JP3136961B2 - Method of treating hydrogen storage alloy for batteries - Google Patents

Method of treating hydrogen storage alloy for batteries

Info

Publication number
JP3136961B2
JP3136961B2 JP07231520A JP23152095A JP3136961B2 JP 3136961 B2 JP3136961 B2 JP 3136961B2 JP 07231520 A JP07231520 A JP 07231520A JP 23152095 A JP23152095 A JP 23152095A JP 3136961 B2 JP3136961 B2 JP 3136961B2
Authority
JP
Japan
Prior art keywords
acid
hydrogen storage
alloy
storage alloy
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07231520A
Other languages
Japanese (ja)
Other versions
JPH0982320A (en
Inventor
辰夫 永田
教之 禰宜
秀哉 上仲
幸輝 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07231520A priority Critical patent/JP3136961B2/en
Publication of JPH0982320A publication Critical patent/JPH0982320A/en
Application granted granted Critical
Publication of JP3136961B2 publication Critical patent/JP3136961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Niを含有する電池
用水素吸蔵合金の処理方法に関し、より詳しくは初期活
性度が高く、自己放電の少ないNi−水素電池用の水素吸
蔵合金を得るための処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a hydrogen storage alloy for a battery containing Ni, and more particularly to a method for obtaining a hydrogen storage alloy for a Ni-hydrogen battery having high initial activity and low self-discharge. Regarding the processing method.

【0002】[0002]

【従来の技術】現在、携帯用AV機器の電源やコンピュ
ーターのメモリ・バックアップ用に用いる二次電池は、
Ni−Cd電池が主流である。しかし、Cdの公害問題、Cdが
亜鉛精錬の副産物という資源量制約の問題、そしてより
高容量の二次電池開発といった観点から、Cdの代わりに
水素吸蔵合金を負極材料 (厳密には負極の活物質) に用
いたNi−水素電池と呼ばれる二次電池が開発された。
2. Description of the Related Art At present, secondary batteries used for power supply of portable AV equipment and memory backup of computers are:
Ni-Cd batteries are the mainstream. However, from the viewpoints of pollution of Cd, resource limitation of Cd as a by-product of zinc refining, and development of secondary batteries with higher capacity, hydrogen storage alloys are replaced with hydrogen storage alloys as anode materials (strictly speaking, the activity of anodes). A secondary battery called a Ni-hydrogen battery was developed.

【0003】Ni−水素電池は、Ni−Cd電池やNi−Zn電池
に比べて容量が高く、しかも電極に有害元素を含まない
という特長がある。そのため、Ni−水素電池は、携帯用
AV機器やコンピュータに使われ始めており、また地球
環境問題から無公害車、省エネルギー車として利用が拡
大しつつある電気自動車用の二次電池としての利用も検
討されていることから、既に量産体制に入っている。
[0003] Ni-hydrogen batteries have the advantage that they have higher capacities than Ni-Cd batteries and Ni-Zn batteries and do not contain harmful elements in their electrodes. For this reason, Ni-hydrogen batteries are beginning to be used in portable AV equipment and computers, and are also being considered for use as secondary batteries for electric vehicles, which are increasingly used as pollution-free and energy-saving vehicles due to global environmental issues. Has already started mass production.

【0004】Ni−水素電池用の水素吸蔵合金として検討
されてきた主な合金系は、LaNi5 系やMmNi5 系 (Mmは希
土類金属混合物であるミッシュメタル) で代表されるA
5型の結晶構造をとる金属間化合物と、ZnV0.4Ni1.6
で代表されるAB2 型のラーベス相構造をとる金属間化
合物である。即ち、いずれもNiを主成分として含有す
る。実用化に関してはAB5 型水素吸蔵合金の方が進ん
でいるが、AB2 型水素吸蔵合金も高容量を示すので有
望である。
[0004] The major alloy systems that have been studied as a hydrogen-absorbing alloy for a Ni- MH batteries, LaNi 5 type or MmNi 5 system (Mm is misch metal is a rare earth metal mixture) A represented by
Intermetallic compound has a crystalline structure type 5 B, ZnV 0.4 Ni 1.6
In which is an intermetallic compound takes a Laves phase structure of AB 2 type represented. That is, each contains Ni as a main component. Although the AB 5 type hydrogen storage alloy is more advanced for practical use, the AB 2 type hydrogen storage alloy is also promising because it shows a high capacity.

【0005】しかし、これらのNi−水素電池用の水素吸
蔵合金の量産が始まると、新たな問題点がいくつか生じ
てきた。その1つは、Ni−水素電池を構成した後の初期
活性化処理 (電池の放電容量を所定の定常値まで増大さ
せる処理) に非常に時間がかかり、生産性が著しく阻害
されることである。
However, when mass production of these hydrogen storage alloys for Ni-hydrogen batteries has started, some new problems have arisen. One is that the initial activation process (the process of increasing the discharge capacity of the battery to a predetermined steady-state value) after constructing the Ni-hydrogen battery takes a very long time, and productivity is significantly impaired. .

【0006】現在行われている初期活性化処理は、低電
流で長時間の充電後に放電する処理(15〜20時間の充電
と数時間の放電) を所定の放電容量が得られるようにな
るまで数回繰り返すことからなる。このため、電池を組
み立ててから出荷するまでに初期活性化処理として工場
内で充電・放電を数日間にわたって繰り返す必要があっ
た。
The initial activation process currently performed is a process of discharging after charging for a long time at a low current (charging for 15 to 20 hours and discharging for several hours) until a predetermined discharge capacity is obtained. It consists of repeating several times. For this reason, it was necessary to repeat charging / discharging in a factory for several days as an initial activation process from assembling the battery to shipping.

【0007】この問題点を解決する手段として、水素吸
蔵合金の粒界制御により初期活性の向上を図ることが試
みられた。例えば、特開平3−219036号公報には、水素
吸蔵合金にホウ素を添加して粉化し易いホウ素リッチ相
を生成させ、粉化による比表面積増大により初期活性化
効率を向上させることが提案されている。しかし、これ
は合金の粉化を伴うため、Ni−水素電池の電池寿命(充
電・放電繰り返しサイクル寿命)が著しく低下する。従
って、このような手段で初期活性と電池寿命を両立させ
ることは困難である。
As a means for solving this problem, attempts have been made to improve the initial activity by controlling the grain boundaries of the hydrogen storage alloy. For example, JP-A-3-219036 proposes that boron is added to a hydrogen storage alloy to generate a boron-rich phase that is easy to be powdered, and that the initial activation efficiency is improved by increasing the specific surface area by powdering. I have. However, since this involves powdering of the alloy, the battery life (repetitive charge / discharge cycle life) of the Ni-hydrogen battery is significantly reduced. Therefore, it is difficult to achieve both the initial activity and the battery life by such means.

【0008】別の活性化手段として、電極を作製する前
に水素吸蔵合金を酸、アルカリまたは塩を含む水溶液中
で浸漬処理する方法が知られている。例えば、特開平4
−328252号公報には次亜りん酸塩水溶液を用いた浸漬処
理、特開平3−49154 号公報にはりん酸塩、ケイ酸塩、
ヒ酸塩、クロム酸塩、次亜リン酸塩、テトラヒドロホウ
酸塩等を用いた浸漬処理が提案されている。しかし、こ
のように塩の水溶液を用いた浸漬処理では、処理に用い
た化学成分が粉末表面に残存し、正極側の電気化学特性
(正極特性)が劣化し電池容量が早期に低下するという
問題がある。
As another activation means, there is known a method of immersing a hydrogen storage alloy in an aqueous solution containing an acid, an alkali or a salt before producing an electrode. For example, JP
Japanese Patent Application Laid-Open No. 3-328252 discloses a dip treatment using an aqueous solution of hypophosphite.
An immersion treatment using arsenate, chromate, hypophosphite, tetrahydroborate or the like has been proposed. However, in such an immersion treatment using an aqueous solution of a salt, the chemical components used for the treatment remain on the powder surface, and the electrochemical characteristics (positive electrode characteristics) on the positive electrode side deteriorate, and the battery capacity decreases early. There is.

【0009】一方、特開平4−179055号公報および同6
−223827号公報には、合金表面の酸化物の除去を目的と
した酸水溶液を用いた浸漬処理が、特開平5−195007号
公報には合金表面を比表面積の大きな水酸化物層で被覆
するためのアルカリ水溶液を用いた浸漬処理が、さらに
特開平3−152868号公報および同4−98760 号公報に
は、最初に酸水溶液、次にアルカリ水溶液による浸漬処
理が提案されている。
On the other hand, Japanese Patent Application Laid-Open Nos.
JP-A-223827 discloses an immersion treatment using an acid aqueous solution for the purpose of removing oxides on an alloy surface, and JP-A-5-195007 discloses coating an alloy surface with a hydroxide layer having a large specific surface area. For this purpose, Japanese Patent Application Laid-Open Nos. 3-152868 and 4-98760 propose an immersion treatment using an aqueous alkali solution first, followed by an aqueous acid solution and then an aqueous alkali solution.

【0010】[0010]

【発明が解決しようとする課題】上記のように酸水溶液
および/またはアルカリ水溶液で処理した水素吸蔵合金
粉末をNi−水素電池の負極に使用すると、初期活性は確
かに改善されるが、自己放電特性が悪影響を受け、充電
後に長期保存をした時の容量低下が大きくなるという問
題があることが判明した。Ni−水素電池の使用状況下で
は、充電後に使用されずに放置されることは珍しいこと
ではないので、この問題はNi−水素電池の実用性を著し
く低下させる。
When the hydrogen storage alloy powder treated with the aqueous acid solution and / or the aqueous alkali solution as described above is used for the negative electrode of a Ni-hydrogen battery, the initial activity is certainly improved, but the self-discharge is improved. It has been found that the characteristics are adversely affected, and there is a problem that the capacity decreases when stored for a long time after charging. This problem significantly lowers the practicality of the Ni-hydrogen battery because it is not uncommon for the Ni-Hydrogen battery to be left unused after being charged after use.

【0011】本発明の目的は、Ni−水素電池に使用した
時に初期活性度が高く、かつ自己放電が少ない長期保存
性に優れた電池を作製することができる、水素吸蔵合金
の処理方法を提供することである。
An object of the present invention is to provide a method for treating a hydrogen-absorbing alloy capable of producing a battery having a high initial activity when used in a Ni-hydrogen battery and having a small self-discharge and excellent long-term storage properties. It is to be.

【0012】[0012]

【課題を解決するための手段】ここに、本発明は、Niを
含有する水素吸蔵合金を、溶存酸素量が1mg/L以下の非
酸化性酸水溶液に浸漬することを特徴とする、電池用水
素吸蔵合金の処理方法である。
Means for Solving the Problems The present invention relates to a battery for a battery, characterized by immersing a hydrogen storage alloy containing Ni in a non-oxidizing acid aqueous solution having a dissolved oxygen content of 1 mg / L or less. This is a method for treating a hydrogen storage alloy.

【0013】本発明者らは、Niを含有する水素吸蔵合金
(以下、単に水素吸蔵合金という)をNi−水素電池の負
極に使用した場合、電池の初期活性度は合金粉末表面の
酸化物量に依存し、自己放電量は合金粉末表面の水酸化
物量に依存することを確認した。即ち、酸化物が少ない
ほど初期活性度が高く、水酸化物が少ないほど自己放電
量が少なくなる。
The present inventors have developed a hydrogen storage alloy containing Ni.
When a hydrogen storage alloy (hereinafter simply referred to as hydrogen storage alloy) is used for the negative electrode of a Ni-hydrogen battery, the initial activity of the battery depends on the amount of oxide on the surface of the alloy powder, and the amount of self-discharge depends on the amount of hydroxide on the surface of the alloy powder. Make sure you do. That is, the smaller the oxide, the higher the initial activity, and the smaller the hydroxide, the smaller the amount of self-discharge.

【0014】このうち酸化物は、水素吸蔵合金粉末の製
造において行われる溶解、熱処理、粉砕の各工程で、合
金表面の金属が大気中の酸素や処理雰囲気中の酸素と反
応して形成されたものである。酸化物は導電性が悪いた
め、電池の初期活性度を低下させる。しかし、従来技術
で知られているように、酸化物は酸水溶液により除去で
きるので、酸水溶液で処理すると初期活性度は著しく向
上する。
Of these, oxides are formed by the reaction of the metal on the alloy surface with oxygen in the atmosphere or oxygen in the processing atmosphere in each of the melting, heat treatment, and pulverization steps performed in the production of the hydrogen storage alloy powder. Things. Oxides have poor conductivity and therefore reduce the initial activity of the battery. However, as is known in the art, oxides can be removed with an aqueous acid solution, so that treatment with an aqueous acid solution significantly improves initial activity.

【0015】一方、水酸化物は水素吸蔵合金をアルカリ
水溶液で処理した場合に合金表面に生成し、特にNi(OH)
2 が多く生成する。酸水溶液による処理では水酸化物は
生成しないと考えられてきたが、本発明者らは、酸処理
した水素吸蔵合金の表面にもNi(OH)2 が存在することを
突き止めた。
On the other hand, hydroxides are formed on the surface of the hydrogen storage alloy when the hydrogen storage alloy is treated with an aqueous alkali solution.
2 generates a lot. Although it was thought that hydroxide was not generated by the treatment with the acid aqueous solution, the present inventors have found that Ni (OH) 2 is also present on the surface of the acid-treated hydrogen storage alloy.

【0016】Ni(OH)2 はNi−水素電池の正極に用いられ
る物質であり、これが負極活物質である水素吸蔵合金に
付着すると、その部分で自己放電反応 (負極の蓄えた電
気が正極との放電反応以外の化学反応で消費されてしま
う反応) が起こる。そのため、水酸化物量が多いと、充
電後に長期保存する間に自己放電を起こして、充電した
電気量が減少し、電池の放電容量が低下するため、電池
の長期保存性が悪化する。
Ni (OH) 2 is a substance used for the positive electrode of a Ni-hydrogen battery, and when this adheres to a hydrogen storage alloy, which is a negative electrode active material, a self-discharge reaction occurs at that part (the electricity stored in the negative electrode becomes (A reaction that is consumed by a chemical reaction other than the discharge reaction). For this reason, when the amount of hydroxide is large, self-discharge occurs during long-term storage after charging, the amount of charged electricity decreases, and the discharge capacity of the battery decreases.

【0017】以上より、本発明の目的を達成するには、
水素吸蔵合金を酸水溶液で処理して合金表面の酸化物を
除去し、その際に水酸化物の生成を抑制することが必要
であることが判明した。酸処理により酸化物を除去する
と電池の初期活性度が向上し、その際に水酸化物の生成
量が少ないと、自己放電による電池の長期保存性の低下
が防止できるからである。アルカリ水溶液による処理
は、多量の水酸化物を合金表面に生成させるため、Ni−
水素電池の長期保存性には不利である。
From the above, to achieve the object of the present invention,
It has been found that it is necessary to treat the hydrogen storage alloy with an aqueous acid solution to remove oxides on the surface of the alloy and to suppress the formation of hydroxides at that time. This is because the removal of oxides by acid treatment improves the initial activity of the battery, and in this case, if the amount of hydroxide generated is small, it is possible to prevent a decrease in long-term storage properties of the battery due to self-discharge. The treatment with an alkaline aqueous solution generates a large amount of hydroxide on the alloy surface,
This is disadvantageous for long-term storage of a hydrogen battery.

【0018】この知見に基づき、本発明者らは酸水溶液
による処理で合金表面に水酸化物、特にNi(OH)2 が生成
する理由について探究した結果、次の点を究明した。即
ち、水素吸蔵合金を酸水溶液に浸漬すると、アノード反
応として合金表面の成分金属が酸化物と共に溶解する結
果、液中に金属イオンが生成し、こうして液中に溶出し
た金属イオンは合金表面に近いほど高濃度で存在する。
一方、このアノード反応と対をなすカソード反応とし
て、合金表面近傍で液中に溶存した酸素の還元反応が起
こり、それにより水酸(OH)イオンが生成し、この水酸イ
オンも合金表面に近いほど高濃度で存在する。従って、
合金の最近傍ではNiイオンが水酸イオンと結合して、合
金表面に水酸化物[Ni(OH)2] として析出する。即ち、液
中の溶存酸素量が多いほど、このような反応機構により
Ni(OH)2 が合金表面に析出し易いのである。
Based on this finding, the present inventors have investigated the reason why hydroxides, particularly Ni (OH) 2, are formed on the alloy surface by the treatment with an aqueous acid solution, and have found the following points. That is, when the hydrogen storage alloy is immersed in an aqueous acid solution, as a result of anodic reaction, the component metals on the alloy surface dissolve together with the oxides, thereby generating metal ions in the liquid, and the metal ions eluted in the liquid are close to the alloy surface. Are present in higher concentrations.
On the other hand, as a cathode reaction that is a counterpart to this anode reaction, a reduction reaction of oxygen dissolved in the liquid occurs near the alloy surface, thereby generating hydroxyl (OH) ions, which are also close to the alloy surface Are present in higher concentrations. Therefore,
In the vicinity of the alloy, Ni ions combine with hydroxide ions and precipitate on the surface of the alloy as hydroxide [Ni (OH) 2 ]. That is, the larger the amount of dissolved oxygen in the liquid, the more
Ni (OH) 2 tends to precipitate on the alloy surface.

【0019】従って、Ni−水素電池の自己放電を低減さ
せ、その長期保存性を改善するには、酸処理に用いる酸
水溶液の溶存酸素量を1mg/L以下まで低減させて、Ni(O
H)2の生成を阻止すればよいことを見出し、前述した本
発明を完成したのである。
Therefore, in order to reduce the self-discharge of a Ni-hydrogen battery and improve its long-term storage properties, the amount of dissolved oxygen in the acid aqueous solution used for the acid treatment is reduced to 1 mg / L or less to reduce the Ni (O
H) It was found that the formation of 2 should be prevented, and the present invention described above was completed.

【0020】また、酸水溶液中の溶存酸素量が多いと、
酸処理によって合金表面に現れた金属が液中の溶存酸素
と直接結合することにより、合金表面に金属酸化物が再
び生成してしまい、酸処理による酸化物の除去効果が低
減し、初期活性に悪影響を及ぼすという問題もある。従
って、溶存酸素量の少ない酸水溶液を使用すると、初期
活性もさらに向上させることができる。
When the amount of dissolved oxygen in the aqueous acid solution is large,
The metal that appeared on the alloy surface due to the acid treatment is directly bonded to the dissolved oxygen in the liquid, and the metal oxide is regenerated on the alloy surface, reducing the oxide removal effect of the acid treatment and reducing the initial activity. There is also the problem of adverse effects. Therefore, when an acid aqueous solution having a small amount of dissolved oxygen is used, the initial activity can be further improved.

【0021】[0021]

【発明の実施の形態】以下、本発明についてより詳しく
説明する。本発明の方法で処理対象となる水素吸蔵合金
は、Ni−水素二次電池用に用いられるAB5 型またはA
2 型の合金であり、特にNiを構成元素として含有する
ものである。本発明の効果は合金組成には影響されず、
Niを含有していればAB5型とAB2 型のいずれにも本
発明の処理方法を適用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Hydrogen storage alloy to be in a processed method of the present invention, AB 5 type used for Ni- hydrogen secondary battery or A
B is a 2 type alloys, in particular those containing as a constituent element Ni. The effect of the present invention is not affected by the alloy composition,
If containing Ni in any of AB 5 type and AB 2 type can be carried out using a treatment method of the present invention.

【0022】AB5 型合金の例は、LaNix またはMmNix
(xは 4.7〜5.2)を基本組成とし、場合によりNiの一部を
Co、Mn、Al、Fe、Cr、Cu、V、Be、Zr、Ti、Moなどの1
種もしくは2種以上の元素で置換したものである。LaNi
x は高価である上、寿命低下も速いので、実用的にはMm
Nix の方が好ましい。
Examples of AB 5 type alloys are LaNi x or MmNi x
(x is 4.7 to 5.2) as the basic composition, and in some cases, a part of Ni
Co, Mn, Al, Fe, Cr, Cu, V, Be, Zr, Ti, Mo, etc.
It has been replaced with one or more elements. LaNi
x is expensive and has a short life, so practically Mm
Ni x is preferred.

【0023】AB2 型合金の例は、ZrNiy (yは 1.9〜2.
25) を基本組成とし、場合によりNiの一部をV、Mn、C
r、Co、Fe、Al、Mo、Cu、Beなどの1種もしくは2種以
上の元素で置換したものである。具体例としてZr1.0V
0.4Ni1.6、Zr1.0Mn0.4Cr0.2Ni1.2、Zr1.0Ni1.2Mn0.6V
0.2Co0.1、Zr1.0Ni1.2Mn0.6V0.2Fe0.1、Zr1.0V0.4Ni1.6
などがある。なお、これらは例示にすぎず、他の組成の
ものも使用できる。
Examples of AB type 2 alloys include ZrNi y (y is 1.9 to 2.
25) as the basic composition, and in some cases, Ni, V, Mn, C
It is substituted with one or more elements such as r, Co, Fe, Al, Mo, Cu, Be and the like. Zr 1.0 V as a specific example
0.4 Ni 1.6 , Zr 1.0 Mn 0.4 Cr 0.2 Ni 1.2 , Zr 1.0 Ni 1.2 Mn 0.6 V
0.2 Co 0.1 , Zr 1.0 Ni 1.2 Mn 0.6 V 0.2 Fe 0.1 , Zr 1.0 V 0.4 Ni 1.6
and so on. Note that these are merely examples, and those having other compositions can also be used.

【0024】水素吸蔵合金の製造方法としては、通常の
インゴット法 (合金溶湯を鋳造して得たインゴットを粉
砕したもの) の他に、回転電極法、ロール急冷法、アト
マイズ法などの急冷凝固を利用した各種の方法が知られ
ている。本発明方法は、これらのいずれの方法で製造さ
れた水素吸蔵合金についても適用できる。電極の製造に
は水素吸蔵合金を粉末状で使用するので、粉末が直接得
られるアトマイズ法以外の方法で製造された水素吸蔵合
金については、一般に生成した合金を粉砕する必要があ
る。この粉砕工程で合金粉末の表面に酸化物が生成し、
初期活性が低下するため、本発明の処理方法は、最終粒
度まで粉砕した粉末状の水素吸蔵合金に適用することが
望ましい。また、急冷凝固法で製造された水素吸蔵合金
は、急冷中に生じた歪を除去するため、本発明の処理前
に非酸化性雰囲気中で熱処理を施すことが好ましい。
As a method for producing the hydrogen storage alloy, in addition to the usual ingot method (a method in which an ingot obtained by casting a molten alloy is crushed), rapid solidification such as a rotating electrode method, a roll quenching method, and an atomizing method is used. Various methods used are known. The method of the present invention can be applied to a hydrogen storage alloy produced by any of these methods. Since the hydrogen storage alloy is used in the form of a powder in the production of the electrode, it is generally necessary to pulverize the hydrogen storage alloy produced by a method other than the atomization method in which the powder is directly obtained. An oxide is generated on the surface of the alloy powder during this pulverization process,
Since the initial activity is reduced, the treatment method of the present invention is desirably applied to a powdery hydrogen storage alloy pulverized to the final particle size. In addition, it is preferable that the hydrogen storage alloy produced by the rapid solidification method be subjected to a heat treatment in a non-oxidizing atmosphere before the treatment of the present invention in order to remove the strain generated during the rapid cooling.

【0025】本発明による水素吸蔵合金の処理には、非
酸化性の酸の水溶液を用いる。水素吸蔵合金の製造およ
び粉砕過程で合金表面に生成する酸化物は、主にNi酸化
物と希土類酸化物 (AB5 型の場合) またはZr酸化物
(AB2 型の場合) である。非酸化性の酸はこれらの酸
化物を合金表面から除去するのに効果的であり、それに
より電池の初期活性度が著しく改善される。
In the treatment of the hydrogen storage alloy according to the present invention, an aqueous solution of a non-oxidizing acid is used. Oxides generated on the alloy surface in the manufacturing and grinding process of the hydrogen storage alloy is mainly (in the case of AB 5 type) Ni oxide and a rare earth oxide or Zr oxide
(In the case of AB 2 type). Non-oxidizing acids are effective in removing these oxides from the alloy surface, thereby significantly improving the initial activity of the cell.

【0026】本発明で使用するのに適した非酸化性の酸
の例は、塩酸、フッ化水素酸、および塩酸とフッ化水素
酸との混酸である。非酸化性であれば、その他の酸も単
独で、または塩酸および/またはフッ化水素酸と混合し
て使用できる。硝酸や硫酸などの酸化性の酸を使用する
と、その酸化力により酸化皮膜が新たに生成しやすく、
合金の初期活性度を十分に改善することができない。
Examples of non-oxidizing acids suitable for use in the present invention are hydrochloric acid, hydrofluoric acid, and mixed acids of hydrochloric acid and hydrofluoric acid. If non-oxidizing, other acids can be used alone or in admixture with hydrochloric acid and / or hydrofluoric acid. If an oxidizing acid such as nitric acid or sulfuric acid is used, an oxidizing power easily forms a new oxide film,
The initial activity of the alloy cannot be improved sufficiently.

【0027】本発明の処理に用いる酸水溶液は、市販の
試薬特級もしくは1級またはそれと同程度の濃度の非酸
化性の酸の原液 (濃度は一般に塩酸で35〜36%、フッ化
水素酸で44〜46%) を、水 (脱イオン水が好ましい) で
希釈することにより調製することができる。酸溶液中の
酸濃度は、この原液の含有量 (重量%) として、塩酸で
0.1〜15%、フッ化水素酸で0.01〜10%、塩酸とフッ化
水素酸との混酸で0.01〜15%の範囲が望ましい。酸濃度
が下限より低くなると、酸化物と酸水溶液との反応性が
低く、浸漬処理を行っても十分な初期活性度の改善が得
られにくい。一方、酸濃度が上限を超えると、溶解反応
が急激に起こり、合金表面の酸化膜を除去するだけでな
く、合金そのものの溶解が進行し、損失量が多くなる。
The aqueous acid solution used in the treatment of the present invention is a stock solution of a non-oxidizing acid having a concentration of a commercially available special grade or a primary grade or a similar concentration (concentration is generally 35 to 36% with hydrochloric acid and hydrofluoric acid). 44-46%) with water (preferably deionized water). The acid concentration in the acid solution is calculated as the content (% by weight) of this stock solution with hydrochloric acid.
The range is preferably 0.1 to 15%, 0.01 to 10% for hydrofluoric acid, and 0.01 to 15% for a mixed acid of hydrochloric acid and hydrofluoric acid. When the acid concentration is lower than the lower limit, the reactivity between the oxide and the aqueous acid solution is low, and it is difficult to sufficiently improve the initial activity even by performing the immersion treatment. On the other hand, when the acid concentration exceeds the upper limit, the dissolution reaction occurs rapidly, not only removing the oxide film on the surface of the alloy, but also the dissolution of the alloy itself progresses, and the loss increases.

【0028】室温 (25℃) の大気中にある純水には約7
mg/Lの酸素が溶解している。従って、上記方法で調製し
た酸水溶液も、そのままではこの程度の量の溶存酸素を
含有している。それにより、前述したような理由で、酸
処理中に金属水酸化物、特にNi(OH)2 が生成して自己放
電特性が劣化すると共に、酸化物の再形成が起こって酸
化物除去による初期活性の向上効果も低減する。そのた
め、本発明にあっては、溶存酸素量を1mg/L以下に低減
させた酸水溶液を用いることによって、この問題を解消
する。即ち、酸水溶液中の溶存酸素量が1mg/Lを超える
と、上記の問題が顕著となる。好ましくは、酸水溶液中
の溶存酸素量を0.5 mg/L以下とする。
Pure water in the air at room temperature (25 ° C.)
mg / L oxygen is dissolved. Therefore, the aqueous acid solution prepared by the above method contains this amount of dissolved oxygen as it is. As a result, metal hydroxides, particularly Ni (OH) 2, are generated during the acid treatment and the self-discharge characteristics are deteriorated during the acid treatment, as described above. The effect of improving activity is also reduced. Therefore, in the present invention, this problem is solved by using an acid aqueous solution in which the amount of dissolved oxygen is reduced to 1 mg / L or less. That is, when the amount of dissolved oxygen in the aqueous acid solution exceeds 1 mg / L, the above problem becomes significant. Preferably, the amount of dissolved oxygen in the aqueous acid solution is set to 0.5 mg / L or less.

【0029】酸水溶液の溶存酸素量は、当業者には周知
のように、水溶液にガスを吹き込む脱気処理により低減
させることができる。液の脱気に用いる吹き込みガスと
しては、一般には不活性ガス (He、Ne、Ar、Kr、Xeガ
ス) が用いられるが、本発明では酸水溶液、特にハロゲ
ン化水素酸の水溶液を脱気することから、ハロゲンガス
(F2ガスおよび/または Cl2ガス) を、単独でまたは不
活性ガスと混合して、吹き込みガスに用いることができ
る。それにより、脱気中に酸成分が揮発して酸水溶液の
濃度が低下するのを抑制することができる。脱気条件
(ガスの吹き込み量、吹き込み時間等) は、液中の溶存
酸素量が1mg/L以下の所望の値になるように選択する。
As is well known to those skilled in the art, the amount of dissolved oxygen in the aqueous acid solution can be reduced by degassing by blowing gas into the aqueous solution. Inert gas (He, Ne, Ar, Kr, Xe gas) is generally used as the blowing gas used for degassing the liquid. In the present invention, an acid aqueous solution, particularly an aqueous solution of hydrohalic acid is degassed. From the fact that halogen gas
(F 2 gas and / or Cl 2 gas) can be used alone or mixed with an inert gas as the blowing gas. Thereby, it can be suppressed that the acid component volatilizes during the degassing and the concentration of the acid aqueous solution decreases. Degassing conditions
(Blowing amount of gas, blowing time, etc.) are selected so that the dissolved oxygen amount in the liquid becomes a desired value of 1 mg / L or less.

【0030】脱気した酸水溶液を放置しておくと、空気
中の酸素を吸収して溶存酸素量が増えていくので、脱気
処理した酸水溶液はなるべく早く水素吸蔵合金の浸漬処
理に使用することが好ましい。脱気した液を貯蔵する場
合には、不活性ガス雰囲気中で貯蔵すれば、溶存酸素の
増大を防止できる。要は、浸漬の直前の酸水溶液の溶存
酸素量が1mg/L以下であればよい。
If the degassed acid aqueous solution is allowed to stand, oxygen in the air is absorbed and the amount of dissolved oxygen increases, so the degassed acid aqueous solution is used for immersion treatment of the hydrogen storage alloy as soon as possible. Is preferred. When storing the degassed liquid, an increase in dissolved oxygen can be prevented by storing the liquid in an inert gas atmosphere. In short, it is sufficient that the dissolved oxygen amount of the aqueous acid solution immediately before immersion is 1 mg / L or less.

【0031】また、脱気を酸水溶液に対して適用するの
ではなく、酸水溶液の調製 (酸の原液の希釈) に用いる
水を脱気してもよい。その方が、脱気中の酸の揮散等の
問題を避けることができる。酸の原液より希釈に用いる
水の方が量的に多いので、希釈に用いる水の溶存酸素量
を1mg/Lより十分低いレベル (例、0.5 mg/L以下) まで
下げておけば、希釈後に溶存酸素量が1mg/L以下の酸水
溶液を得ることができる。なお、脱イオン水を得るため
のイオン交換樹脂による処理では、水の溶存酸素量は低
減しない。
Instead of applying degassing to the aqueous acid solution, water used for preparing the aqueous acid solution (dilution of the undiluted acid solution) may be degassed. This can avoid problems such as volatilization of acid during degassing. Since the amount of water used for dilution is larger than the stock solution of acid, the dissolved oxygen content of the water used for dilution should be reduced to a level sufficiently lower than 1 mg / L (eg, 0.5 mg / L or less). An aqueous acid solution having a dissolved oxygen content of 1 mg / L or less can be obtained. Note that the treatment with the ion exchange resin to obtain deionized water does not reduce the amount of dissolved oxygen in the water.

【0032】また、酸水溶液または水の溶存酸素量は、
これを加熱ないし沸騰させることによっても低減させる
ことができる。即ち、温度が高くなると酸素の溶解度が
小さくなるので、酸素が追い出され、溶存酸素が少なく
なる。加熱後の冷却は、酸素の溶解を抑制するため、不
活性ガス雰囲気中で行うことが好ましい。
The dissolved oxygen content of the aqueous acid solution or water is
This can also be reduced by heating or boiling. That is, as the temperature increases, the solubility of oxygen decreases, so that the oxygen is expelled and the dissolved oxygen decreases. Cooling after heating is preferably performed in an inert gas atmosphere to suppress dissolution of oxygen.

【0033】こうして溶存酸素量を1mg/L以下に低減さ
せた酸水溶液を用いて、水素吸蔵合金を浸漬処理する。
浸漬処理のその他の条件は特に制限されないが、温度は
10〜80℃の範囲が望ましい。10℃未満では酸化物の除去
反応が十分に進行せず、処理に時間がかかりすぎる。一
方、80℃より高温では、合金内部まで溶解してしまうこ
とになる。
The hydrogen storage alloy is immersed in the aqueous acid solution in which the amount of dissolved oxygen is reduced to 1 mg / L or less.
Other conditions of the immersion treatment are not particularly limited, but the temperature is
A range of 10 to 80 ° C is desirable. When the temperature is lower than 10 ° C., the oxide removal reaction does not sufficiently proceed, and the treatment takes too much time. On the other hand, if the temperature is higher than 80 ° C., the alloy will be melted inside.

【0034】酸水溶液への浸漬時間は、温度や酸水溶液
の種類や濃度に応じて異なるが、一般には数分ないし数
時間であり、ほとんどの場合には1時間以内で十分であ
る。塩酸に比べてフッ酸の方が処理時間が短くてすむ。
また、この浸漬処理中にも、液中または液状に上記の脱
気用ガスを吹き込みながら脱気処理を続けることが、本
発明の目的達成にとって効果的である。
Although the immersion time in the aqueous acid solution varies depending on the temperature and the type and concentration of the aqueous acid solution, it is generally several minutes to several hours, and in most cases, one hour or less is sufficient. Hydrofluoric acid requires less processing time than hydrochloric acid.
Further, it is effective to achieve the object of the present invention to continue the deaeration treatment while blowing the above-mentioned deaeration gas into the liquid or the liquid during the immersion treatment.

【0035】酸水溶液で浸漬処理した後、常法に従って
水素吸蔵合金を十分に水洗して (必要なら水洗を繰り返
して) 付着した酸を除去し、好ましくは真空または不活
性ガス中で乾燥する。この水洗において、1回目の水洗
に用いる水は、脱気または加熱により溶存酸素量を低減
(好ましくは1mg/L以下に) させておくことが望まし
い。これは、1回目の水洗までは、合金の表面に付着し
たNiイオンが溶けだして、表面近傍のNiイオン濃度が高
くなる可能性があるからである。ただし、水洗に用いる
水の量が合金の量に対して非常に多い (例、重量で5倍
以上) である場合には、その可能性は小さいため、脱気
等により洗浄水の溶存酸素量を低減させておく必要はな
い。
After immersion treatment in an acid aqueous solution, the hydrogen absorbing alloy is sufficiently washed with water (by repeating washing with water if necessary) in accordance with a conventional method to remove the attached acid, and is preferably dried in a vacuum or an inert gas. In this water washing, the amount of dissolved oxygen in the water used for the first washing is reduced by degassing or heating.
(Preferably 1 mg / L or less). This is because the Ni ions attached to the surface of the alloy may melt until the first water washing, and the concentration of Ni ions near the surface may increase. However, if the amount of water used for washing is very large (eg, 5 times or more in weight) with respect to the amount of alloy, the possibility is small. Need not be reduced.

【0036】こうして処理した水素吸蔵合金から当業者
に周知の方法で電極を作製し、Ni−水素電池の負極とし
て使用する。電極は、水素吸蔵合金粉末を適当な結着剤
(ポリビニルアルコールなどの樹脂) および水 (または
他の液体) と混合してペースト状とし、ニッケル多孔体
に充填して乾燥した後、所望の電極形状に加圧成形する
ことにより作製できる。
An electrode is produced from the thus treated hydrogen storage alloy by a method well known to those skilled in the art and used as a negative electrode of a Ni-hydrogen battery. The electrode is made of a hydrogen storage alloy powder with a suitable binder
(A resin such as polyvinyl alcohol) and water (or another liquid) to form a paste, fill a porous nickel body, dry, and then press-mold into a desired electrode shape.

【0037】[0037]

【実施例】次の実施例は本発明の構成と効果を例示する
ものである。実施例中、%は特に指定しない限り重量%
である。実施例に用いた水素吸蔵合金粉末は、表1に示
す組成を持つAB5 型またはAB2 型合金であった。こ
れらの合金の鋳造に用いた原料は、純度99.9%のフレー
ク状Ni、純度99.8%の電解Co、純度99.9%のショット状
Al、純度99.8%の板状Mn、Ni−56.9%V母合金、純度9
9.5%以上のスポンジ状Zr、希土類金属純度が99.8%以
上のミッシュメタル(Mm) (La=28%、Ce=48%、Nd=18
%、Pr=6%) であった。
The following examples illustrate the structure and effect of the present invention. In the examples,% is% by weight unless otherwise specified.
It is. Hydrogen-absorbing alloy powder used in the examples was a AB 5 type or AB 2 type alloy having a composition shown in Table 1. The raw materials used for casting these alloys were 99.9% pure flake Ni, 99.8% pure electrolytic Co, and 99.9% pure shot.
Al, plate-like Mn with 99.8% purity, Ni-56.9% V mother alloy, purity 9
Sponge-like Zr of 9.5% or more, misch metal (Mm) with rare earth metal purity of 99.8% or more (La = 28%, Ce = 48%, Nd = 18
%, Pr = 6%).

【0038】[0038]

【表1】 [Table 1]

【0039】これらの原料を所定組成になるように混合
してから真空中の高周波誘導加熱により溶製した合金溶
湯を用いて、75 kg/chのArガスアトマイズ法 (融液状か
らの冷却速度=1×103 〜1×104 ℃/sec) または100
kg/ch のインゴット法 (融液状からの冷却速度=1.0 ℃
/sec) により水素吸蔵合金粉末を作製した。インゴット
法で得た水素吸蔵合金は、次いでステンレス鋼製ボール
ミルによりAr雰囲気中で機械的に粉砕して平均粒径40μ
mの粉末状にした。アトマイズ法で得た水素吸蔵合金粉
末 (平均粒径40μm) は、冷却歪を除去するために純度
99.99 %のAr雰囲気中で 900℃×10hrの熱処理を行っ
た。
These raw materials are mixed so as to have a predetermined composition, and then a 75 kg / ch Ar gas atomizing method (cooling rate from molten liquid = 1) is performed using an alloy melt produced by high-frequency induction heating in vacuum. × 10 3 -1 × 10 4 ° C / sec) or 100
kg / ch ingot method (cooling rate from melt = 1.0 ℃
/ sec) to produce a hydrogen storage alloy powder. The hydrogen storage alloy obtained by the ingot method is then mechanically pulverized in a stainless steel ball mill in an Ar atmosphere to have an average particle size of 40 μm.
m in powder form. The hydrogen storage alloy powder (average particle size 40 μm) obtained by the atomization method is purified to remove cooling strain.
Heat treatment was performed at 900 ° C. for 10 hours in a 99.99% Ar atmosphere.

【0040】これらの水素吸蔵合金粉末 500gを、溶存
酸素量を低減させた酸水溶液3kg中で10分間浸漬処理し
た。使用した酸水溶液は、試薬特級の塩酸(HCl、35%濃
度)および/またはフッ化水素酸 (HF、46%濃度) の原
液を、脱イオン水 (=イオン交換水) で希釈することに
より調製した。この時、希釈用の脱イオン水を、予めAr
ガスの吹き込みにより脱気処理しておいた。脱気処理
は、表2に示す所定の浸漬処理温度に保持した脱イオン
水にArガスを水溶液1L あたり1.5 L/min の流量で吹き
込むことにより実施し、この脱気処理した脱イオン水を
用いて、直ちに酸水溶液の希釈と得られた酸水溶液によ
る水素吸蔵合金の浸漬処理とを行った。浸漬処理中も、
液上にArガスを流通させ、浸漬処理後に溶存酸素量が増
大するのを防止した。
500 g of the hydrogen storage alloy powder was immersed for 10 minutes in 3 kg of an aqueous acid solution in which the amount of dissolved oxygen was reduced. The acid solution used was prepared by diluting a stock solution of reagent grade hydrochloric acid (HCl, 35% concentration) and / or hydrofluoric acid (HF, 46% concentration) with deionized water (= ion exchanged water). did. At this time, deionized water for dilution is
Degassing was performed by blowing gas. The degassing treatment was performed by blowing Ar gas at a flow rate of 1.5 L / min per liter of an aqueous solution into deionized water maintained at a predetermined immersion temperature shown in Table 2, and using the degassed deionized water. Immediately, the acid aqueous solution was diluted and the hydrogen storage alloy was immersed in the obtained acid aqueous solution. During the immersion process,
Ar gas was circulated over the liquid to prevent the amount of dissolved oxygen from increasing after the immersion treatment.

【0041】表2に、水素吸蔵合金の組成 (表1の記
号) とその製造方法、ならびに使用した酸水溶液の浸漬
処理開始時の溶存酸素量、浸漬処理温度、酸水溶液中の
塩酸およびフッ化水素酸の原液濃度を示す。なお、酸水
溶液の溶存酸素量は、希釈用の脱イオン水へのArガスの
吹き込み時間を変えることにより調整し、液の酸素溶存
量の測定は市販の溶存酸素計 (隔膜式ガルバニ電池式測
定器)により行った。
Table 2 shows the composition of the hydrogen storage alloy (symbol in Table 1), its production method, the dissolved oxygen amount at the start of the immersion treatment of the acid aqueous solution used, the immersion treatment temperature, the hydrochloric acid and the fluoride in the acid aqueous solution. Shows the concentration of the stock solution of hydroacid. The amount of dissolved oxygen in the acid aqueous solution was adjusted by changing the blowing time of Ar gas into the deionized water for dilution, and the amount of dissolved oxygen in the solution was measured using a commercially available dissolved oxygen meter (diaphragm galvanic cell type measurement). Device).

【0042】表2に示した比較例のうち、試験No. 20〜
21はArガスの吹き込み時間が短く、酸水溶液の溶存酸素
量が1mg/Lを越えた例であり、残りの例は、脱気しなか
った脱イオン水を用いて酸の原液の希釈した例である。
比較例において、これらの点以外は、上記と同様にして
水素吸蔵合金の浸漬処理を行った。
Of the comparative examples shown in Table 2, Test Nos. 20 to
21 is a case where the blowing time of Ar gas is short, and the dissolved oxygen amount of the acid aqueous solution exceeds 1 mg / L, and the remaining cases are those in which the undiluted acid solution was diluted with deionized water which was not degassed. It is.
In the comparative example, except for these points, the immersion treatment of the hydrogen storage alloy was performed in the same manner as described above.

【0043】上記のように浸漬処理した水素吸蔵合金粉
末を、重量比でその10倍量という大量の水により水洗し
た後、真空乾燥した。この合金粉末を、74μm以下、32
μm以上に分級し、結着剤 (ポリビニルアルコール5%
水溶液) を添加して混練した。得られた合金粉末のペー
ストを、ニッケル製発泡状金属多孔体 (住友電工製セル
メット) に充填し、乾燥した後に1.5 ton/cm2 の圧力で
加圧して、合金粉末をNi多孔体内に担持させ、電池の負
極を作製した。このときの水素吸蔵合金粉末の担持量は
12gであった。
The hydrogen-absorbing alloy powder immersed as described above was washed with a large amount of water, 10 times the weight thereof, and then dried in vacuum. When this alloy powder is
classify to a size of at least μm, and use a binder (polyvinyl alcohol 5%
Aqueous solution) was added and kneaded. The resulting alloy powder paste was filled into a nickel foamed metal porous body (product of Sumitomo Electric Industries, Ltd. CELMET), dried pressurized with a pressure of 1.5 ton / cm 2 after, is supported alloy powder of Ni porous body The negative electrode of the battery was produced. At this time, the supported amount of the hydrogen storage alloy powder is
It was 12 g.

【0044】正極には市販の公称2000 mA のNi電極を用
い、正極と負極の間に6N-KOHのアルカリ電解液を含浸さ
せたナイロン不織布をセパレータとして挟み込み、公称
2000mA のNi−水素電池を作製した。この電池を単2型
のケースに密閉し、試験に供する電池を得た。この電池
は負極の容量が大きい正極規制型の電池である。
A commercially available nominally 2000 mA Ni electrode was used for the positive electrode, and a nylon nonwoven fabric impregnated with 6N-KOH alkaline electrolyte was sandwiched between the positive and negative electrodes as a separator.
A 2000 mA Ni-hydrogen battery was fabricated. This battery was sealed in a C2 case to obtain a battery to be tested. This battery is a positive electrode regulation type battery having a large negative electrode capacity.

【0045】この電池を用いて下記の電池性能を調査し
た結果を表2に併せて示す。初期活性度 作製した正極容量規制型Ni−水素電池について、25℃に
おいて 80 mA/g (負極に担持された水素吸蔵合金1gに
対する電流) で3時間充電した後、160 mA/gで端子電圧
0.9 Vまで放電する、繰り返し充電・放電を10回行う、
1回目の放電容量と10回目の放電容量を測定し、その比
(1回目の放電容量/10回目の放電容量×100 %) によ
って、初期活性度を求めた。初期活性度が95%以上であ
れば合格と評価できる。
The results of the following battery performance studies using this battery are also shown in Table 2. Initial activity The prepared positive-electrode capacity regulated Ni-hydrogen battery was charged at 25 mA at 80 mA / g (current for 1 g of the hydrogen storage alloy supported on the negative electrode) for 3 hours, and then the terminal voltage was 160 mA / g.
Discharge to 0.9 V, repeat charge / discharge 10 times,
Measure the first discharge capacity and the tenth discharge capacity, and calculate the ratio.
The initial activity was determined by (first discharge capacity / 10th discharge capacity × 100%). If the initial activity is 95% or more, it can be evaluated as passing.

【0046】自己放電特性 (保存後容量) 作製したNi−水素電池を用いて上記と同じ条件下で繰り
返し充電・放電を10回行った後、80 mA/g で3時間充電
し、次いで50℃で10日間放置した後、160 mA/gで端子電
圧0.9 Vまで放電した時の容量を測定し、上記の繰り返
し充電・放電を10回行った後の放電容量との比 (保存後
放電容量/10回目の放電容量×100 %)によって保存後
の放電容量を求めた。この値が85%以上であれば合格と
評価できる。
Self-discharge characteristics (capacity after storage) Using the prepared Ni-hydrogen battery, the battery was repeatedly charged and discharged 10 times under the same conditions as described above, then charged at 80 mA / g for 3 hours, and then charged at 50 ° C. After 10 days at 160 mA / g, measure the capacity when discharging to a terminal voltage of 0.9 V, and compare it with the discharging capacity after performing the above repeated charging and discharging 10 times (discharging capacity after storage / The discharge capacity after storage was determined by the tenth discharge capacity × 100%). If this value is 85% or more, it can be evaluated as passing.

【0047】[0047]

【表2】 [Table 2]

【0048】表2からわかるように、本発明により溶存
酸素量が1mg/L以下の酸水溶液を用いて水素吸蔵合金を
浸漬処理した場合には、初期活性度が95%以上、保存後
容量が85%以上と、いずれも合格基準に達したNi−水素
電池を得ることができた。これに対し、脱気処理しなか
った脱イオン水を用いて調製した酸水溶液で水素吸蔵合
金を浸漬処理した比較例 (No. 22〜25) では、酸水溶液
の溶存酸素量が7mg/Lと高かったため、Ni−水素電池の
初期活性度が90%前後とやや低い上、特に保存後の容量
が70%台と著しく低くなった。また、希釈用脱イオン水
の脱気処理が不十分で、酸水溶液の溶存酸素量が3mg/L
と高かった比較例 (No. 20〜21) でも、初期活性度と保
存後容量は十分には改善されなかった。
As can be seen from Table 2, when the hydrogen storage alloy is immersed in an acid aqueous solution having a dissolved oxygen content of 1 mg / L or less according to the present invention, the initial activity is 95% or more, and the capacity after storage is not less than 95%. At 85% or more, Ni-Hydrogen batteries which all passed the acceptance criteria could be obtained. In contrast, in Comparative Examples (Nos. 22 to 25) in which the hydrogen storage alloy was immersed in an acid aqueous solution prepared using deionized water that had not been degassed, the dissolved oxygen content of the acid aqueous solution was 7 mg / L. Due to the high activity, the initial activity of the Ni-hydrogen battery was slightly low at around 90%, and the capacity after storage was extremely low, particularly in the 70% range. In addition, the deaeration of deionized water for dilution was insufficient, and the dissolved oxygen content of the acid aqueous solution was 3 mg / L.
In Comparative Examples (Nos. 20 to 21), the initial activity and the capacity after storage were not sufficiently improved.

【0049】[0049]

【発明の効果】本発明により、Ni−水素電池の負極に使
用する水素吸蔵合金を、溶存酸素量を低減させた非酸化
性の酸水溶液で浸漬処理することにより、初期活性度が
高く、かつ自己放電の少ない長期保存性に優れたNi−水
素電池を製造することが可能となる。
According to the present invention, a hydrogen storage alloy used for a negative electrode of a Ni-hydrogen battery is immersed in a non-oxidizing acid aqueous solution with a reduced amount of dissolved oxygen, so that the initial activity is high and It is possible to manufacture a Ni-hydrogen battery with a low self-discharge and excellent long-term storage properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹下 幸輝 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (56)参考文献 特開 平7−153460(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/26 H01M 4/38 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yukiteru Takeshita 4-5-33 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries, Ltd. (56) References JP-A 7-153460 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/24-4/26 H01M 4/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Niを含有する水素吸蔵合金を溶存酸素量
が1mg/L以下の非酸化性酸水溶液に浸漬することを特徴
とする、電池用水素吸蔵合金の処理方法。
1. A method for treating a hydrogen storage alloy for a battery, comprising immersing a hydrogen storage alloy containing Ni in a non-oxidizing acid aqueous solution having a dissolved oxygen content of 1 mg / L or less.
JP07231520A 1995-09-08 1995-09-08 Method of treating hydrogen storage alloy for batteries Expired - Fee Related JP3136961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07231520A JP3136961B2 (en) 1995-09-08 1995-09-08 Method of treating hydrogen storage alloy for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07231520A JP3136961B2 (en) 1995-09-08 1995-09-08 Method of treating hydrogen storage alloy for batteries

Publications (2)

Publication Number Publication Date
JPH0982320A JPH0982320A (en) 1997-03-28
JP3136961B2 true JP3136961B2 (en) 2001-02-19

Family

ID=16924779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07231520A Expired - Fee Related JP3136961B2 (en) 1995-09-08 1995-09-08 Method of treating hydrogen storage alloy for batteries

Country Status (1)

Country Link
JP (1) JP3136961B2 (en)

Also Published As

Publication number Publication date
JPH0982320A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
EP0757395A1 (en) A non-sintered nickel electrode, an alkaline storage cell and manufacturing method
EP0986119B1 (en) Alkaline storage battery, hydrogen-absorbing alloy electrode and method for producing the same
CN105723548B (en) Alloy powder for electrode, the nickel-metal hydride battery cathode and nickel-metal hydride battery for having used it
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JP2978094B2 (en) Surface treatment method of hydrogen storage alloy powder and alkaline secondary battery obtained by applying the method
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JP3136961B2 (en) Method of treating hydrogen storage alloy for batteries
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JP3432870B2 (en) Method for producing metal hydride electrode
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JPH06187980A (en) Surface treatment method to hydrogen storage alloy electrode
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3136963B2 (en) Method of treating hydrogen storage alloy for batteries
JP4404447B2 (en) Method for producing alkaline storage battery
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JPH09129226A (en) Treating method for hydrogen storage alloy for battery
JP3530309B2 (en) Method for producing hydrogen storage alloy electrode
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JP2001085004A (en) Alkaline storage battery and its manufacture
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001107

LAPS Cancellation because of no payment of annual fees