JPH0812777B2 - Manufacturing method of hydrogen storage electrode - Google Patents

Manufacturing method of hydrogen storage electrode

Info

Publication number
JPH0812777B2
JPH0812777B2 JP62098933A JP9893387A JPH0812777B2 JP H0812777 B2 JPH0812777 B2 JP H0812777B2 JP 62098933 A JP62098933 A JP 62098933A JP 9893387 A JP9893387 A JP 9893387A JP H0812777 B2 JPH0812777 B2 JP H0812777B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
hydrogen
storage electrode
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62098933A
Other languages
Japanese (ja)
Other versions
JPS63264869A (en
Inventor
良夫 森脇
勉 岩城
明美 新谷
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62098933A priority Critical patent/JPH0812777B2/en
Publication of JPS63264869A publication Critical patent/JPS63264869A/en
Publication of JPH0812777B2 publication Critical patent/JPH0812777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合
金を用いる水素吸蔵電極の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a hydrogen storage electrode using a hydrogen storage alloy that stores and releases hydrogen reversibly.

従来の技術 各種の電源のうち二次電池としては、鉛蓄電池とアル
カリ蓄電池とが広く使われている。
2. Description of the Related Art Lead storage batteries and alkaline storage batteries are widely used as secondary batteries among various power sources.

そのうちアルカリ蓄電池には、、ニッケル−カドミウ
ム蓄電池が大半を占め、焼結式ニッケル極の実用化が利
用の範囲を大きく広げた。
Of these, nickel-cadmium storage batteries accounted for the majority of alkaline storage batteries, and the practical application of sintered nickel electrodes greatly expanded the range of applications.

この電池は放電特性の点で優れ、高率放電を行なって
も電圧や容量の低下が少ない。また、寿命も長く、過充
電など苛酷な条件にも耐え、低温での性能もよい。
This battery is excellent in discharge characteristics, and its voltage and capacity do not decrease much even if it is discharged at a high rate. It also has a long life, withstands harsh conditions such as overcharging, and has excellent low-temperature performance.

ところが高エネルギー密度に対する対応には、なお相
当の努力が必要である。正極については、例えば、発泡
状ニッケル極などが実用化されたが、負極のカドミウム
極については、現在のところあまり顕著な進歩はない。
However, considerable effort is still needed to deal with high energy densities. With respect to the positive electrode, for example, a foamed nickel electrode has been put into practical use, but with respect to the cadmium electrode of the negative electrode, no significant progress has been made so far.

例えばこの中で負極のカドミウムに代わって亜鉛が取
り上げられている。一次電池用としては成功している
が、よく知られているように充放電時での変形、樹枝状
析出などによる寿命の問題があるので特殊用の域を出て
いない。
For example, zinc is taken up in place of cadmium in the negative electrode. Although it has been successfully used as a primary battery, it is not out of the special range because it has a problem of life due to deformation during charging and discharging, dendritic deposition, etc., as is well known.

そこで最近注目されてきたのは水素を可逆的に吸蔵・
放出する水素吸蔵合金を用いた水素極である。宇宙用に
採用されている水素ガス拡散電極方式と異なり、この場
合は、カドミウムや亜鉛など同じ取扱いで電池を構成で
き、実際の放電可能な容量密度をカドミウムより大きく
できることや亜鉛のようなデンドライトの形成や電極の
形状変化などがないことから、高エネルギー密度で長寿
命、無公害のアルカリ蓄電池として有望である。
Therefore, what has recently attracted attention is the reversible storage of hydrogen.
It is a hydrogen electrode using a hydrogen storage alloy that releases. Unlike the hydrogen gas diffusion electrode method adopted for space, in this case, a battery can be constructed with the same handling such as cadmium and zinc, the actual dischargeable capacity density can be made larger than that of cadmium, and that of dendrite such as zinc. Since there is no formation or change in the shape of the electrodes, it is promising as a non-polluting alkaline storage battery with high energy density, long life and pollution.

この水素吸蔵合金を用いた水素吸蔵電極の製造法とし
ては、従来から水素吸蔵合金を多孔性導電体と共に焼結
して電極を得る焼結式や発泡金属や金属繊維、パンチン
グメタルやエキスパンドメタル、金属ネットなどの多孔
性導電体に水素吸蔵合金を結着剤などと共に充填した方
式がよく用いられていた。これらに用いられる水素吸蔵
合金は、粉末状であり、一般には機械的な粉砕で粉末化
されている。一方この粉砕を水素ガスでの水素化と脱水
素化で行なう例も特開昭53−103910号公報などで知られ
ている。
As a method for manufacturing a hydrogen storage electrode using this hydrogen storage alloy, conventionally, a hydrogen storage alloy is sintered together with a porous conductor to obtain an electrode by a sintering method or foam metal or metal fiber, punching metal or expanded metal, A method in which a porous conductor such as a metal net is filled with a hydrogen storage alloy together with a binder and the like is often used. The hydrogen storage alloys used for these are in powder form and are generally pulverized by mechanical pulverization. On the other hand, an example in which this pulverization is carried out by hydrogenation and dehydrogenation with hydrogen gas is also known from JP-A-53-103910.

発明が解決しようとする問題点 水素吸蔵合金を用いた水素吸蔵電極はこのように高エ
ネルギー密度の向上には有効であるが、これまでのとこ
ろ、アルカリ蓄電池の水素吸蔵合金負極に使用する際に
次のような問題があった。すなわち、水素の吸蔵と放
出、つまり充電と放電を繰返すと、合金粉末の微粉化が
進み電極が変形したり、粉末の脱落が生じたりする。こ
のことによって、電極の性能低下を招くことがある。ま
た、粉砕した合金粉末中に電極として有効に作用する合
金相以外の不純物相がかなり含まれており、これが電解
液中で溶解して性能を低下させることがあった。
Problems to be Solved by the Invention Although a hydrogen storage electrode using a hydrogen storage alloy is effective in improving high energy density as described above, so far, when it is used for a hydrogen storage alloy negative electrode of an alkaline storage battery, There were the following problems. That is, when hydrogen is occluded and released, that is, charging and discharging are repeated, the alloy powder is pulverized, the electrodes are deformed, and the powder is dropped. This may lead to a decrease in electrode performance. Further, the crushed alloy powder contains a considerable amount of an impurity phase other than the alloy phase which effectively acts as an electrode, which may be dissolved in the electrolytic solution to deteriorate the performance.

本発明はこの水素吸蔵合金をアルカリ蓄電池の水素吸
蔵合金負極に使用する際に、これまで問題であった微粉
化や溶解などを解決し、長寿命化を図ると同時に水素吸
蔵電極の簡易な製造方法を提供することを目的にする。
The present invention solves the problems such as pulverization and dissolution which have been problems so far when using this hydrogen storage alloy for a hydrogen storage alloy negative electrode of an alkaline storage battery, and aims at extending the service life, and at the same time, simple production of the hydrogen storage electrode. The purpose is to provide a method.

問題点を解決するための手段 本発明は、水素吸蔵合金を圧力容器に収納し、水素ガ
スでの水素化と、脱水素化を行ない、前記水素化と、脱
水素化により微粉化していない不純物相を含む部分を分
離し、残りをその後水素吸蔵電極用として用いることを
特徴とする水素吸蔵電極の製造方法である。
Means for Solving the Problems The present invention is to store a hydrogen storage alloy in a pressure vessel, perform hydrogenation with hydrogen gas and dehydrogenation, and carry out the hydrogenation and impurities not pulverized by dehydrogenation. A method for producing a hydrogen storage electrode, characterized in that a portion containing a phase is separated and the rest is thereafter used for a hydrogen storage electrode.

さらに、好ましくは篩分により粒径が100ミクロン以
下の粒径のみを分離して使用するものである。また微粉
化を十分行なうために水素ガスでの水素化と、脱水素化
は2回以上行ない、さらに酸化を抑制するためにその水
素化を行なった圧力容器内で、その後微粉末化していな
い部分だけを分離することが良い。
Furthermore, it is preferable to use only particles having a particle size of 100 μm or less separated by sieving. In addition, hydrogenation with hydrogen gas and dehydrogenation are performed twice or more in order to perform sufficient pulverization, and in the pressure vessel where the hydrogenation was performed to further suppress oxidation, a portion that has not been pulverized thereafter Only good to separate.

作用 水素ガスでの水素化と、脱水素化を行ない、水素化
と、脱水素化により微粉化していない合金中の不純物相
を含む部分を分離除去し、残りを、その後水素吸蔵電極
用として用いることにより微粉化の問題を解決する。す
なわち、水素ガスでの水素化は機械的粉砕と比較して、
より微細な粉末を簡単に得られ、そのことによって水素
吸蔵電極で充放電を繰返してもそれ以上微粉化が進みに
くい。また溶解については、有効合金相だけが選択的に
微粉化し合金中の不純物相は十分に微粉化していないた
めその部分だけ篩分などにより分離できることにより不
純物の溶解を防ぐことができる。
Action Hydrogenation with hydrogen gas and dehydrogenation are performed, hydrogenation and the portion containing the impurity phase in the alloy that has not been pulverized by dehydrogenation are separated and removed, and the rest is used for hydrogen storage electrodes thereafter. This solves the problem of pulverization. That is, hydrogenation with hydrogen gas, compared to mechanical grinding,
A finer powder can be easily obtained, and as a result, even if the hydrogen storage electrode is repeatedly charged and discharged, further pulverization is less likely to proceed. With respect to dissolution, only the effective alloy phase is selectively finely divided and the impurity phase in the alloy is not sufficiently finely divided. Therefore, only that portion can be separated by sieving or the like to prevent the impurities from being dissolved.

このように篩分により選択的に微粉化した有効合金相
だけが利用でき電解液中で溶解しやすい合金中の不純物
相を粗い粒子として分離することができるので水素吸蔵
電極の長寿命化に有効であることがわかった。
In this way, only the effective alloy phase selectively pulverized by sieving can be used, and the impurity phase in the alloy that is easily dissolved in the electrolyte can be separated as coarse particles, which is effective for extending the life of the hydrogen storage electrode. I found out.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

水素吸蔵合金として市販のMm(ミッシュメタル),Ni,
Co,Mn,Alの各原材料を一定の組成比に秤量してアルゴン
アーク溶解炉によってMmNi3.8Co0.5Mn0.410.3の組成
を有する合金の製造をめざした。ついでこの合金を公知
の方法に従って真空熱処理炉で熱処理し、その後、図に
示すような装置に収納した。図は本発明の水素吸蔵電極
の一製造装置である。1〜10cm角程度の塊状の水素吸蔵
合金1は、圧力容器2の上部の粗い金属メッシュ3上に
収納した。この圧力容器2はガスバルブ4を有し、また
容器内部に篩分のためのメッシュ篩5が収納された密閉
が可能な構造である。ガスバルブ4は、真空引きや水素
ガス導入、さらには不活性ガスの導入に用いる。
Commercially available Mm (Misch metal), Ni, as hydrogen storage alloy
The raw materials of Co, Mn, and Al were weighed to a constant composition ratio, and the production of an alloy having a composition of MmNi 3.8 Co 0.5 Mn 0.4 A 10.3 was aimed at by an argon arc melting furnace. Then, this alloy was heat-treated in a vacuum heat-treatment furnace according to a known method, and then stored in an apparatus as shown in the figure. The figure shows one manufacturing apparatus of the hydrogen storage electrode of the present invention. The block-shaped hydrogen storage alloy 1 of about 1 to 10 cm square was stored on the coarse metal mesh 3 on the upper part of the pressure vessel 2. This pressure vessel 2 has a gas valve 4 and has a structure in which a mesh sieve 5 for sieving is housed inside the vessel and can be sealed. The gas valve 4 is used for evacuation, introduction of hydrogen gas, and introduction of an inert gas.

図をもとに本発明の一手順を説明する。まず水素吸蔵
合金1を収納した圧力容器2内をガスバルブ4を介して
真空ポンプにより脱ガスした。そして次に同じバルブ4
から市販の水素ガスを導入し、約30気圧まで加圧した。
これにより水素吸蔵合金1はまもなく水素吸蔵反応を開
始した。この水素化を充分行なった後、バルブ4から水
素ガスを放出し、放出を充分行なうために真空ポンプに
より脱ガスした。この水素化と脱水素化を3回繰返した
後、圧力容器2を振動させ微細化した水素吸蔵合金粉末
を200メッシュのメッシュ篩5で篩分した。メッシュ篩
5を通過した粉末は、その後バルブ4から導入したアル
ゴンガス中でしばらく放置し、その後圧力容器2から外
へ取り出した。この際の200メッシュのメッシュ篩を通
過し回収された水素吸蔵合金粉末量は当初仕込んだ合金
量のほぼ96%であった。一方残り約4%のメッシュ篩を
通過できなかった粉末や粒子を調べてみた結果、これら
は水素吸蔵のための有効合金相とは幾分相が異なってい
ることがX線回折によって確認できた。またこの粗い粉
末や粒子はその後、水素ガスでの水素化を行なったとこ
ろ水素化特性は先の200メッシュのメッシュ篩を通過し
回収された水素吸蔵合金粉末と比較するとかなり悪い性
能であった。
A procedure of the present invention will be described with reference to the drawings. First, the inside of the pressure vessel 2 accommodating the hydrogen storage alloy 1 was degassed by the vacuum pump via the gas valve 4. And then the same valve 4
A commercially available hydrogen gas was introduced and the pressure was increased to about 30 atm.
As a result, the hydrogen storage alloy 1 soon started the hydrogen storage reaction. After sufficient hydrogenation was performed, hydrogen gas was released from the valve 4, and degassing was performed by a vacuum pump in order to sufficiently release the hydrogen gas. After repeating this hydrogenation and dehydrogenation three times, the pressure vessel 2 was vibrated to finely pulverize the hydrogen-absorbing alloy powder with a 200-mesh mesh sieve 5. The powder that passed through the mesh sieve 5 was left in the argon gas introduced from the valve 4 for a while, and then taken out of the pressure vessel 2. At this time, the amount of hydrogen storage alloy powder recovered after passing through a 200-mesh mesh screen was about 96% of the amount of alloy initially charged. On the other hand, as a result of examining powders and particles that could not pass through the remaining mesh sieve of about 4%, it was confirmed by X-ray diffraction that these were somewhat different from the effective alloy phase for hydrogen storage. . When this coarse powder and particles were subsequently hydrogenated with hydrogen gas, the hydrogenation characteristics were considerably worse than those of the hydrogen storage alloy powder recovered after passing through the 200 mesh screen.

次に、200メッシュのメッシュ篩を通過し回収された
水素吸蔵合金粉末を水素吸蔵電極とし、さらに密閉形ニ
ッケル−水素二次電池を構成して評価した結果について
説明する。
Next, a description will be given of the results of evaluation by using the hydrogen storage alloy powder that has passed through the 200-mesh mesh screen and recovered as a hydrogen storage electrode, and configuring a sealed nickel-hydrogen secondary battery.

まず200メッシュ通過の水素吸蔵合金粉末をポリビニ
ルアルコールの5%(重量)のエチレングリコール溶
液、さらに重量比で0.8%のポリエチレン微粉末、同じ
く0.5%の塩化ビニル−アクリロニトリル短繊維を加え
てペースト状にし十分混練し、厚さ0.15mm、孔径1.8m
m、開孔度50%の鉄製でニッケルメッキを施したパンチ
ングメタル板に塗着し、0.6mm幅のスリットを通して平
滑化し、その後120℃で1時間乾燥して水素吸蔵電極を
得た。このようにして得た水素吸蔵電極を電極Aとす
る。
First, a hydrogen-absorbing alloy powder that passed through 200 mesh was added to a 5% (by weight) solution of polyvinyl alcohol in ethylene glycol, 0.8% by weight of polyethylene fine powder, and 0.5% of vinyl chloride-acrylonitrile short fibers to form a paste. Thoroughly kneading, thickness 0.15mm, hole diameter 1.8m
It was coated on a punching metal plate made of iron and having a porosity of 50% and plated with nickel, smoothed through a slit having a width of 0.6 mm, and then dried at 120 ° C. for 1 hour to obtain a hydrogen storage electrode. The hydrogen storage electrode thus obtained is referred to as an electrode A.

比較のために、水素ガスでの水素化と脱水素化は同様
に行なうが、水素吸蔵合金粉末を200メッシュのメッシ
ュ篩5で篩分をしないで同様に水素吸蔵電極にしたもの
を電極Bとする。さらに、水素ガスでの水素化と脱水素
化をしないで水素吸蔵合金をボールミルによる機械的な
粉砕法によって200メッシュのメッシュ篩を通過するま
で粉砕して得た水素吸蔵合金粉末を同様に水素吸蔵電極
にしたものを電極Cとして加えた。
For comparison, hydrogenation with hydrogen gas and dehydrogenation are carried out in the same manner, but the hydrogen storage alloy powder is similarly used as a hydrogen storage electrode without sieving with a 200-mesh mesh sieve 5 as electrode B. To do. Furthermore, the hydrogen storage alloy powder obtained by pulverizing the hydrogen storage alloy without passing through hydrogenation and dehydrogenation with hydrogen gas until it passes through a 200-mesh mesh sieve by a mechanical pulverization method using a ball mill is also used for hydrogen storage. What was made into an electrode was added as an electrode C.

このようにして得た水素吸蔵電極A〜Cは、その後密
閉形ニッケル−水素二次電池として単2形で評価を行な
った。
The hydrogen storage electrodes A to C obtained in this manner were then evaluated as a sealed nickel-hydrogen secondary battery in a C1 type.

すなわち、先の水素吸蔵電極を各々幅3.9cm長さ26cm
に裁断し、リード板を所定の2カ所にスポット溶接によ
り取り付けた。相手極としては、公知の発泡式ニッケル
極を選び、幅3.9cm長さ22cmとして用いた。この場合も
リード板を2カ所取り付けた。
That is, each of the hydrogen storage electrodes was 3.9 cm wide and 26 cm long.
Then, the lead plate was attached to two predetermined places by spot welding. A well-known foamed nickel electrode was selected as a counter electrode and used with a width of 3.9 cm and a length of 22 cm. Also in this case, the lead plates were attached at two places.

セパレータとしては、ポリアミド不織布、電解液とし
ては、比重1.20の苛性カリ水溶液に水酸化リチウムを30
g/溶解して用いた。公称容量は3.0Ahである。
As the separator, a polyamide nonwoven fabric, and as the electrolyte, 30% lithium hydroxide was added to a caustic potash aqueous solution with a specific gravity of 1.20.
g / dissolved and used. The nominal capacity is 3.0 Ah.

これらの電池を通常の充放電サイクル試験によって20
℃で評価した結果を説明する。
These batteries were subjected to 20
The results evaluated at ° C will be described.

充電は、0.2C(5時間率)で150%まで、放電は0.5C
(2時間率)で終止電圧0.8Vとし充放電サイクルを繰り
返し行なった。
Charge up to 150% at 0.2C (5-hour rate), discharge at 0.5C
The final voltage was set to 0.8 V (at a rate of 2 hours), and the charge / discharge cycle was repeated.

その結果、電極Aを用いて構成した単2形密閉形ニッ
ケル−水素二次電池は、100サイクルの放電容量が3.15A
h、300サイクルで3.14Ah、600サイクルで3.13Ahであり
寿命性能は、極めて優れていた。
As a result, the AA sealed nickel-hydrogen secondary battery constructed using the electrode A has a discharge capacity of 3.15 A at 100 cycles.
The life performance was extremely excellent as it was 3.14 Ah at 300 cycles for h and 300 cycles and 3.13 Ah at 600 cycles.

これに対して電極Bで構成した電池は、100サイクル
で3.08Ahであったが、300サイクルで2.95Ahと公称容量
の3.0Ahを下回り、その後急激に放電容量が低下した。
なお、電極Bで構成した電池は電極Aで構成した電池よ
りも放電電圧が全体的に低かった。さらに電極Cで構成
した電池は当初公称容量の3.0Ahを満たしていたものの1
00サイクルでは2.81Ahの放電容量が得られたに過ぎずそ
の後は電極Bで構成した電池と同様に急激に放電容量が
低下した。
On the other hand, the battery composed of the electrode B had a capacity of 3.08 Ah at 100 cycles, but fell below the nominal capacity of 3.0 Ah at 2.95 Ah at 300 cycles, and then the discharge capacity dropped sharply.
The discharge voltage of the battery composed of the electrode B was lower than that of the battery composed of the electrode A as a whole. Furthermore, although the battery composed of electrode C initially met the nominal capacity of 3.0 Ah,
In the 00 cycle, only a discharge capacity of 2.81 Ah was obtained, and thereafter, the discharge capacity decreased sharply like the battery composed of the electrode B.

このような電池を構成した充放電試験結果から水素ガ
スでの水素吸蔵と水素放出を行なった後、水素吸蔵合金
粉末を篩分により有効合金相だけにしたことによる水素
吸蔵電極Aが、寿命性能に優れていることが確認でき
た。
Based on the results of charge and discharge tests that constituted such a battery, after hydrogen storage and release with hydrogen gas, hydrogen storage electrode powder A was made into only an effective alloy phase by sieving, and hydrogen storage electrode A had a long life performance. It was confirmed that it was excellent.

なお、先の説明以外に本発明に関して種々の検討を行
なった結果、以下のことが重要であった。
As a result of various studies on the present invention other than the above explanation, the following were important.

まず水素ガスでの水素化と、脱水素化の工程は実施例
では3回としたが、2回以上行なうことが電池性能上好
ましい。また篩分により一定の粒径で分離する工程の粒
径は200メッシュすなわち74ミクロンを用いたがこれは1
00ミクロン以下であることが好ましい。さらに水素ガス
での水素化と、脱水素化を行なった水素吸蔵合金粉末は
非常に活性が高いので実施例の不活性ガスの他に水素吸
蔵合金粉末と反応を起こさない液体などで表面を覆い、
酸化を進めないことも有効な手段である。
First, the steps of hydrogenating with hydrogen gas and dehydrogenating were performed three times in the examples, but it is preferable to perform the steps twice or more in terms of battery performance. In addition, the particle size of 200 mesh, or 74 microns, was used in the step of separating the particles with a constant particle size by sieving.
It is preferably 00 microns or less. Furthermore, since the hydrogen storage alloy powder that has been hydrogenated with hydrogen gas and dehydrogenated has a very high activity, the surface is covered with a liquid that does not react with the hydrogen storage alloy powder in addition to the inert gas of the example. ,
Not proceeding with oxidation is also an effective means.

発明の効果 以上のように本発明の水素吸蔵電極の製造方法は、水
素吸蔵合金を圧力容器に収納し、水素ガスでの水素化
と、脱水素化を行ない、前記水素化と、脱水素化により
微粉化していない不純物相を含む部分を分離し、残りを
その後水素吸蔵電極用として用いるものであり、水素吸
蔵合金をアルカリ蓄電池の水素吸蔵合金負極に使用する
と、これまで問題であった微粉化や溶解などを解決し長
寿命化を図るとともに水素吸蔵電極の簡易化が可能にな
る。
EFFECTS OF THE INVENTION As described above, the method for manufacturing a hydrogen storage electrode of the present invention stores the hydrogen storage alloy in a pressure vessel, performs hydrogenation with hydrogen gas and dehydrogenation, and performs the hydrogenation and dehydrogenation. Is used to separate the part containing the impurity phase that has not been pulverized, and the rest is then used as a hydrogen storage electrode.When a hydrogen storage alloy is used for the negative electrode of a hydrogen storage alloy in an alkaline storage battery, the pulverization that has been a problem until now It is possible to solve problems such as melting and melting and to prolong the service life and simplify the hydrogen storage electrode.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の一実施例の水素吸蔵電極の製造装置断面図
である。 1……水素吸蔵合金、2……圧力容器、3……粗い金属
メッシュ、4……ガスバルブ、5……メッシュ篩。
FIG. 1 is a sectional view of a hydrogen storage electrode manufacturing apparatus according to an embodiment of the present invention. 1 ... Hydrogen storage alloy, 2 ... Pressure vessel, 3 ... Coarse metal mesh, 4 ... Gas valve, 5 ... Mesh sieve.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金を圧力容器に収納し、水素ガ
スでの水素化と、脱水素化を行ない、前記水素化と脱水
素化により微粉化していない不純物相を含む部分を分離
し、残部の微粉化した水素吸蔵合金により電極を形成す
ることを特徴とする水素吸蔵電極の製造法。
1. A hydrogen storage alloy is housed in a pressure vessel, hydrogenated with hydrogen gas and dehydrogenated to separate a portion containing an impurity phase which is not pulverized by the hydrogenation and dehydrogenation. A method for producing a hydrogen storage electrode, characterized in that the electrode is formed of the remaining finely divided hydrogen storage alloy.
【請求項2】水素ガスでの水素化と、脱水素化を行なっ
た圧力容器内で、微粉化していない不純物相を含む部分
を分離することを特徴とする特許請求の範囲第1項記載
の水素吸蔵電極の製造法。
2. A part containing an impurity phase which is not pulverized is separated in a pressure vessel which has been subjected to hydrogenation with hydrogen gas and dehydrogenation. Manufacturing method of hydrogen storage electrode.
【請求項3】水素化と、脱水素化の工程を2回以上行な
うことを特徴とする特許請求の範囲第1項または第2項
記載の水素吸蔵電極の製造法。
3. The method for producing a hydrogen storage electrode according to claim 1 or 2, wherein the steps of hydrogenation and dehydrogenation are performed twice or more.
【請求項4】微粉化していない不純物相を含む部分を分
離する方法が一定の粒径での篩分法であることを特徴と
する特許請求の範囲第1項、2項または第3項記載の水
素吸蔵電極の製造法。
4. The method according to claim 1, wherein the method of separating the portion containing the non-micronized impurity phase is a sieving method with a constant particle size. Manufacturing method of hydrogen storage electrode.
【請求項5】篩分により一定の粒径で分離する工程の粒
径が100ミクロン以下であることを特徴とする特許請求
の範囲第1〜4項のいずれかに記載の水素吸蔵電極の製
造法。
5. The production of a hydrogen storage electrode according to any one of claims 1 to 4, wherein the particle size in the step of separating the particles with a constant particle size by sieving is 100 microns or less. Law.
JP62098933A 1987-04-22 1987-04-22 Manufacturing method of hydrogen storage electrode Expired - Lifetime JPH0812777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62098933A JPH0812777B2 (en) 1987-04-22 1987-04-22 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62098933A JPH0812777B2 (en) 1987-04-22 1987-04-22 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63264869A JPS63264869A (en) 1988-11-01
JPH0812777B2 true JPH0812777B2 (en) 1996-02-07

Family

ID=14232925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62098933A Expired - Lifetime JPH0812777B2 (en) 1987-04-22 1987-04-22 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0812777B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120936A (en) * 1998-08-27 2000-09-19 Ovonic Battery Company, Inc. Method for powder formation of a hydrogen storage alloy
JP7556661B2 (en) * 2018-06-25 2024-09-26 Toppanホールディングス株式会社 Negative electrode composition for alkaline secondary battery and negative electrode for alkaline secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103910A (en) * 1977-02-23 1978-09-09 Matsushita Electric Ind Co Ltd Production of hydrogen occluded electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103910A (en) * 1977-02-23 1978-09-09 Matsushita Electric Ind Co Ltd Production of hydrogen occluded electrode

Also Published As

Publication number Publication date
JPS63264869A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
JP2595967B2 (en) Hydrogen storage electrode
JPS6119063A (en) Hydrogen occlusion electrode
JPH0812777B2 (en) Manufacturing method of hydrogen storage electrode
JP3182757B2 (en) Nickel-hydrogen alkaline storage battery
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0756799B2 (en) Method for producing hydrogen storage alloy negative electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPH07101607B2 (en) Manufacturing method of hydrogen storage electrode
JP3171401B2 (en) Hydride rechargeable battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2750793B2 (en) Nickel-metal hydride battery
JP2553780B2 (en) Hydrogen storage alloy electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP3057737B2 (en) Sealed alkaline storage battery
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP2000021398A (en) Alkaline secondary battery
JP2000090921A (en) Alkaline secondary battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPS60119079A (en) Hydrogen absorption electrode
JP2919544B2 (en) Hydrogen storage electrode