JPH11204104A - Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof - Google Patents

Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof

Info

Publication number
JPH11204104A
JPH11204104A JP10005637A JP563798A JPH11204104A JP H11204104 A JPH11204104 A JP H11204104A JP 10005637 A JP10005637 A JP 10005637A JP 563798 A JP563798 A JP 563798A JP H11204104 A JPH11204104 A JP H11204104A
Authority
JP
Japan
Prior art keywords
hydrogen storage
site
storage alloy
nickel
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10005637A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Suzuki
達彦 鈴木
Futoshi Tanigawa
太志 谷川
Takashi Yao
剛史 八尾
Hajime Konishi
始 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10005637A priority Critical patent/JPH11204104A/en
Publication of JPH11204104A publication Critical patent/JPH11204104A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery with superior mass current discharge characteristic by using a misch metal consisting of a specific elements as a site A, and at a site B AB5 type hydrogen storage alloy powders consisting of specific elements containing Co is stirred in a lithium hydroxide aqueous solution of a heated specific concentration, and made to elute a cobalt component from powders in the solution, and deposit it on a powder surface. SOLUTION: A misch metal has a site A which is La, Ce, Pr, Nd, and Sm and a B site which is Ni, Co, Mn, and Al. A concentration of a lithium hydroxide aqueous solution is 1 to 4 mol/l, and a liquid temperature is preferably 80 to 120 deg.C. Reaction activity of alloy powders is enhanced from elution in cobalt solution and deposition onto its powder surface by a stirring process in a heated lithium hydroxide aqueous solution, and discharge characteristic is improved. A secondary battery is constituted of a negative electrode composed of hydrogen storage alloy powders, a positive electrode having nickel hydroxide as an active substance, a separator for holding an alkali electrolyte, and an alkali electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大電流放電および
高温での使用に優れたニッケル−水素二次電池と、その
水素吸蔵合金の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen secondary battery excellent in large current discharge and high temperature use, and a method for producing a hydrogen storage alloy thereof.

【0002】[0002]

【従来の技術】従来から、電動工具や非常灯など大電流
放電および高温雰囲気下で使用される機器の電源として
の二次電池には、ニッケル−カドミウム蓄電池が用いら
れてきた。ニッケル−カドミウム蓄電池は、大電流での
充放電特性に優れ、また高温雰囲気での充放電特性にも
優れている。しかしながらニッケル−カドミウム蓄電池
では、負極活物質としてカドミウムを用いているため、
環境に対する影響が問題になりつつある。また、負極材
料にカドミウムを用いる場合、その高容量化には限界が
ある。
2. Description of the Related Art Conventionally, nickel-cadmium storage batteries have been used as a secondary battery as a power source for equipment used under high current discharge and high temperature atmospheres such as electric tools and emergency lights. Nickel-cadmium storage batteries have excellent charge / discharge characteristics at high currents, and also have excellent charge / discharge characteristics at high temperatures. However, since nickel-cadmium storage batteries use cadmium as the negative electrode active material,
The impact on the environment is becoming a problem. Further, when cadmium is used as a negative electrode material, there is a limit in increasing the capacity.

【0003】そこで、カドミウムを用いないで、電池と
しての高容量化、大電流放電特性および環境問題に対応
する事が急速に必要となってきている。
[0003] Therefore, it is rapidly required to increase the capacity of a battery, to handle large current discharge characteristics, and to cope with environmental problems without using cadmium.

【0004】以下に従来のニッケル−水素二次電池につ
いて説明する。
[0004] A conventional nickel-hydrogen secondary battery will be described below.

【0005】ニッケル−水素二次電池用の正極として
は、例えば、特開昭50−36935号公報に開示され
た、ニッケル金属よりなる三次元的に連続した多孔度9
5%以上のスポンジ状多孔体基板に、活物質である水酸
化ニッケルを充填するものが知られている。これは現在
高容量の二次電池の正極として広く用いられている。こ
の非焼結式正極においては、充填性のよさ、高容量化の
点から、球状の水酸化ニッケルを多孔体基板に充填する
ことが提案されている次に、水素吸蔵合金を用いた負極
について説明する。一般に負極合金材料としては、AB
5タイプの合金が用いられる。AB5タイプの合金はLa
Ni5系の合金であり、通常はLaの部分をMm(ミッ
シュメタル)で置き換え、Niの一部分をCo,Mn,
Al,Fe,Cr等の金属で置き換えたものが用いられ
る。なお、ミッシュメタルはLaをベースとしたランタ
ニド系合金である。
As a positive electrode for a nickel-hydrogen secondary battery, for example, a three-dimensionally continuous porosity 9 made of nickel metal disclosed in Japanese Patent Application Laid-Open No. 50-36935 is disclosed.
It is known that a sponge-like porous substrate of 5% or more is filled with nickel hydroxide as an active material. This is currently widely used as a positive electrode for high capacity secondary batteries. In this non-sintered type positive electrode, it has been proposed to fill spherical nickel hydroxide into a porous substrate from the viewpoint of good filling property and high capacity.Next, a negative electrode using a hydrogen storage alloy explain. Generally, as the negative electrode alloy material, AB
Five types of alloys are used. AB 5 type alloy is La
A Ni 5 alloy of, usually replaces the part of La in Mm (misch metal), a portion of the Ni Co, Mn,
A material replaced with a metal such as Al, Fe, or Cr is used. The misch metal is a lanthanide-based alloy based on La.

【0006】この負極は、合金を所定の粒径に粉砕した
後、分級し、水酸化カリウム水溶液を主体とするアルカ
リ水溶液で処理を行い、その後水洗して得られた合金粉
末に導電剤と結着剤を混合してペースト状とし、これを
芯材であるニッケルメッキした金属多孔板に塗布、乾
燥、プレスして極板として用いられる。ここでアルカリ
処理とは、粉砕した合金粉末を80℃位に加熱した水酸
化カリウム水溶液にいれ、所定時間攪拌処理した後、純
水で水洗して付着したアルカリ成分を合金粉末表面から
除去していた。このアルカリ処理工程を行なう事により
合金の成分であるランタンを主成分としたミッシュメタ
ルもしくはニッケルを置換したCo,Mn,Al,F
e,Cr等が酸化されて合金粉末表面に水酸化物として
析出したり、水酸イオンとしてアルカリ溶液中に溶解す
る。この際合金粉末表面には、合金組成金属の中で酸化
されにくいニッケルやコバルトが金属原子として偏在す
る。これら合金表面に偏在したニッケルやコバルトは、
水素吸蔵合金粉末の表面での水素吸蔵能力を高める一種
の触媒として有効に働く。したがって密閉式のアルカリ
二次電池を作る際に、負極材料である水素吸蔵合金は、
その能力を高める上から粉末状態でのアルカリ水溶液処
理が必要不可欠である。
The negative electrode is obtained by pulverizing an alloy to a predetermined particle size, classifying the alloy, treating the alloy with an aqueous alkali solution mainly composed of an aqueous potassium hydroxide solution, and then washing the resultant alloy powder with a conductive agent. The adhesive is mixed to form a paste, which is applied to a nickel-plated metal porous plate as a core material, dried and pressed to be used as an electrode plate. Here, the alkali treatment means that the pulverized alloy powder is placed in an aqueous solution of potassium hydroxide heated to about 80 ° C., stirred for a predetermined time, washed with pure water, and the adhered alkali component is removed from the surface of the alloy powder. Was. By performing this alkali treatment step, a misch metal containing lanthanum, which is a component of the alloy, or Co, Mn, Al, F substituted for nickel is used.
e, Cr, etc. are oxidized and precipitated as hydroxide on the surface of the alloy powder, or dissolved in an alkaline solution as hydroxide ions. At this time, nickel and cobalt which are hardly oxidized among the alloy composition metals are unevenly distributed as metal atoms on the surface of the alloy powder. Nickel and cobalt unevenly distributed on the surface of these alloys
It works effectively as a kind of catalyst that enhances the hydrogen storage capacity on the surface of the hydrogen storage alloy powder. Therefore, when making a sealed alkaline secondary battery, the hydrogen storage alloy as the negative electrode material,
In order to enhance the capacity, treatment with an alkaline aqueous solution in a powder state is indispensable.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記のよ
うな正極と負極を用いて構成したニッケル−水素二次電
池において、優れた大電流放電特性を得るためには、水
素吸蔵合金自体での水素吸蔵放出反応をさらに高めるこ
とが必要である。
However, in order to obtain excellent large-current discharge characteristics in a nickel-hydrogen secondary battery constituted by using the above-mentioned positive electrode and negative electrode, hydrogen absorption by the hydrogen storage alloy itself is required. It is necessary to further enhance the release response.

【0008】本発明は上記課題を考慮して、負極材料で
ある水素吸蔵合金粉末の反応表面の改質を図る事によ
り、高エネルギー密度、大電流特性、高温での保存およ
び充放電特性を向上させることができるニッケル−水素
二次電池とその負極合金の新たな製造方法を提供するこ
とを主たる目的としたものである。
In view of the above problems, the present invention improves the reaction surface of a hydrogen storage alloy powder as a negative electrode material, thereby improving high energy density, large current characteristics, high temperature storage and charge / discharge characteristics. A primary object of the present invention is to provide a new method for producing a nickel-hydrogen secondary battery and a negative electrode alloy thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明のニッケル−水素二次電池は、La,Ce,
Pr,Nd,SmからなるミッシュメタルをAサイトと
し、BサイトがNi,Co,Mn,AlからなるAB5
型水素吸蔵合金粉末を、加熱した水酸化リチウム水溶液
中で攪拌処理することによりコバルトの溶液中への溶出
とその粉末表面への析出とから合金粉末表面の反応活性
を高め、放電特性を向上させるものである。この合金粉
末を負極に用いることにより大電流放電特性に優れたニ
ッケル−水素二次電池を提供する事が可能となる。
In order to achieve the above object, a nickel-hydrogen secondary battery according to the present invention comprises La, Ce,
A misch metal made of Pr, Nd, Sm is used as an A site, and a B site is made of AB 5 made of Ni, Co, Mn, and Al.
-Type hydrogen storage alloy powder is stirred in a heated aqueous solution of lithium hydroxide to increase the reaction activity of the alloy powder surface from the elution of cobalt into the solution and its precipitation on the powder surface, thereby improving the discharge characteristics. Things. By using this alloy powder for the negative electrode, it is possible to provide a nickel-hydrogen secondary battery having excellent large-current discharge characteristics.

【0010】[0010]

【発明の実施の形態】請求項1に記載の発明は、La,
Ce,Pr,Nd,SmからなるミッシュメタルをAサ
イトとし、BサイトがNi,Co,Mn,Alからなる
AB5型水素吸蔵合金粉末を加熱した水酸化リチウム水
溶液中で攪拌処理した水素吸蔵合金の処理法であり、そ
の水溶液の濃度は1〜4mol/lが好ましい。これ
は、水酸化リチウムは溶解度が水酸化ナトリウムや水酸
化カリウムよりも小さいため、4mol/lより高い濃
度では溶解しなく、また1mol/lより低い濃度では
低濃度過ぎて、コバルトの溶液中への溶解反応が円滑に
進行しないため、十分な処理効果が得られないからであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is characterized in that La,
Ce, Pr, Nd, and misch metal consisting of Sm and A site, B site Ni, Co, Mn, stirred treated hydrogen storage alloy AB 5 -type hydrogen absorbing alloy powder aqueous lithium hydroxide solution which had been heated made of Al The concentration of the aqueous solution is preferably 1 to 4 mol / l. This is because lithium hydroxide does not dissolve at concentrations higher than 4 mol / l because its solubility is lower than that of sodium hydroxide or potassium hydroxide, and it is too low at a concentration lower than 1 mol / l to enter the cobalt solution. This is because the dissolution reaction does not proceed smoothly, and a sufficient treatment effect cannot be obtained.

【0011】請求項2に記載の発明は、水酸化リチウム
水溶液で処理する温度を規定したものであり、その温度
としては80〜120℃が好ましい。温度が80℃より
も低いと処理時のコバルト等の溶出が緩慢で反応に時間
がかかりすぎる。また、120℃を越えると水溶液の濃
度変化が激しくなると同時に、合金表面処理の程度を細
かく制御することが困難となるためである。
[0011] The second aspect of the present invention specifies the temperature for treating with an aqueous solution of lithium hydroxide, and the temperature is preferably 80 to 120 ° C. If the temperature is lower than 80 ° C., the elution of cobalt or the like during the treatment is slow, and the reaction takes too long. On the other hand, if the temperature exceeds 120 ° C., the change in the concentration of the aqueous solution becomes severe, and at the same time, it becomes difficult to finely control the degree of the alloy surface treatment.

【0012】請求項3に記載の発明は、上記の処理法で
得られた合金粉末、すなわち La,Ce,Pr,N
d,SmからなるミッシュメタルをAサイトとし、Bサ
イトがNi,Co,Mn,AlからなるAB5型水素吸
蔵合金粉末を水酸化リチウム水溶液中で所望の時間攪拌
処理した水素吸蔵合金粉末で構成した負極、水酸化ニッ
ケルを活物質とした正極、アルカリ電解液保持のための
セパレータと、アルカリ電解液とで構成したニッケル−
水素二次電池である。このような電池であれば、負極特
性の改善により、大電流放電特性に適した高容量のもの
にできる。
According to a third aspect of the present invention, there is provided an alloy powder obtained by the above processing method, that is, La, Ce, Pr, N
d, mischmetal consisting Sm and A site, B site configuration Ni, Co, Mn, and AB 5 type hydrogen-absorbing alloy powder consisting of Al in the hydrogen storage alloy powder a desired time the stirring process in aqueous lithium hydroxide solution Negative electrode, a positive electrode using nickel hydroxide as an active material, a separator for holding an alkaline electrolyte, and a nickel
It is a hydrogen secondary battery. With such a battery, a high capacity battery suitable for large current discharge characteristics can be obtained by improving the negative electrode characteristics.

【0013】[0013]

【実施例】以下、本発明の詳細を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below.

【0014】(実施例1)合金組成としてMmNi3.55
Co0.75Mn0.4Al0.3のものを用い、この合金塊を機
械的に平均粒径30μmの粉末に粉砕した後、この粉末
を液温80℃,濃度4mol/lの水酸化リチウム水溶
液中に投入して、60分間攪拌処理した。その後、合金
粉末を取り出し水洗、乾燥した。ここで得られた合金粉
末をAとする。また、比較のため、4mol/lの水酸
化カリウム水溶液中で上記と同一処理したものをB,4
mol/lの水酸化ナトリウム水溶液中で上記と同一処
理したものをCとする。これらA〜Cの合金粉末の、温
度20℃下で10KOeの磁場をかけた時の単位重量当
たりの磁化量及び、残った攪拌処理後の液中の元素定量
分析値を次の(表1)に示す。
Example 1 MmNi 3.55 as an alloy composition
This alloy lump was mechanically pulverized into a powder having an average particle diameter of 30 μm using a material of Co 0.75 Mn 0.4 Al 0.3 , and the powder was poured into an aqueous solution of lithium hydroxide having a liquid temperature of 80 ° C. and a concentration of 4 mol / l. And stirred for 60 minutes. Thereafter, the alloy powder was taken out, washed with water, and dried. The alloy powder obtained here is designated as A. For comparison, those treated in the same manner as above in a 4 mol / l aqueous potassium hydroxide solution were used as B, 4
What was treated in the same manner as above in a mol / l sodium hydroxide aqueous solution was designated C. The magnetization amounts per unit weight of these alloy powders A to C when a magnetic field of 10 KOe was applied at a temperature of 20 ° C., and the quantitative analysis values of the elements in the liquid after the remaining stirring treatment were as follows (Table 1). Shown in

【0015】[0015]

【表1】 【table 1】

【0016】(表1)に示すようにAの粉末はB,Cの
粉末に比べて、10KOeの磁場をかけた時の単位重量
当たりの磁化の程度が大きく、処理溶液中のコバルト元
素定量値が小さい。このことから、Aの処理合金粉末表
面にはコバルトが多く析出していることは明らかであ
る。
As shown in Table 1, the degree of magnetization per unit weight of the A powder is larger than that of the B and C powders when a magnetic field of 10 KOe is applied. Is small. From this, it is clear that a large amount of cobalt is precipitated on the surface of the treated alloy powder of A.

【0017】このことを確認するため、A〜Cの合金粉
末表面をEPMA像で観察したところ、Aの合金粉末表
面にはコバルト金属の偏在析出が認められた。。一方、
B,Cの合金粉末表面にはAほどにはコバルト金属の偏
在析出が確認されなかった。
In order to confirm this, the surfaces of the alloy powders A to C were observed with an EPMA image. As a result, uneven distribution of cobalt metal was observed on the surface of the alloy powder A. . on the other hand,
The uneven distribution of cobalt metal was not confirmed as much as A on the surfaces of the alloy powders B and C.

【0018】以上のことからAの合金粉末の処理作製法
は、水素吸蔵合金粉末の表面を改質して水素吸蔵放出能
を高める効果があると考えられる。
From the above, it is considered that the method of processing and manufacturing the alloy powder of A has an effect of modifying the surface of the hydrogen storage alloy powder to enhance the hydrogen storage and release capability.

【0019】(実施例2)実施例1で作製した水素吸蔵
合金粉末100重量部にポリビニルアルコールの5重量
%水溶液10重量部を加えてペースト状にした。これを
芯材であるニッケルメッキした金属多孔板に塗着し、乾
燥、加圧し、さらにその表面にフッ素樹脂粉末をコーテ
ィングして、水素吸蔵合金電極を作成した。これに公知
の非焼結式ニッケル正極とナイロン不織布セパレータを
組み合わせて渦巻き状に巻いて電極群を構成し、金属ケ
ースに挿入した。ついでケース内に水酸化カリウム水溶
液を主体とした電解液を所定量注液した後、ケースを封
口し、Aサイズで電池容量2000mAhの電池を構成
した。これを電池Dとする。また同様に、3mol/
l,2mol/l及び1mol/l,0.5mol/l
の水酸化リチウム溶液で処理を施した合金粉末を用いた
以外は、上の実施例と同じ方法で構成した電池をそれぞ
れE,F,G,Hとする。
(Example 2) 10 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added to 100 parts by weight of the hydrogen storage alloy powder prepared in Example 1 to form a paste. This was applied to a nickel-plated metal porous plate serving as a core material, dried and pressed, and the surface thereof was coated with a fluororesin powder to prepare a hydrogen storage alloy electrode. A known non-sintered nickel positive electrode and a nylon nonwoven fabric separator were combined and spirally wound to form an electrode group, which was inserted into a metal case. Subsequently, a predetermined amount of an electrolytic solution mainly composed of an aqueous solution of potassium hydroxide was injected into the case, the case was sealed, and a A-size battery having a battery capacity of 2000 mAh was formed. This is called battery D. Similarly, 3 mol /
1, 2 mol / l and 1 mol / l, 0.5 mol / l
The batteries constituted by the same method as in the above embodiment except that the alloy powder treated with the lithium hydroxide solution was used as E, F, G, and H, respectively.

【0020】一方、比較のため、アルカリ水溶液処理に
おいて4mol/l及び7mol/lの水酸化カリウム
水溶液を用意し、これで処理を施した合金を用いて、上
の実施例と同じ方法で構成した電池をそれぞれI,Jと
し、同じく4mol/l及び7mol/lの水酸化ナト
リウム水溶液で処理を施した合金粉末を用いて構成した
電池をそれぞれK,Lとする。
On the other hand, for comparison, 4 mol / l and 7 mol / l potassium hydroxide aqueous solutions were prepared in an alkaline aqueous solution treatment, and the alloy treated with the aqueous solution was used in the same manner as in the above embodiment. Batteries are designated I and J, respectively, and batteries constituted using alloy powders treated with 4 mol / l and 7 mol / l aqueous sodium hydroxide solutions are designated K and L, respectively.

【0021】以上の方法により得られたD〜Lの各電池
を200mAで15時間充電し、1時間放置した後、4
00mAhで放電電圧1Vになるまで放電した。このサ
イクルを2回行った後45℃でエージングを行った。エ
ージング後、これらの電池を200mAで15時間充電
し、1時間放置した後、70Aで放電した時の1秒後の
電池電圧を(表2)に示す。
Each of the batteries D to L obtained by the above method was charged at 200 mA for 15 hours, and left for 1 hour.
The battery was discharged at 00 mAh until the discharge voltage reached 1 V. After performing this cycle twice, aging was performed at 45 ° C. After aging, these batteries were charged at 200 mA for 15 hours, left for 1 hour, and then discharged at 70 A. The battery voltage after 1 second is shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】(表2)から明らかなように、D〜Gの電
池は比較例の電池I〜Lに比べ、70A放電1秒後の電
池電圧が高く、良好な大電流での放電特性を示した。
As is clear from Table 2, the batteries D to G have a higher battery voltage after one second of 70 A discharge than the batteries I to L of the comparative examples, and show good discharge characteristics at a large current. Was.

【0024】(実施例3)実施例1と同一組成の合金を
1mol/l及び4mol/lの水酸化リチウム水溶液
中での処理を種々の温度にて行った以外は、実施例2と
同じ方法で密閉型電池を作製した。これらの電池をM〜
Tとする。これら各電池の70A放電1秒後の電池電圧
を(表3)に示す。
Example 3 The same method as in Example 2 except that the alloys having the same composition as in Example 1 were treated in aqueous solutions of 1 mol / l and 4 mol / l lithium hydroxide at various temperatures. To produce a sealed battery. These batteries are M ~
Let it be T. The battery voltage of each of these batteries after one second of 70 A discharge is shown in (Table 3).

【0025】[0025]

【表3】 [Table 3]

【0026】(表3)から明らかなように水酸化リチウ
ム水溶液濃度が1〜4mol/lの範囲で、液温度が8
0〜120℃の溶液中で攪拌処理して得られた水素吸蔵
合金粉末を用いた電池は、70A放電1秒後の電池電圧
が高く、良好な大電流放電特性を示した。
As is clear from Table 3, when the concentration of the aqueous lithium hydroxide solution is in the range of 1 to 4 mol / l, the liquid temperature is 8
The battery using the hydrogen-absorbing alloy powder obtained by stirring in a solution at 0 to 120 ° C. had a high battery voltage after one second of 70 A discharge, and exhibited good large-current discharge characteristics.

【0027】[0027]

【発明の効果】以上のように本発明は、La,Ce,P
r,Nd,SmからなるミッシュメタルをAサイトと
し、BサイトがNi,Co,Mn,AlからなるAB5
型水素吸蔵合金粉末を、加熱された1〜4mol/lの
水酸化リチウム水溶液で攪拌処理することにより、合金
粉末表面の活性度合い、すなわち水素吸蔵放出能を高
め、電池としての大電流放電特性を向上させることがで
きるものである。このような処理が施された水素吸蔵合
金粉末を負極に用いることで放電特性に優れたニッケル
−水素二次電池を提供する事が可能となる。
As described above, according to the present invention, La, Ce, P
The misch metal composed of r, Nd, and Sm is designated as A site, and the B site is composed of AB 5 composed of Ni, Co, Mn, and Al.
-Type hydrogen storage alloy powder is stirred with a heated 1 to 4 mol / l aqueous solution of lithium hydroxide to increase the degree of activity on the surface of the alloy powder, that is, the hydrogen storage / release capability, and to improve the large current discharge characteristics as a battery. It can be improved. By using the hydrogen storage alloy powder treated as described above for the negative electrode, it is possible to provide a nickel-hydrogen secondary battery having excellent discharge characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小西 始 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hajime Konishi 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】La,Ce,Pr,Nd,Smからなるミ
ッシュメタルをAサイトとし、BサイトがNi,Co,
Mn,AlからなるAB5型水素吸蔵合金粉末を、加熱
した1〜4mol/lの水酸化リチウム水溶液中で攪拌
して粉末からコバルト成分を溶液中に溶出させるととも
にそれを粉末表面に析出させることを特徴とする電池用
水素吸蔵合金の製造方法。
1. A misch metal comprising La, Ce, Pr, Nd and Sm is an A site, and a B site is Ni, Co,
AB 5 type hydrogen storage alloy powder composed of Mn and Al is stirred in a heated 1 to 4 mol / l aqueous solution of lithium hydroxide to elute the cobalt component from the powder into the solution and deposit it on the surface of the powder. A method for producing a hydrogen storage alloy for a battery, comprising:
【請求項2】水酸化リチウム水溶液はその液温度が80
〜120℃であることを特徴とする請求項1記載の電池
用水素吸蔵合金の製造方法。
2. The aqueous solution of lithium hydroxide has a liquid temperature of 80.
The method for producing a hydrogen storage alloy for a battery according to claim 1, wherein the temperature is from -120C.
【請求項3】La,Ce,Pr,Nd,Smからなるミ
ッシュメタルをAサイトとし、BサイトがNi,Co,
Mn,AlからなるAB5型水素吸蔵合金粉末を水酸化
リチウム水溶液中で攪拌処理して得られた水素吸蔵合金
粉末を備えた負極、水酸化ニッケルを活物質とした正
極、セパレータおよびアルカリ電解液から構成されたニ
ッケル−水素二次電池。
3. A misch metal made of La, Ce, Pr, Nd, and Sm is an A site, and a B site is Ni, Co,
A negative electrode provided with a hydrogen storage alloy powder obtained by stirring an AB 5 type hydrogen storage alloy powder composed of Mn and Al in an aqueous lithium hydroxide solution, a positive electrode using nickel hydroxide as an active material, a separator, and an alkaline electrolyte And a nickel-hydrogen secondary battery.
JP10005637A 1998-01-14 1998-01-14 Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof Pending JPH11204104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10005637A JPH11204104A (en) 1998-01-14 1998-01-14 Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10005637A JPH11204104A (en) 1998-01-14 1998-01-14 Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof

Publications (1)

Publication Number Publication Date
JPH11204104A true JPH11204104A (en) 1999-07-30

Family

ID=11616665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10005637A Pending JPH11204104A (en) 1998-01-14 1998-01-14 Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof

Country Status (1)

Country Link
JP (1) JPH11204104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002071527A1 (en) * 2001-03-05 2004-07-02 株式会社ユアサコーポレーション Manufacturing method of nickel metal hydride battery
JP2005310605A (en) * 2004-04-23 2005-11-04 Yuasa Corp Hydrogen storage alloy electrode and its manufacturing method, and nickel hydrogen storage battery
JP2010007177A (en) * 2008-05-30 2010-01-14 Panasonic Corp Hydrogen storage alloy powder, surface treatment method therefor, negative electrode for alkali storage battery, and alkali storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002071527A1 (en) * 2001-03-05 2004-07-02 株式会社ユアサコーポレーション Manufacturing method of nickel metal hydride battery
JP4496704B2 (en) * 2001-03-05 2010-07-07 株式会社ジーエス・ユアサコーポレーション Manufacturing method of nickel metal hydride battery
JP2005310605A (en) * 2004-04-23 2005-11-04 Yuasa Corp Hydrogen storage alloy electrode and its manufacturing method, and nickel hydrogen storage battery
JP2010007177A (en) * 2008-05-30 2010-01-14 Panasonic Corp Hydrogen storage alloy powder, surface treatment method therefor, negative electrode for alkali storage battery, and alkali storage battery

Similar Documents

Publication Publication Date Title
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP2000357508A (en) Hydrogen storage alloy electrode and its manufacture
JP3835993B2 (en) Electrode alloy powder and method for producing the same
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JP2004127549A (en) Nickel-hydrogen storage battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP2987873B2 (en) Alkaline storage battery
JP3995383B2 (en) Method for producing hydrogen storage alloy electrode
JP4404447B2 (en) Method for producing alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JPH10326613A (en) Electrode of hydrogen storage alloy
JP3573934B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH10255779A (en) Manufacture for nickel hydrogen storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP2001085004A (en) Alkaline storage battery and its manufacture