage alloys having different values of (b + c + d + e) and solidification cooling rates thus obtained,
The alloy phase existing in the alloy is analyzed by X-ray diffraction, transmission electron microscopy,
And electron diffraction-EDX analysis. The results are shown in Tables 4 and 5.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【表5】 [Table 5]

【0046】表4および表5に示すように、合金組成を
本発明の範囲内にして500 K/sec以上の凝固冷却速度で
溶製した場合には、全例においてC15型ラーベス相単相
か、或いはC15型とC14型のラーベス相混相となってい
て、実質的に完全にラーベス相のみからなる水素吸蔵合
金が得られた。即ち、水素吸蔵能力が少ない相 (Ni固溶
体、Zr−Ni相) や常温近傍では水素を吸蔵させることが
困難なα−Zr相 (六方晶) を含まないため、非常に多量
の水素を吸蔵させることが可能となる。
As shown in Tables 4 and 5, when the alloy composition is within the range of the present invention and the alloy is melted at a solidification cooling rate of 500 K / sec or more, in all cases, it is a C15 type Laves phase single phase. Alternatively, a hydrogen storage alloy which is a mixed phase of the Laves phase of C15 type and C14 type and is substantially completely composed of the Laves phase was obtained. That is, it does not contain a phase with a low hydrogen storage capacity (Ni solid solution, Zr-Ni phase) or an α-Zr phase (hexagonal crystal), which is difficult to store hydrogen near room temperature, so it stores a very large amount of hydrogen. It becomes possible.

【0047】これに対して、合金組成が本発明の範囲内
であっても、冷却速度が500 K/secより小さいと、ラー
ベス相以外の他の相が析出する。一方、合金組成がAB
2 から大きくはずれた本発明の範囲外の組成では、500
K/sec以上の冷却速度での急冷によっても、α−Zr相や
Zr−Ni相の析出を避けることができない。
On the other hand, even if the alloy composition is within the range of the present invention, if the cooling rate is less than 500 K / sec, phases other than the Laves phase are precipitated. On the other hand, if the alloy composition is AB
For compositions outside the scope of the invention that deviate significantly from 2 , 500
Even with rapid cooling at a cooling rate of K / sec or more, α-Zr phase and
Precipitation of Zr-Ni phase cannot be avoided.

【0048】実施例2 実施例1で溶製した水素吸蔵合金を負極材料に用いてNi
−水素電池を構成し、その放電容量を測定した。試験方
法の概要を次に示す。
Example 2 The hydrogen storage alloy produced in Example 1 was used as a negative electrode material for Ni.
-A hydrogen battery was constructed and its discharge capacity was measured. The outline of the test method is shown below.

【0049】(1) 電極の構成 溶製された水素吸蔵合金を−63μmに粉砕し、得られた
合金粉末をポリビニルアルコール5wt%の水溶液でペー
スト状にし、発泡ニッケル多孔体 (例えば、住友電工の
セルメット) に充填して乾燥し、その後、真空ホットプ
レスにて加圧成型して、負極となる水素吸蔵合金電極を
得た。使用した水素吸蔵合金の量は2gであった。
(1) Structure of Electrode The molten hydrogen storage alloy was pulverized to -63 μm, and the obtained alloy powder was made into a paste with an aqueous solution of 5 wt% of polyvinyl alcohol to form a foamed nickel porous body (for example, manufactured by Sumitomo Electric Industries, Ltd.). (Celmet) was filled and dried, and then pressure-molded by a vacuum hot press to obtain a hydrogen storage alloy electrode as a negative electrode. The amount of hydrogen storage alloy used was 2 g.

【0050】(2) 電池の構成 上述のようにして製作した水素吸蔵合金の電極を負極
に、市販の公称2000 mAの焼結式Ni極を正極に用い、正
極と負極の間には短絡防止のためにポリアミド不織布の
セパレータを介在させ、6M−KOH 水溶液を電解液として
注入後、密閉することで、密閉型の試験用Ni−水素電池
を作製した。この電池は、負極の容量より正極の容量が
十分に大きい、負極容量規制型の電池とした。
(2) Structure of Battery A hydrogen storage alloy electrode manufactured as described above is used as a negative electrode, and a commercially available sintered Ni electrode of nominal 2000 mA is used as a positive electrode, and a short circuit is prevented between the positive electrode and the negative electrode. For this purpose, a 6M-KOH aqueous solution was injected as an electrolytic solution with a polyamide non-woven fabric separator intervening, and then sealed to produce a sealed test Ni-hydrogen battery. This battery was a negative electrode capacity regulation type battery in which the capacity of the positive electrode was sufficiently larger than the capacity of the negative electrode.

【0051】(3) 電池性能の評価 100 mA/g (25℃) で5時間の充電と、100 mA/g (25℃)
で端子電圧0.9 Vまでの放電を繰り返すことにより、放
電容量を測定した。こうして測定された放電容量を、負
極に用いた水素吸蔵合金の放電容量とした。充放電繰り
返しの50サイクル目の放電容量を次の表6に示す。
(3) Evaluation of battery performance 100 mA / g (25 ° C) for 5 hours at 100 mA / g (25 ° C)
The discharge capacity was measured by repeating discharge up to a terminal voltage of 0.9 V at. The discharge capacity thus measured was used as the discharge capacity of the hydrogen storage alloy used for the negative electrode. The discharge capacity at the 50th cycle after repeated charge and discharge is shown in Table 6 below.

【0052】[0052]

【表6】 [Table 6]

【0053】合金組成が同一であるにもかかわらず、本
発明により冷却速度500 K/sec以上で急冷凝固した水素
吸蔵合金では、それより冷却速度が小さかった水素吸蔵
合金に比べて、高い放電容量が得られることがわかる。
この高い放電容量は、本発明の水素吸蔵合金が実質的に
ラーベス相のみからなり、水素吸蔵に関与しない相が出
現していないことに起因すると考えられる。
Despite the same alloy composition, a hydrogen storage alloy rapidly solidified at a cooling rate of 500 K / sec or more according to the present invention has a higher discharge capacity than a hydrogen storage alloy having a lower cooling rate. It can be seen that
It is considered that this high discharge capacity is due to the fact that the hydrogen storage alloy of the present invention substantially consists of the Laves phase, and no phase that does not participate in hydrogen storage has appeared.

【0054】実施例3 本発明では、急冷凝固を採用するため、歪が発生して、
結晶格子が歪んだ状態となり、水素吸収特性が変化する
ことがある。本実施例では、この歪の除去のために行う
熱処理条件に関して試験した結果を示す。
Example 3 In the present invention, since rapid solidification is adopted, strain occurs,
The crystal lattice may be distorted and the hydrogen absorption characteristics may change. In this example, the results of tests conducted on heat treatment conditions for removing this strain are shown.

【0055】実施例1において本発明の方法により融液
から500 K/sec以上の冷却速度で凝固させた、ラーベス
相のみからなる本発明の水素吸蔵合金のうち、表1の合
金組成DおよびHの合金を、急冷凝固で生じた可能性の
ある歪を除去する目的で、アルゴンガス中において種々
の条件 (温度および時間) で熱処理した。熱処理後の水
素吸蔵合金に存在する合金相について、実施例1に記載
した方法と同様にして同定した。結果を、析出相 (ラー
ベス相以外の他の相) の有無に関して次の表7に示す。
Among the hydrogen storage alloys of the present invention consisting of the Laves phase only, which were solidified from the melt at a cooling rate of 500 K / sec or more by the method of the present invention in Example 1, alloy compositions D and H of Table 1 were used. The alloy of 1 was heat-treated under various conditions (temperature and time) in argon gas for the purpose of removing the strain that might have occurred in the rapid solidification. The alloy phases existing in the hydrogen storage alloy after the heat treatment were identified in the same manner as in the method described in Example 1. The results are shown in Table 7 below regarding the presence or absence of a precipitation phase (a phase other than the Laves phase).

【0056】[0056]

【表7】 [Table 7]

【0057】表7に示したように、熱処理の温度が750
℃を超えるか、熱処理時間が4時間を超えると、急冷す
ることで析出が抑えられていた他の相が、熱処理により
析出していた。即ち、歪取りにより、水素吸収量 (放電
容量) の低下につながる水素吸蔵に関与しない相の増大
が起こり、本発明の目的と相反する結果となった。従っ
て、歪取りのための熱処理は、 550〜750 ℃で1〜4時
間の範囲内で行う必要がある。
As shown in Table 7, the heat treatment temperature is 750.
When the temperature was higher than 0 ° C. or the heat treatment time was longer than 4 hours, the other phase, the precipitation of which was suppressed by quenching, was precipitated by the heat treatment. That is, due to the strain removal, the number of phases that are not involved in hydrogen storage leading to a decrease in the amount of absorbed hydrogen (discharge capacity) was increased, which was contrary to the object of the present invention. Therefore, the heat treatment for strain relief must be performed at 550 to 750 ° C. for 1 to 4 hours.

【0058】実施例4 急冷凝固後の熱処理による歪取りが放電容量に及ぼす効
果を調べるため、本発明範囲内の組成を有する合金Eに
ついて、表2に示した各種冷却速度の溶製法で溶製した
後、本発明の範囲内の熱処理条件である650 ℃×3時間
で熱処理をアルゴンガス中で施した。こうして熱処理し
た水素吸蔵合金の放電容量を実施例2と同様に測定し
た。熱処理材の50サイクル目の放電容量を、熱処理を施
さなかった場合の放電容量とともに、次の表8に示す。
Example 4 In order to investigate the effect of strain relief by heat treatment after rapid solidification on discharge capacity, alloy E having a composition within the range of the present invention was melted by the melting method at various cooling rates shown in Table 2. After that, the heat treatment was performed in argon gas at 650 ° C. for 3 hours, which is the heat treatment condition within the scope of the present invention. The discharge capacity of the hydrogen storage alloy thus heat-treated was measured in the same manner as in Example 2. The discharge capacity at the 50th cycle of the heat-treated material is shown in the following Table 8 together with the discharge capacity without heat treatment.

【0059】[0059]

【表8】 [Table 8]

【0060】表8からわかるように、本発明により急冷
凝固により溶製した場合には、熱処理により格子歪が開
放され、放電容量が増大した。これに対し、従来法で溶
製した場合には、冷却速度が低いため、熱処理による放
電容量の増大はほとんど認められなかった。なお、既に
実施例2において指摘したように、本発明による急冷凝
固法では、従来法に比べて放電容量が高い水素吸蔵合金
が得られるので、本発明の範囲内の条件での熱処理によ
り放電容量をさらに一層増大させることができる。
As can be seen from Table 8, when melted by rapid solidification according to the present invention, the lattice strain was released by the heat treatment and the discharge capacity was increased. On the other hand, in the case of melting by the conventional method, since the cooling rate was low, almost no increase in discharge capacity due to heat treatment was observed. As already pointed out in Example 2, the rapid solidification method according to the present invention produces a hydrogen storage alloy having a higher discharge capacity than the conventional method. Can be further increased.

【0061】実施例5 表3に示した原料を用いて、表9に示す各種組成のZr−
Ni系水素吸蔵合金を溶製した。溶製法は、表2に示した
方法b (凝固冷却速度35K/sec、従来法) と方法e (凝
固冷却速度5×103 〜1×104 K/secのガスアトマイズ
法、本発明法)の2種類で行った。溶製後の歪取りのた
めの熱処理は実施しなかった。得られた水素吸蔵合金の
放電容量を、実施例2と同様の方法により測定した。10
0 、300 および500 サイクル目での放電容量を、表9に
併せて示す。
Example 5 Using the raw materials shown in Table 3, Zr-containing various compositions shown in Table 9 was used.
Ni-based hydrogen storage alloy was melted. The melting method includes the method b (solidification cooling rate of 35 K / sec, conventional method) and the method e (gas atomizing method of solidification cooling rate of 5 × 10 3 to 1 × 10 4 K / sec, the method of the present invention) shown in Table 2. I went with two types. No heat treatment was carried out for strain relief after melting. The discharge capacity of the obtained hydrogen storage alloy was measured by the same method as in Example 2. Ten
The discharge capacities at 0th, 300th and 500th cycles are also shown in Table 9.

【0062】[0062]

【表9】 [Table 9]

【0063】表9に示した結果からわかるように、本発
明によれば、合金組成を適切に選択した上、溶製時の凝
固冷却速度を500 K/sec以上の急冷として、ラーベス相
以外の相の析出を抑えることで、放電容量が非常に高い
水素吸蔵合金を得ることができる。これは、ラーベス相
以外の他の相の析出が急冷凝固により防止された結果で
あり、もともと放電容量の高いラーベス相合金の容量
を、本発明により最大限に活用することができる。
As can be seen from the results shown in Table 9, according to the present invention, the alloy composition is appropriately selected, and the solidification cooling rate at the time of smelting is set to 500 K / sec or more for rapid cooling. By suppressing the precipitation of phases, a hydrogen storage alloy having a very high discharge capacity can be obtained. This is a result of the precipitation of phases other than the Laves phase being prevented by the rapid solidification, and the capacity of the Laves phase alloy, which originally has a high discharge capacity, can be fully utilized by the present invention.

【0064】本発明の範囲内の合金組成で従来法により
溶製した場合や、本発明の溶製法でも合金組成が本発明
の範囲外である場合には、ラーベス相以外の他の相の出
現を阻止できず、放電容量は低下した。同じ合金組成で
従来法により溶製した場合に比べて、本発明の水素吸蔵
合金は、最低でも1割程度の容量の増大が認められた。
When the alloy composition within the scope of the present invention is melted by the conventional method, or when the alloy composition is outside the scope of the present invention even in the melting method of the present invention, the appearance of phases other than the Laves phase appears. Could not be prevented and the discharge capacity decreased. As compared with the case where the same alloy composition was melted by the conventional method, the capacity of the hydrogen storage alloy of the present invention was increased by at least about 10%.

【0065】実施例6 本発明にかかる特定態様での組成範囲および凝固冷却速
度の合金については、高温の熱処理を行っても実質的に
C15型ラーベス相であり、高い放電容量が確保できる効
果を確認すべくテストを行った。実施例に用いた合金組
成を表10に示す。また実施例に用いた溶製方法を表11に
示す。
Example 6 The alloy having the composition range and the solidification cooling rate in the specific embodiment according to the present invention is substantially a C15 type Laves phase even if it is subjected to a high temperature heat treatment, and it is possible to secure a high discharge capacity. Tested to confirm. Table 10 shows the alloy composition used in the examples. Table 11 shows the melting method used in the examples.

【0066】(1) 熱処理条件と存在相 表10に示したK、L、M、N、O、Pの組成の合金にお
いて熱処理条件と確認できる存在相の関係を調査した。
存在相の確認はX線回折および分析透過電子顕微鏡にて
行った。この表12に示した実施例はすべて本発明範囲に
属しているが、1.95<b+c+d+e≦2.05で凝固時の
冷却速度が 1.0×103 K/sec以上のものについては、55
0 〜1100℃の1〜20時間の範囲の熱処理を行っても析出
相が認められず、鋳造まゝの状態のC15型ラーベス相単
相の状態であった。すなわち、本発明の特定態様に示し
た範囲においては、高温 (〜1100℃) まで熱処理を行っ
ても実質的にC15型ラーベス相単相であり、本発明の熱
処理で歪取り焼鈍を行うことで実質的にC15型ラーベス
相のみからなる合金が得られる。
(1) Heat treatment conditions and existing phases In the alloys having the compositions of K, L, M, N, O and P shown in Table 10, the relationship between the heat treatment conditions and the existing phases that can be confirmed was investigated.
The existence phase was confirmed by X-ray diffraction and an analytical transmission electron microscope. All of the examples shown in Table 12 belong to the scope of the present invention, but if 1.95 <b + c + d + e ≦ 2.05 and the cooling rate during solidification is 1.0 × 10 3 K / sec or more, 55
No precipitation phase was observed even after heat treatment at 0 to 1100 ° C. for 1 to 20 hours, and it was a C15 type Laves phase single phase in the as-cast state. That is, in the range shown in the specific embodiment of the present invention, even if the heat treatment is performed up to a high temperature (up to 1100 ° C.), it is substantially a C15 type Laves phase single phase, and strain relief annealing is performed by the heat treatment of the present invention. An alloy consisting essentially of the C15 type Laves phase is obtained.

【0067】(2) 電極特性の調査 本発明にしたがって上述のようにして得た合金の電極特
性について調査した。本実施例に用いた組成は表10に示
した組成で、従来法として表2のbに示した溶製法で35
K/secの凝固冷却速度で溶製し、その後、Ar雰囲気中で
1100℃×20hrの熱処理を行った合金を用いた。また、本
発明法として5×103 K/sec〜1×104K/secの凝固冷
却速度が実現できるArガスアトマイズ法を用い、その
後、Ar雰囲気中で1100℃×20hrの熱処理を行った合金を
用いた。得られた合金を実施例2に記載した方法にて電
極を構成し、その電極特性の評価を行った。
(2) Investigation of electrode characteristics The electrode characteristics of the alloy obtained as described above according to the present invention were investigated. The composition used in this example is as shown in Table 10. As a conventional method, the melting method shown in b of Table 2 is used.
Melt at a solidification cooling rate of K / sec, then in an Ar atmosphere
An alloy that was heat-treated at 1100 ° C for 20 hours was used. Further, as the method of the present invention, an Ar gas atomizing method capable of realizing a solidification cooling rate of 5 × 10 3 K / sec to 1 × 10 4 K / sec is used, and then an alloy is heat-treated at 1100 ° C. × 20 hr in an Ar atmosphere. Was used. An electrode was formed from the obtained alloy by the method described in Example 2 and its electrode characteristics were evaluated.

【0068】表13に評価を行った結果を示す。いずれも
本発明の特定態様に含まれる組成であるが、1100℃×20
hrの熱処理を行った後にはこの組成範囲に含まれる合金
は従来法の合金に比べて高い放電容量を示す。これに対
し組成K、P、Qの合金は本発明内の凝固冷却速度であ
っても、従来法である35K/secの凝固冷却速度と変わら
ない放電容量となる。この原因は、表12に示したように
1100℃×20時間の熱処理を行うことで、急冷凝固溶製で
実質的にC15型ラーベス相状態であった合金に不要なα
−Zr相、Zr−Ni相等の析出が生じたためである。
Table 13 shows the evaluation results. Both are compositions included in the specific embodiment of the present invention, but 1100 ° C. × 20
After the hr heat treatment, the alloys contained in this composition range have higher discharge capacity than the conventional alloys. On the other hand, the alloys of compositions K, P, and Q have the same discharge capacity as the solidification cooling rate of 35 K / sec which is the conventional method even if the solidification cooling rate in the present invention is used. The cause of this is as shown in Table 12.
By performing heat treatment at 1100 ° C for 20 hours, it is not necessary α for the alloy that was in the C15 type Laves phase state after being solidified by rapid solidification.
This is because precipitation of -Zr phase, Zr-Ni phase, etc. occurred.

【0069】以上、本発明の範囲の中で特に、前述の特
定態様として示した組成範囲でなおかつ、1.0 ×103
/sec以上の凝固冷却速度のものについては、550 〜1100
℃×1〜20時間の熱処理を行っても、実質的にC15型ラ
ーベス相のみの合金であり、通常の溶製法で得られた合
金より著しく高い容量が得られる。したがって、高容量
化のために焼結により電極を製造しても1100℃×20時間
より低温、短時間の焼結条件であれば実質的にC15型ラ
ーベス相だけの電極となるため、通常の溶製法で得られ
る合金粉末を用いて得られる電極よりもそれだけ高い容
量が得られる可能性を有する。
Above all, within the scope of the present invention, particularly within the composition range shown as the above-mentioned specific embodiment and 1.0 × 10 3 K
550 to 1100 for solidification cooling rate of / sec or more
Even if the heat treatment is carried out at a temperature of 1 ° C. for 1 to 20 hours, the alloy is substantially only the C15 type Laves phase, and a remarkably higher capacity than the alloy obtained by the usual melting method can be obtained. Therefore, even if an electrode is manufactured by sintering to increase the capacity, if the sintering condition is lower than 1100 ° C. × 20 hours for a short time, the electrode will be substantially only a C15 type Laves phase. There is a possibility that a higher capacity than that of the electrode obtained by using the alloy powder obtained by the melting method can be obtained.

【0070】[0070]

【表10】 [Table 10]

【0071】[0071]

【表11】 [Table 11]

【0072】[0072]

【表12】 [Table 12]

【0073】[0073]

【表13】 [Table 13]

【0074】また、本発明の水素吸蔵合金は、繰り返し
充放電後も高い容量を維持しており、500 サイクルの充
放電の繰り返し後において320 mAh/g 以上の高い放電容
量を示した。
Further, the hydrogen storage alloy of the present invention maintained a high capacity after repeated charge and discharge, and showed a high discharge capacity of 320 mAh / g or more after repeated charge and discharge of 500 cycles.

【0075】[0075]

【発明の効果】以上の実施例の結果からも明らかなよう
に、本発明にかかる水素吸蔵合金をNi−水素二次電池
の陰極に用いることで、従来の溶製法で製造した水素吸
蔵合金を用いた場合に比べて、高い放電容量が得られ、
しかも500 サイクルの充放電を繰り返しても320 mA
h/g 以上の高い放電容量を維持することができる長寿命
かつ高放電容量のNi−水素電池を実現することができ
る。
As is clear from the results of the above examples, by using the hydrogen storage alloy according to the present invention as the cathode of a Ni-hydrogen secondary battery, a hydrogen storage alloy produced by a conventional melting method can be obtained. Higher discharge capacity is obtained compared to when used,
Moreover, 320 mA even after 500 cycles of charge and discharge.
It is possible to realize a Ni-hydrogen battery having a long life and a high discharge capacity capable of maintaining a high discharge capacity of h / g or more.

【0076】本発明の水素吸蔵合金を用いたNi−水素二
次電池は、現在実用化しつつある希土類系水素吸蔵合金
用いたNi−水素電池や、現在開発が進められている他の
ラーベス相系の水素吸蔵合金を用いたNi−水素電池のい
ずれよりも放電容量が高く、Ni−水素電池の利用拡大、
特に高い電気容量が充電できる用途である夜間電力貯蔵
や電気自動車用電池への適用が期待でき、エネルギー問
題や地球環境保全に貢献可能な技術である。
The Ni-hydrogen secondary battery using the hydrogen-absorbing alloy of the present invention is a Ni-hydrogen battery using the rare earth-based hydrogen-absorbing alloy currently in practical use, and other Laves phase-based batteries currently under development. The discharge capacity is higher than any of the Ni-hydrogen batteries using the hydrogen storage alloy of
It is a technology that can be expected to be applied to electricity storage at night and batteries for electric vehicles, which are applications that can be charged with a particularly high electric capacity, and can contribute to energy problems and global environmental conservation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/38 A 8520−4K (72)発明者 神代 光一 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 竹下 幸輝 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01M 4/38 A 8520-4K (72) Inventor Koichi Kamishiro 4-533 Kitahama, Chuo-ku, Osaka City No. Sumitomo Metal Industries Co., Ltd. (72) Inventor Kouki Takeshita 4-53-3 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 式: Tia Zr1-a (Nib c Mnd
e ) (式中、M=Cr、Fe、Co、Mo、W、Al、CuおよびNbから
成る群から選ばれた1種もしくは2種以上の元素、 0≦
a<0.60、1.00<b<1.50、0.10<c<0.50、0.10<d
<0.70、0.05<e<0.30、1.90≦b+c+d+e≦2.3
0)で表わされる組成を有し、実質的にラーベス相のみか
ら構成される、水素吸蔵合金。
1. The formula: Ti a Zr 1-a (Ni b V c Mn d M
e ) (wherein, M = Cr, Fe, Co, Mo, W, Al, Cu and Nb, and one or more elements selected from the group of 0 ≦
a <0.60, 1.00 <b <1.50, 0.10 <c <0.50, 0.10 <d
<0.70, 0.05 <e <0.30, 1.90 ≦ b + c + d + e ≦ 2.3
A hydrogen storage alloy having a composition represented by 0) and being substantially composed only of a Laves phase.
【請求項2】 請求項1記載の組成の合金の溶製時に、
融液の状態から500K/sec以上の冷却速度で急冷して合
金を凝固させることを特徴とする、請求項1記載の水素
吸蔵合金の製造方法。
2. When the alloy of the composition according to claim 1 is melted,
The method for producing a hydrogen storage alloy according to claim 1, wherein the alloy is solidified by rapidly cooling it from a melt state at a cooling rate of 500 K / sec or more.
【請求項3】 請求項2における合金凝固後、得られた
合金に不活性ガスまたは真空中において 550〜750 ℃で
1〜4時間の熱処理を施すことを特徴とする、請求項1
記載の水素吸蔵合金の製造方法。
3. The solidified alloy according to claim 2, wherein the obtained alloy is subjected to heat treatment at 550 to 750 ° C. for 1 to 4 hours in an inert gas or vacuum.
A method for producing the hydrogen storage alloy described.
【請求項4】 式: Tia Zr1-a (Nib c Mnd
e ) (式中、M=Cr、Fe、Co、Mo、W、Al、CuおよびNbから
成る群から選ばれた1種もしくは2種以上の元素、 0≦
a<0.20、1.00<b<1.50、0.10<c<0.50、0.10<d
<0.70、0.05<e<0.30、1.95<b+c+d+e≦2.0
5)で表わされる組成の合金の溶製時に、融液の状態から
1.0×103 K/sec以上の冷却速度で急冷して合金を凝固
させることを特徴とする、実質的にC15型ラーベス相の
みから構成される水素吸蔵合金の製造方法。
4. The formula: Ti a Zr 1-a (Ni b V c Mn d M
e ) (wherein, M = Cr, Fe, Co, Mo, W, Al, Cu and Nb, and one or more elements selected from the group of 0 ≦
a <0.20, 1.00 <b <1.50, 0.10 <c <0.50, 0.10 <d
<0.70, 0.05 <e <0.30, 1.95 <b + c + d + e ≦ 2.0
When melting the alloy with the composition represented by 5),
A method for producing a hydrogen storage alloy, which comprises substantially only C15 type Laves phase, characterized by rapidly cooling at a cooling rate of 1.0 × 10 3 K / sec or more to solidify the alloy.
【請求項5】 請求項4における合金凝固後、得られた
合金に不活性ガスまたは真空中において 550〜1100℃で
1〜20時間の熱処理を施すことを特徴とする、実質的に
C15型ラーベス相のみから構成される水素吸蔵合金の製
造方法。
5. A substantially C15 type Laves, characterized in that, after solidification of the alloy according to claim 4, the obtained alloy is subjected to heat treatment at 550 to 1100 ° C. for 1 to 20 hours in an inert gas or vacuum. A method for producing a hydrogen storage alloy composed of only phases.
【請求項6】 請求項1記載の水素吸蔵合金を負極活物
質として用いたNi−水素電池用負極電極。
6. A negative electrode for a Ni-hydrogen battery, which uses the hydrogen storage alloy according to claim 1 as a negative electrode active material.
JP11843293A 1992-05-29 1993-05-20 Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode Expired - Fee Related JP3266980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11843293A JP3266980B2 (en) 1992-05-29 1993-05-20 Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-139038 1992-05-29
JP13903892 1992-05-29
JP11843293A JP3266980B2 (en) 1992-05-29 1993-05-20 Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH0641663A true JPH0641663A (en) 1994-02-15
JP3266980B2 JP3266980B2 (en) 2002-03-18

Family

ID=26456372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11843293A Expired - Fee Related JP3266980B2 (en) 1992-05-29 1993-05-20 Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3266980B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739990A1 (en) * 1995-04-27 1996-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
JP2001234261A (en) * 2000-02-22 2001-08-28 Japan Steel Works Ltd:The Producing method for hydrogen storage alloy
WO2002014567A1 (en) * 2000-08-16 2002-02-21 Ovonic Battery Company, Inc. High power nickel-metal hydride batteries and high power alloys/electrodes for use therein
EP1205566A1 (en) * 2000-04-10 2002-05-15 Mitsui Mining & Smelting Co., Ltd. Hydrogen absorbing alloy and method for its production
KR100477728B1 (en) * 1997-09-09 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
KR100477730B1 (en) * 1997-09-09 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
KR100477729B1 (en) * 1997-09-09 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
KR100980475B1 (en) * 2007-11-15 2010-09-07 한국생산기술연구원 Active brazing filler metal alloy composition with high strength and low melting point

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739990A1 (en) * 1995-04-27 1996-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
US5753054A (en) * 1995-04-27 1998-05-19 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and electrode therefrom
KR100477728B1 (en) * 1997-09-09 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
KR100477730B1 (en) * 1997-09-09 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
KR100477729B1 (en) * 1997-09-09 2005-05-16 삼성에스디아이 주식회사 Hydrogen storage alloy for nickel hydrogen battery
JP2001234261A (en) * 2000-02-22 2001-08-28 Japan Steel Works Ltd:The Producing method for hydrogen storage alloy
EP1205566A1 (en) * 2000-04-10 2002-05-15 Mitsui Mining & Smelting Co., Ltd. Hydrogen absorbing alloy and method for its production
EP1205566A4 (en) * 2000-04-10 2006-08-30 Mitsui Mining & Smelting Co Hydrogen absorbing alloy and method for its production
WO2002014567A1 (en) * 2000-08-16 2002-02-21 Ovonic Battery Company, Inc. High power nickel-metal hydride batteries and high power alloys/electrodes for use therein
JP2004506813A (en) * 2000-08-16 2004-03-04 オヴォニック バッテリー カンパニー インコーポレイテッド High power nickel-metal hydride battery and high power alloy / electrode used therefor
KR100980475B1 (en) * 2007-11-15 2010-09-07 한국생산기술연구원 Active brazing filler metal alloy composition with high strength and low melting point

Also Published As

Publication number Publication date
JP3266980B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
EP0504950A2 (en) Hydrogen storage electrode
JP3965209B2 (en) Low Co hydrogen storage alloy
JP2020205192A (en) Nickel-hydrogen secondary battery negative electrode active material that needs no surface treatment, and nickel-hydrogen secondary battery
JP3828922B2 (en) Low Co hydrogen storage alloy
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP5252920B2 (en) Alkaline storage battery
JP3604156B2 (en) Electrochemical battery
EP1227165B1 (en) Hydrogen-occluding alloy and process for producing the same
KR20010021201A (en) A hydrogen adsorption alloy and a nickel hydrogen secondary battery
JP7251864B2 (en) Hydrogen storage alloy for alkaline storage batteries
US6083327A (en) Hydrogen occluding alloy
JP5773878B2 (en) RE-Fe-B hydrogen storage alloy and use thereof
KR19980085375A (en) Micro Metals and Nickel-Based Hydrogen Storage Alloys for Ni / MH Secondary Batteries
JP3101287B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2655074B2 (en) Hydrogen storage alloy and its electrode
JP2001294958A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and its producing method
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JP4441936B2 (en) Hydrogen storage electrode
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JP2000073134A (en) LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME
JP2983425B2 (en) Production method and electrode for hydrogen storage alloy
JPH10212509A (en) Production of hydrogen storage alloy powder
JP3306154B2 (en) Hydrogen storage alloy and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

LAPS Cancellation because of no payment of annual fees