JP2004127549A - Nickel-hydrogen storage battery - Google Patents

Nickel-hydrogen storage battery Download PDF

Info

Publication number
JP2004127549A
JP2004127549A JP2002286106A JP2002286106A JP2004127549A JP 2004127549 A JP2004127549 A JP 2004127549A JP 2002286106 A JP2002286106 A JP 2002286106A JP 2002286106 A JP2002286106 A JP 2002286106A JP 2004127549 A JP2004127549 A JP 2004127549A
Authority
JP
Japan
Prior art keywords
nickel
hydrogen storage
storage battery
nickel hydroxide
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002286106A
Other languages
Japanese (ja)
Inventor
Masaru Kihara
木原 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002286106A priority Critical patent/JP2004127549A/en
Publication of JP2004127549A publication Critical patent/JP2004127549A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain life degradation of a battery while keeping an excellent high-rate discharge characteristic, in a nickel-hydrogen storage battery having a negative electrode containing a rare earth-Mg-Ni based hydrogen storage alloy, and a positive electrode containing high-order nickel hydroxide. <P>SOLUTION: This nickel-hydrogen storage battery is composed by housing, in an armoring case, the positive electrode containing high-order nickel hydroxide, the negative electrode containing the hydrogen storage alloy disposed on the positive electrode by interlaying a separator, and an alkaline electrolyte. The hydrogen storage alloy is expressed by general formula: Ln<SB>1-x</SB>Mg<SB>x</SB>(Ni<SB>1-y</SB>T<SB>y</SB>)<SB>z</SB>(1), wherein Ln is at least one element selected from a group comprising La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr and Hf; T is at least one element selected from a group comprising V, Nb, Ta, Cr, Mo, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and B; and x, y and z are each a numerical value specified by 0<x<1, 0≤y≤0.5 and 2.5≤z≤4.5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はニッケル・水素蓄電池に関し、さらに詳しくは、とくに高率充放電特性に優れ、しかも、長寿命のニッケル・水素蓄電池に関する。
【0002】
【従来の技術】
ニッケル・水素蓄電池の電極としては、水酸化ニッケルよりなる正極と、水素吸蔵合金よりなる負極とを組み合わせて使用したものがある。この負極を構成する水素吸蔵合金としては、CaCu型結晶を主相とする希土類−ニッケル系金属間化合物であるLaNi系の水素吸蔵合金、あるいはTi,Zr,VおよびNiを構成元素として含有するラーベス相を主相とする水素吸蔵合金などが知られている。
【0003】
また、上述した希土類−ニッケル系の金属間化合物は、LaNi系の水素吸蔵合金の他に種々存在し、例えば、希土類元素をAB型よりも多量に含有する金属間化合物は、このAB型よりも常温付近で多量の水素を吸蔵することができることが知られている。
さらに、一方では、上記の希土類−ニッケル系金属間化合物において希土類元素の一部をMgで置換した組成を有する希土類−Mg−Ni系合金は、多量の水素ガスを吸蔵することが確認されている。しかし、この希土類−Mg−Ni系合金のうち、例えば、La1−xMgNi系合金やMgLaNi系合金は上述したように水素吸蔵量は多いものの、水素の放出速度が非常に小さいという問題がある。
【0004】
こうした問題を解消するものとして、LaNi系合金に比べて体積および質量当たりの水素吸蔵量がいずれも多く、かつラーベス相系水素吸蔵合金よりも速やかに活性化され、高率充放電特性に優れた水素吸蔵合金すなわちRe−Mg−Ni系水素吸蔵合金(但し、Reは希土類元素を表わす)が提案されている(例えば、特許文献1参照)。
【0005】
このような水素吸蔵合金をニッケル・水素蓄電池の負極材料として用いることにより、上記のLaNi系水素吸蔵合金を用いた場合よりも高容量であり、しかも、ラーベス相系水素吸蔵合金を用いた場合よりも高率充放電特性に優れたニッケル・水素蓄電池を得ることが可能となる。
一方、上記の水素吸蔵合金を負極材料として使用したニッケル・水素蓄電池において、正極材料としては、高次水酸化ニッケルを用いたものが提案されている(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開平11−323469号公報
【特許文献2】
特開2001−93526号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に示したRe−Mg−Ni系水素吸蔵合金は、比較的大きな水素吸蔵量を有するものの、電池としての寿命がLaNi系水素吸蔵合金を使用した電池に比べて非常に短いという問題がある。
さらに、上記のRe−Mg−Ni系水素吸蔵合金を含む負極を、特許文献2に示した高次水酸化ニッケルを含む正極と組み合わせてニッケル・水素蓄電池を組み立てた場合、負極が劣化してしまい、電池寿命が短いという問題がある。
【0008】
本発明は上記の問題を解消し、高次水酸化ニッケルを含む正極と、水素吸蔵合金を含む負極を備え、優れた高率充放電特性を有すると同時に、寿命低下が抑制されたニッケル・水素蓄電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、高次水酸化ニッケルを含む正極と、この正極にセパレータを介して配置された水素吸蔵合金を含む負極と、アルカリ電解液が外装ケース内に収納されてなるニッケル・水素蓄電池において、前記水素吸蔵合金は、一般式:
Ln1−xMg(Ni1−y      (1)
(ただし、式中、LnはLa,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,ZrおよびHfよりなる群から選ばれる少なくとも1つの元素であり、TはV,Nb,Ta,Cr,Mo,Fe,Co,Al,Ga,Zn,Sn,In,Cu,Si,PおよびBよりなる群から選ばれる少なくとも1つの元素であり、x,y,zはそれぞれ、0<x<1,0≦y≦0.5,2.5≦z≦4.5として規定される数値である)
で示されるものが提供される。
【0010】
上記の構成において、前記式(1)中のLnにおけるLaの含有率が50質量%以下であることが好ましく、また、前記高次水酸化ニッケルの平均価数は、2価を超えることが好ましい。
さらに、前記高次水酸化ニッケルの表面がコバルト化合物で被覆されていることが好ましく、そのコバルト化合物はアルカリカチオンを含む高次コバルト化合物が好適である。
【0011】
【発明の実施の形態】
以下に本発明のニッケル・水素蓄電池について詳述する。
本発明のニッケル・水素蓄電池において、負極は、一般式:
Ln1−xMg(Ni1−y      (1)
(ただし、式中、LnはLa,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,ZrおよびHfよりなる群から選ばれる少なくとも1つの元素であり、TはV,Nb,Ta,Cr,Mo,Fe,Co,Al,Ga,Zn,Sn,In,Cu,Si,PおよびBよりなる群から選ばれる少なくとも1つの元素であり、x,y,zはそれぞれ、0<x<1,0≦y≦0.5,2.5≦z≦4.5として規定される数値である)
で示される水素吸蔵合金を含むものである。
【0012】
一般式(1)において、Niの少なくとも一部が元素Tにより置換された(Ni1−yの組成比は、0≦y≦0.5、および、2.5≦z≦4.5となるように決定される必要がある。このとき、yが0.5を超えると、水素吸蔵量が低下するという問題が生じる。さらに、2.5≦z≦4.5であり、zが2.5未満であると、水素吸蔵合金の水素の保持能力が強くなりすぎて吸蔵した水素を放出しなくなるという問題があり、逆に、zが4.5を超えると、水素吸蔵合金の水素吸蔵サイトが減少して水素吸蔵量が低下するという問題が生じる。
【0013】
上記の水素吸蔵合金において、ニッケル・水素蓄電池の寿命をさらに増大するためには、上記一般式(1)中のLnを構成する元素におけるLa含有量をある程度抑えることが好ましく、具体的にはLaの含有率を50質量%以下にすることが好ましい。
一方、本発明のニッケル・水素蓄電池の正極は、高次水酸化ニッケルを含むものである。この高次水酸化ニッケルの表面がコバルト化合物で被覆されていると、正極内に良好な導電ネットワークが形成され、その結果、活物質の利用率が向上して高容量の蓄電池が得られるので好ましい。
【0014】
このコバルト化合物は具体的には高次コバルト化合物であることが好ましく、さらには、アルカリカチオンを含む高次コバルト化合物であることが好ましい。とくに、高次水酸化ニッケルの表面がアルカリカチオンを含む高次コバルト化合物により被覆されていると、表面の高次コバルト化合物と内部の高次水酸化ニッケルとの境界が消失して、ニッケル−コバルト間の結合が強固になって活物質粒子の機械的強度が増大すると同時に、ニッケル−コバルト間の電気抵抗が低下して、高率放電時の容量が大きくなる。
【0015】
アルカリカチオンはコバルト化合物が酸化剤により酸化されることを防止すると同時に、水による酸化を抑制する作用を有するため、コバルト化合物の安定性を確保でき、酸素発生電位が向上して電池を放置した際の自己放電をさらに抑制する効果がある。
上記のような高次水酸化ニッケル、または、表面をコバルト化合物で被覆された高次水酸化ニッケルは以下のようにして製造される。
【0016】
すなわち、高次水酸化ニッケルは、公知の方法により得られた水酸化ニッケル粒子をアルカリ水溶液中で攪拌しながら、酸化剤として例えば次亜塩素酸ナトリウムを所定量滴下し、水酸化ニッケル粒子中の主成分である水酸化ニッケルを高次水酸化ニッケルに酸化する。このとき、高次水酸化ニッケルの平均価数は、添加される次亜塩素酸ナトリウムの量により調整することが可能である。この平均価数は2価を超えることが好ましく、より好ましくは2.05〜2.30価、さらに好ましくは、2.10〜2.30価の範囲である。
【0017】
さらに、表面をコバルト化合物で被覆された高次水酸化ニッケルを製造する方法は、あらかじめ水酸化ニッケル粒子表面をコバルト化合物で被覆したのち、アルカリ水溶液と酸化剤の共存下で加熱処理して粒子内部の水酸化ニッケルを高次化することにより得ることができる。
また、表面をアルカリカチオンを含む高次コバルト化合物で被覆された高次水酸化ニッケルを製造する方法は、上記と同様、あらかじめ水酸化ニッケル粒子表面をコバルト化合物で被覆したのち、この複合粒子粉末に対して所定割合で水酸化ナトリウムを所定時間噴霧することにより、アルカリカチオンを含有するコバルト化合物の被覆層を有する水酸化ニッケル粒子を得る。しかるのち、上記と同様にこの複合粉末粒子をアルカリ水溶液と酸化剤の共存下で加熱処理して、粒子表面のコバルト化合物と内部の水酸化ニッケルを同時に高次化する。
【0018】
とくに後者の方法によると、水酸化ニッケル粒子の表面を被覆する水酸化コバルトの結晶構造が破壊されて結晶構造に乱れを生じるとともに、水酸化コバルトの酸化が強力に促進されて、その平均価数が2価を超える、もしくはこれよりはるかに大きい、例えば、2.7〜3.3価の高次コバルト化合物となり、その結果、活物質の導電性がさらに向上して、電池容量が増大するという利点がある。
【0019】
本発明においては、上記の組成の水素吸蔵合金を主成分とする負極と高次水酸化ニッケルを主成分とする正極とを組み合わせて電池を組み立てることにより、特に高率放電特性に優れていると同時に、電池寿命の長いニッケル・水素蓄電池を得ることが可能となる。
【0020】
【実施例】
実施例1
1)負極の作製
質量%で75%のLa、15%のNd、および10%のPrを主成分とするミッシュメタル、Mg、Ni、Co、およびAlをモル比で0.7:0.3:3.1:0.1:0.2の割合で含有する水素吸蔵合金のインゴットを誘導溶解炉を用いて調製した。すなわち、上記組成の金属をアルゴン雰囲気中で1000℃、10時間の熱処理を行い、Mm0.7Mg0.3Ni3.1Co0.1Al0.2(但し、Mmはミッシュメタル)で表わされる組成を有する水素吸蔵合金のインゴットを得た。
【0021】
この水素吸蔵合金について、Cu−Kα線をX線源とするX線回折パターンから結晶構造を観察したところ、その結晶構造はCeNi型であった。
ついで、この水素吸蔵合金を不活性ガス雰囲気中で機械的に粉砕し、篩分けにより400〜200メッシュの範囲の粒径を有する合金粉末を選別した。この合金粉末に対してレーザ回折・散乱式粒度分布測定装置を使用して粒度分布を測定したところ、重量積分50%に相当する平均粒径は45μmであった。
【0022】
しかるのち、この合金粉末100質量部に対してポリアクリル酸ナトリウム0.4質量部、カルボキシメチルセルロース0.1質量部、および、ポリテトラフルオロエチレン分散液(分散媒:水、固形分60質量部)2.5質量部を加えて混練して負極活物質スラリーを得た。
この負極活物質スラリーを、表面にNiめっきを施した厚さ60μmのFe製パンチングメタルの両面に均等に、かつ、厚さが一定になるように塗着し、乾燥、プレスしたのち、裁断し、AAサイズのニッケル・水素蓄電池用の負極板を得た。
【0023】
2)正極の作製
金属Niに対して、Znが3質量%、Coが1質量%の比率となるように、硫酸ニッケル、硫酸亜鉛および硫酸コバルトの混合水溶液を調製したのち、攪拌しながら、この混合水溶液中に水酸化ナトリウム水溶液を徐々に添加し、反応中のpHを13〜14に保持して水酸化ニッケル複合粒子粉末を溶出させた。この複合粒子粉末を、10倍量の純水にて3回洗浄したのち、脱水、乾燥した。
【0024】
このようにして得られた複合粒子粉末を、60℃の温度に維持した濃度32質量%の水酸化ナトリウム水溶液中で攪拌しながら、そこへ次亜塩素酸ナトリウムを所定量滴下し、複合粒子粉末の主成分である水酸化ニッケルを高次水酸化ニッケルに酸化した。この酸化工程において、次亜塩素酸ナトリウムの添加量は2価の水酸化ニッケルをその20質量%だけ3価に酸化させる量とした。化学分析法を使用して平均価数を測定したところ、高次水酸化ニッケルの平均価数は2.2価であった。
【0025】
この活物質粉末を10倍量の純水により3回洗浄したのち、脱水、乾燥したのち、この活物質粉末に対して40質量%のHPCディスパージョン液を混合して、正極活物質スラリーを調製した。さらに、この活物質スラリーを発泡ニッケルに充填したのち、乾燥、圧延してニッケル正極板を作製した。
3)ニッケル・水素蓄電池の組立て
上記のようにして作製した負極板と正極板とを、ポリプロピレンまたはナイロン製の不織布よりなるセパレータを介して積層して、電池容器に収納したのち、この容器内に、リチウム、ナトリウムを含有した濃度30質量%の水酸化カリウム水溶液を注入して、公称容量1200mAhのAAサイズのニッケル・水素蓄電池を作製した。
【0026】
4)電池の評価試験
上記により得られたニッケル・水素蓄電池について、以下の評価試験を行い、それぞれの結果を表1に示した。
<放電容量>
120mAの電流で16時間充電し、1200mAの電流で終止電圧0.5Vまで放電して電池容量を測定し、これを1C容量とした。また、120mAの電流で16時間充電し、4800mAの電流で終止電圧0.5Vまで放電して電池容量を測定し、これを4C容量とした。なお、4C容量は、この実施例1の1C容量を100としたときの相対値で示した。
【0027】
<サイクル寿命>
上記の1C容量の測定を初期容量の60%以下になるまで繰り返す充放電サイクル試験を行い、このときの実施例1の寿命を100とした。
実施例2
負極活物質である水素吸蔵合金成分として、質量%で25%のLa、40%のNdおよび35%のPrを主成分とするミッシュメタルを用いたこと以外は、上述した実施例と同様にしてニッケル・水素蓄電池を作製し、上記と同様の評価試験を行ってその結果を表1に示した。なお、1C容量、4C容量およびサイクル寿命は、それぞれ、実施例1の結果を100としたときの相対値で示した(以下同様)。
【0028】
実施例3
実施例1で得られた水酸化ニッケルを主成分とする複合粒子粉末が溶出した水溶液中に、反応中のpHを9〜10に維持しながら硫酸コバルト水溶液を添加して、水酸化ニッケルを主成分とする球状水酸化物粒子を結晶核とし、この結晶核の周囲に水酸化コバルトを析出させた。析出した水酸化コバルトの量は、水酸化ニッケルを主成分とする球状水酸化物粒子に対して、10質量%であった。この複合粒子粉末を10倍量の純水で3回洗浄したのち、脱水、乾燥することにより、表面にコバルト被覆層を有する水酸化ニッケル活物質を調製した。
【0029】
しかるのち、実施例1と同様にして正極板を作製し、ニッケル・水素蓄電池を組立てた。
この電池に対して実施例1と同様の評価試験を行い、結果を表1に示した。
実施例4
上記実施例3と同様にして、表面にコバルト被覆層を有する水酸化ニッケル複合粒子粉末を調製した。ついで、100℃の加熱空気雰囲気中で、この複合粒子粉末に対して25質量%の水酸化ナトリウムを0.5時間噴霧した。
【0030】
噴霧後の複合粒子粉末を10倍量の純水で3回洗浄したのち、脱水、乾燥してアルカリカチオンを含有する高次コバルト被覆層を有する水酸化ニッケル活物質を調製した。このアルカリカチオンを含有する高次コバルト被覆層の結晶構造ををX線回折装置により解析したところ、結晶性に乱れが生じていることが確認された。
【0031】
しかるのち、実施例1と同様にして正極板を作製し、ニッケル・水素蓄電池を組立てた。得られた電池に対して実施例1と同様の評価試験を行い、結果を表1に示した。
実施例5
上記実施例2と同様にして質量%で25%のLa、40%のNdおよび35%のPrを主成分とするミッシュメタルを含むLn−Mg−Ni合金を得た。ついで、実施例4と同様にしてアルカリカチオンを含有する高次コバルト化合物被覆層を有する水酸化ニッケル活物質を得た。しかるのち、実施例1と同様にしてニッケル・水素蓄電池を組立てて同様の評価試験を行い、結果を表1に示した。
【0032】
比較例1
酸化工程により高次化を行わない水酸化ニッケル活物質を用いたことを除いては、上記実施例1と同様にしてニッケル・水素蓄電池を組立てた。得られた電池に対して実施例1と同様の評価試験を行い、結果を表1に示した。
比較例2
負極活物質である水素吸蔵合金成分として、質量%で75%のLa、15%のCe、5%のNdおよび5%のPrを主成分とするミッシュメタルを用いたこと以外は、上述した実施例と同様にしてニッケル・水素蓄電池を組立て、上記と同様の評価試験を行ってその結果を表1に示した。
【0033】
比較例3
負極活物質として、公知のLaNi系水素吸蔵合金を用いたこと以外は、上述した実施例と同様にしてニッケル・水素蓄電池を組立て、上記と同様の評価試験を行ってその結果を表1に示した。
【0034】
【表1】

Figure 2004127549
【0035】
以上の結果から明らかなように、本発明のニッケル・水素蓄電池は高率放電特性が優れていると同時に、充放電サイクル寿命が長いことが確認された(実施例1〜4)。とくに、負極活物質として前記一般式(1)におけるLn中のLa含有率が50質量%以下に抑えられているもの(実施例2,5)は中でも長寿命である。
【0036】
さらに、正極活物質として、Co被覆高次水酸化ニッケル、および、結晶性の乱れたアルカリカチオン含有高次Co被覆高次水酸化ニッケルを使用したもの(実施例3〜5)は、高率放電特性がさらに向上している。これは、高次コバルト化合物や結晶性の乱れたアルカリカチオンを含む高次コバルト化合物により被覆することにより、導電性がさらに高まったことによるものと考えられる。
【0037】
それに対して、正極に水酸化ニッケルを使用したもの(比較例1)は充放電サイクル寿命が極端に短く、負極活物質として前記一般式(1)におけるLn中にCeを含有するもの(比較例2)も充放電サイクル寿命が上記実施例1〜5と比べると短くなっている。
さらに、負極活物質として、Mgを含まない従来のLaNi系合金を使用したもの(比較例3)は、本発明のLn−Mg−Ni系合金を使用したものに比べて高率放電特性が低いことが確認された。
【0038】
このように高次水酸化ニッケルを含む正極と、Ln−Mg−Ni系合金を含む負極とを組み合わせることにより、高率充放電特性が大幅に向上する。これは以下のような理由によるものと考えられる。
すなわち、Ln−Mg−Ni系合金は、その組成中にMgを含有し、このMgは酸化されやすい元素であるため、充放電の過程において電解液を消費するかたちで酸化される。その結果、電池内の電解液が減少するため充放電反応が阻止される傾向がある。
【0039】
しかるに、Ln−Mg−Ni系合金と組み合わせて正極に高次水酸化ニッケルを使用すると、この高次水酸化ニッケルは負極を酸化すると同時に自らは還元されて水酸化ニッケルに戻ろうとする。負極が酸化される場合、酸化されやすいMgおよびLn成分が優先的に酸化されて、Niは金属状態で析出する。析出した金属Niは導電性および耐アルカリ性がともに高いため、この成分が負極の合金表面を被覆することにより合金の耐食性が著しく向上して、負極の劣化が抑制される。その結果、電池の長寿命化を図ることができるという利点がある。
【0040】
【発明の効果】
以上の説明から明らかなように、本発明のニッケル・水素蓄電池は、高率放電特性に優れていると同時に、充放電サイクル寿命も長くなるため、その工業的価値は極めて大である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nickel-metal hydride storage battery, and more particularly, to a nickel-metal hydride storage battery excellent in high-rate charge / discharge characteristics and having a long life.
[0002]
[Prior art]
As an electrode of a nickel-hydrogen storage battery, there is an electrode using a combination of a positive electrode made of nickel hydroxide and a negative electrode made of a hydrogen storage alloy. As the hydrogen absorbing alloy constituting the negative electrode, a rare earth as a main phase of CaCu 5 type crystal - containing LaNi 5 type hydrogen storage alloy is a nickel-based intermetallic compound, or Ti, Zr, V and Ni as an element A hydrogen storage alloy having a Laves phase as a main phase is known.
[0003]
Further, the rare earth described above - intermetallic compound of nickel-based, various occur in other LaNi 5 type hydrogen absorbing alloy, for example, intermetallic compound containing a large amount than the rare earth element AB 5 type, the AB 5 It is known that a larger amount of hydrogen can be stored at around normal temperature than in a mold.
Further, on the other hand, it has been confirmed that a rare earth-Mg-Ni alloy having a composition in which a part of the rare earth element is replaced with Mg in the above rare earth-nickel intermetallic compound absorbs a large amount of hydrogen gas. . However, among the rare earth -Mg-Ni-based alloy, for example, although La 1-x Mg x Ni 2 type alloy and Mg 2 LaNi 9 based alloy hydrogen storage capacity as described above are many, the release rate of the hydrogen is extremely There is a problem that is small.
[0004]
In order to solve such a problem, the hydrogen storage amount per volume and mass is larger than that of the LaNi 5- based alloy, and it is activated more quickly than the Laves phase-based hydrogen storage alloy. A hydrogen storage alloy, that is, a Re-Mg-Ni-based hydrogen storage alloy (where Re represents a rare earth element) has been proposed (for example, see Patent Document 1).
[0005]
By using such a hydrogen storage alloy as a negative electrode material of a nickel-metal hydride storage battery, the capacity is higher than when the above-mentioned LaNi 5- based hydrogen storage alloy is used, and when the Laves phase hydrogen storage alloy is used. It is possible to obtain a nickel-metal hydride storage battery that is superior in charge / discharge characteristics at a higher rate.
On the other hand, in a nickel-hydrogen storage battery using the above-mentioned hydrogen storage alloy as a negative electrode material, a positive electrode material using high-order nickel hydroxide has been proposed (for example, see Patent Document 2).
[0006]
[Patent Document 1]
JP-A-11-323469 [Patent Document 2]
JP 2001-93526 A
[Problems to be solved by the invention]
However, although the Re-Mg-Ni-based hydrogen storage alloy disclosed in Patent Document 1 has a relatively large amount of hydrogen storage, its life as a battery is much longer than that of a battery using a LaNi 5- based hydrogen storage alloy. There is a problem that it is short.
Further, when a nickel-hydrogen storage battery is assembled by combining the negative electrode containing the above-mentioned Re-Mg-Ni-based hydrogen storage alloy with the positive electrode containing high-order nickel hydroxide shown in Patent Document 2, the negative electrode deteriorates. However, there is a problem that the battery life is short.
[0008]
The present invention solves the above-mentioned problems, and comprises a positive electrode containing high-order nickel hydroxide and a negative electrode containing a hydrogen storage alloy, and has excellent high-rate charge / discharge characteristics and, at the same time, nickel-hydrogen with reduced life reduction. It is intended to provide a storage battery.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a positive electrode containing high-order nickel hydroxide, a negative electrode containing a hydrogen storage alloy disposed on the positive electrode with a separator interposed therebetween, and an alkaline electrolyte are placed in an outer case. In the stored nickel-hydrogen storage battery, the hydrogen storage alloy has a general formula:
Ln 1-x Mg x (Ni 1-y T y ) z (1)
(Where Ln is from La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr and Hf. T is at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and B. X, y, and z are numerical values defined as 0 <x <1, 0 ≦ y ≦ 0.5, and 2.5 ≦ z ≦ 4.5, respectively.)
Are provided.
[0010]
In the above configuration, the content of La in Ln in the formula (1) is preferably 50% by mass or less, and the average valence of the higher nickel hydroxide preferably exceeds 2 valences. .
Further, the surface of the higher order nickel hydroxide is preferably coated with a cobalt compound, and the cobalt compound is preferably a higher order cobalt compound containing an alkali cation.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the nickel-metal hydride storage battery of the present invention will be described in detail.
In the nickel-metal hydride storage battery of the present invention, the negative electrode has a general formula:
Ln 1-x Mg x (Ni 1-y T y ) z (1)
(Where Ln is from La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr and Hf. T is at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and B. X, y, and z are numerical values defined as 0 <x <1, 0 ≦ y ≦ 0.5, and 2.5 ≦ z ≦ 4.5, respectively.)
And a hydrogen storage alloy represented by the formula:
[0012]
In the general formula (1), the composition ratio of (Ni 1-y T y ) z in which at least a part of Ni is substituted by the element T is 0 ≦ y ≦ 0.5 and 2.5 ≦ z ≦ 4. .5. At this time, if y exceeds 0.5, there is a problem that the hydrogen storage amount decreases. Further, when 2.5 ≦ z ≦ 4.5 and z is less than 2.5, there is a problem that the hydrogen storage alloy has too high a hydrogen retention ability and does not release the stored hydrogen. On the other hand, when z exceeds 4.5, there arises a problem that the number of hydrogen storage sites of the hydrogen storage alloy decreases and the amount of hydrogen storage decreases.
[0013]
In the above-mentioned hydrogen storage alloy, in order to further increase the life of the nickel-metal hydride storage battery, it is preferable to suppress the La content in the elements constituting Ln in the general formula (1) to a certain extent, specifically, La Is preferably 50% by mass or less.
On the other hand, the positive electrode of the nickel-metal hydride storage battery of the present invention contains high-order nickel hydroxide. When the surface of the high order nickel hydroxide is coated with a cobalt compound, a good conductive network is formed in the positive electrode, and as a result, the utilization rate of the active material is improved and a high capacity storage battery is obtained, which is preferable. .
[0014]
Specifically, the cobalt compound is preferably a higher-order cobalt compound, and more preferably a higher-order cobalt compound containing an alkali cation. In particular, when the surface of the high order nickel hydroxide is coated with a high order cobalt compound containing an alkali cation, the boundary between the high order nickel hydroxide on the surface and the inside high order nickel hydroxide disappears, and the nickel-cobalt At the same time, the mechanical strength of the active material particles is increased by strengthening the bond between them, and at the same time, the electric resistance between nickel and cobalt is reduced, and the capacity at the time of high-rate discharge is increased.
[0015]
Alkali cations prevent the cobalt compound from being oxidized by the oxidizing agent and, at the same time, have the effect of suppressing oxidation by water, so that the stability of the cobalt compound can be ensured, and the oxygen generation potential is improved. Has the effect of further suppressing the self-discharge of the semiconductor device.
The higher nickel hydroxide or the higher nickel hydroxide whose surface is coated with a cobalt compound as described above is manufactured as follows.
[0016]
That is, high-order nickel hydroxide is obtained by dropping a predetermined amount of, for example, sodium hypochlorite as an oxidizing agent while stirring the nickel hydroxide particles obtained by a known method in an alkaline aqueous solution, Nickel hydroxide, the main component, is oxidized to higher nickel hydroxide. At this time, the average valence of the higher nickel hydroxide can be adjusted by the amount of sodium hypochlorite added. This average valence preferably exceeds 2 valences, more preferably ranges from 2.05 to 2.30 valences, and still more preferably ranges from 2.10 to 2.30 valences.
[0017]
Furthermore, a method for producing high-order nickel hydroxide whose surface is coated with a cobalt compound is to coat the surface of the nickel hydroxide particles in advance with a cobalt compound, and then heat-treat the particles in the presence of an alkaline aqueous solution and an oxidizing agent to form the inside of the particles. By increasing the order of nickel hydroxide.
In addition, the method of producing a high-order nickel hydroxide whose surface is coated with a high-order cobalt compound containing an alkali cation is similar to the above, in which the surface of the nickel hydroxide particles is coated in advance with a cobalt compound, and On the other hand, by spraying sodium hydroxide at a predetermined ratio for a predetermined time, nickel hydroxide particles having a coating layer of a cobalt compound containing an alkali cation are obtained. Thereafter, similarly to the above, the composite powder particles are subjected to a heat treatment in the presence of an aqueous alkali solution and an oxidizing agent to simultaneously increase the order of the cobalt compound on the surface of the particles and the nickel hydroxide therein.
[0018]
In particular, according to the latter method, the crystal structure of the cobalt hydroxide covering the surface of the nickel hydroxide particles is destroyed and the crystal structure is disturbed, and the oxidation of the cobalt hydroxide is strongly promoted, and the average valence thereof is increased. Is higher than or equal to 2 valence, for example, a higher cobalt compound having a valence of 2.7 to 3.3, and as a result, the conductivity of the active material is further improved, and the battery capacity is increased. There are advantages.
[0019]
In the present invention, by assembling a battery by combining a negative electrode composed mainly of the hydrogen storage alloy having the above composition and a positive electrode composed mainly of high order nickel hydroxide, it is particularly excellent in high-rate discharge characteristics. At the same time, it is possible to obtain a nickel-metal hydride storage battery having a long battery life.
[0020]
【Example】
Example 1
1) Fabrication of the negative electrode A misch metal containing 75% of La, 15% of Nd, and 10% of Pr as main components, Mg, Ni, Co, and Al at a molar ratio of 0.7: 0.3 in terms of mass%. : 3.1: An ingot of a hydrogen storage alloy containing 0.1: 0.2 was prepared using an induction melting furnace. That is, a metal having the above composition is subjected to a heat treatment at 1000 ° C. for 10 hours in an argon atmosphere, and is treated with Mm 0.7 Mg 0.3 Ni 3.1 Co 0.1 Al 0.2 (where Mm is misch metal). A hydrogen storage alloy ingot having the composition shown was obtained.
[0021]
When the crystal structure of this hydrogen storage alloy was observed from an X-ray diffraction pattern using Cu-Kα radiation as an X-ray source, the crystal structure was CeNi 7 type.
Next, the hydrogen storage alloy was mechanically pulverized in an inert gas atmosphere, and an alloy powder having a particle size in the range of 400 to 200 mesh was selected by sieving. When the particle size distribution of this alloy powder was measured using a laser diffraction / scattering type particle size distribution analyzer, the average particle size corresponding to 50% by weight was 45 μm.
[0022]
Thereafter, 0.4 parts by mass of sodium polyacrylate, 0.1 parts by mass of carboxymethylcellulose, and a polytetrafluoroethylene dispersion (dispersion medium: water, solids content of 60 parts by mass) based on 100 parts by mass of the alloy powder. 2.5 parts by mass were added and kneaded to obtain a negative electrode active material slurry.
This negative electrode active material slurry is evenly coated on both sides of a 60 μm-thick Fe-punched metal whose surface is Ni-plated so as to have a uniform thickness, dried, pressed, and then cut. AA size negative electrode plate for nickel-metal hydride storage battery was obtained.
[0023]
2) Preparation of Positive Electrode A mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate was prepared so that Zn was at a ratio of 3% by mass and Co at a ratio of 1% by mass with respect to metal Ni. An aqueous sodium hydroxide solution was gradually added to the mixed aqueous solution, and the pH during the reaction was maintained at 13 to 14 to elute the nickel hydroxide composite particles. The composite particle powder was washed three times with a 10-fold amount of pure water, and then dehydrated and dried.
[0024]
While stirring the thus obtained composite particle powder in a 32% by mass aqueous sodium hydroxide solution maintained at a temperature of 60 ° C., a predetermined amount of sodium hypochlorite was added dropwise thereto, and the composite particle powder was added. Was oxidized to higher order nickel hydroxide. In this oxidation step, the amount of sodium hypochlorite added was such that divalent nickel hydroxide was oxidized to be trivalent by 20% by mass. When the average valence was measured using a chemical analysis method, the average valence of the higher order nickel hydroxide was 2.2.
[0025]
After washing the active material powder three times with 10 times the amount of pure water, dehydrating and drying, a 40% by mass HPC dispersion liquid is mixed with the active material powder to prepare a positive electrode active material slurry. did. Furthermore, after filling this active material slurry into foamed nickel, it was dried and rolled to produce a nickel positive electrode plate.
3) Assembly of Nickel-Hydrogen Storage Battery The negative electrode plate and the positive electrode plate manufactured as described above are laminated via a separator made of a nonwoven fabric made of polypropylene or nylon, and stored in a battery container. Then, an aqueous solution of potassium hydroxide containing lithium, sodium and having a concentration of 30% by mass was injected to produce a nickel-metal hydride storage battery of AA size having a nominal capacity of 1200 mAh.
[0026]
4) Battery Evaluation Test The nickel-hydrogen storage battery obtained as described above was subjected to the following evaluation tests, and the results are shown in Table 1.
<Discharge capacity>
The battery was charged at a current of 120 mA for 16 hours, discharged at a current of 1200 mA to a final voltage of 0.5 V, and the battery capacity was measured. Further, the battery was charged with a current of 120 mA for 16 hours, discharged at a current of 4800 mA to a final voltage of 0.5 V, and the battery capacity was measured. The 4C capacity is shown as a relative value when the 1C capacity of Example 1 is set to 100.
[0027]
<Cycle life>
A charge / discharge cycle test in which the above-mentioned measurement of the 1C capacity was repeated until the capacity became 60% or less of the initial capacity was performed. The life of Example 1 at this time was set to 100.
Example 2
The same procedure as in the above-described embodiment was performed except that a misch metal containing 25% by mass of La, 40% of Nd, and 35% of Pr as a main component was used as a hydrogen storage alloy component as a negative electrode active material. A nickel-hydrogen storage battery was manufactured, and the same evaluation test was performed as described above. The results are shown in Table 1. The 1C capacity, the 4C capacity, and the cycle life were indicated by relative values when the result of Example 1 was set to 100 (the same applies hereinafter).
[0028]
Example 3
While maintaining the pH during the reaction at 9 to 10, an aqueous solution of cobalt sulfate was added to the aqueous solution from which the composite particles containing nickel hydroxide as a main component eluted and obtained in Example 1 were eluted, and nickel hydroxide was mainly used. The spherical hydroxide particles as the components were used as crystal nuclei, and cobalt hydroxide was precipitated around the crystal nuclei. The amount of precipitated cobalt hydroxide was 10% by mass based on the spherical hydroxide particles containing nickel hydroxide as a main component. After washing the composite particle powder three times with 10 times the amount of pure water, dehydration and drying were performed to prepare a nickel hydroxide active material having a cobalt coating layer on the surface.
[0029]
Thereafter, a positive electrode plate was manufactured in the same manner as in Example 1, and a nickel-metal hydride storage battery was assembled.
The same evaluation test as in Example 1 was performed on this battery, and the results are shown in Table 1.
Example 4
In the same manner as in Example 3, a nickel hydroxide composite particle powder having a cobalt coating layer on the surface was prepared. Then, in a heated air atmosphere at 100 ° C., 25% by mass of sodium hydroxide was sprayed on the composite particle powder for 0.5 hour.
[0030]
After the sprayed composite particle powder was washed three times with 10 times the amount of pure water, dehydration and drying were performed to prepare a nickel hydroxide active material having a higher cobalt coating layer containing an alkali cation. When the crystal structure of the high order cobalt coating layer containing the alkali cation was analyzed by an X-ray diffractometer, it was confirmed that crystallinity was disordered.
[0031]
Thereafter, a positive electrode plate was manufactured in the same manner as in Example 1, and a nickel-metal hydride storage battery was assembled. The same evaluation test as in Example 1 was performed on the obtained battery, and the results are shown in Table 1.
Example 5
In the same manner as in Example 2, an Ln-Mg-Ni alloy containing a misch metal containing 25% by mass of La, 40% of Nd, and 35% of Pr as main components was obtained. Then, a nickel hydroxide active material having a high-order cobalt compound coating layer containing an alkali cation was obtained in the same manner as in Example 4. Thereafter, a nickel-hydrogen storage battery was assembled in the same manner as in Example 1, and the same evaluation test was performed. The results are shown in Table 1.
[0032]
Comparative Example 1
A nickel-metal hydride storage battery was assembled in the same manner as in Example 1 except that a nickel hydroxide active material that did not undergo higher-order oxidation was used. The same evaluation test as in Example 1 was performed on the obtained battery, and the results are shown in Table 1.
Comparative Example 2
Except for using a misch metal containing 75% by mass of La, 15% of Ce, 5% of Nd and 5% of Pr as a main component as a hydrogen storage alloy component as a negative electrode active material, A nickel-metal hydride storage battery was assembled in the same manner as in the example, and the same evaluation test was performed. The results are shown in Table 1.
[0033]
Comparative Example 3
Except for using a known LaNi 5- based hydrogen storage alloy as the negative electrode active material, a nickel-hydrogen storage battery was assembled in the same manner as in the above-described example, and the same evaluation test was performed. The results are shown in Table 1. Indicated.
[0034]
[Table 1]
Figure 2004127549
[0035]
As is clear from the above results, it was confirmed that the nickel-hydrogen storage battery of the present invention has excellent high-rate discharge characteristics and a long charge-discharge cycle life (Examples 1 to 4). In particular, the negative electrode active material in which the La content in Ln in the general formula (1) is suppressed to 50% by mass or less (Examples 2 and 5) has a particularly long life.
[0036]
Further, as the positive electrode active materials, those using Co-coated high-order nickel hydroxide and alkali cation-containing high-order Co-coated high-order nickel hydroxide having disordered crystallinity (Examples 3 to 5) have high discharge rates. The characteristics are further improved. This is considered to be because the conductivity was further increased by coating with a higher cobalt compound or a higher cobalt compound containing an alkali cation having disordered crystallinity.
[0037]
On the other hand, the one using nickel hydroxide for the positive electrode (Comparative Example 1) has an extremely short charge / discharge cycle life, and the one containing Ce in Ln in the general formula (1) as the negative electrode active material (Comparative Example 1) 2) also has a shorter charge / discharge cycle life than Examples 1 to 5.
Furthermore, the negative electrode active material using the conventional LaNi 5- based alloy containing no Mg (Comparative Example 3) has a higher rate discharge characteristic than the one using the Ln-Mg-Ni-based alloy of the present invention. It was confirmed that it was low.
[0038]
By combining the positive electrode containing high-order nickel hydroxide and the negative electrode containing an Ln-Mg-Ni-based alloy as described above, high-rate charge / discharge characteristics are significantly improved. This is considered to be due to the following reasons.
That is, the Ln-Mg-Ni-based alloy contains Mg in its composition, and since Mg is an element that is easily oxidized, it is oxidized in a manner of consuming the electrolytic solution in the process of charging and discharging. As a result, the amount of the electrolyte in the battery decreases, so that the charge / discharge reaction tends to be prevented.
[0039]
However, when high-order nickel hydroxide is used for the positive electrode in combination with the Ln-Mg-Ni-based alloy, the high-order nickel hydroxide oxidizes the negative electrode and at the same time reduces itself to return to nickel hydroxide. When the negative electrode is oxidized, the easily oxidized Mg and Ln components are preferentially oxidized, and Ni precipitates in a metal state. Since the deposited metal Ni has both high conductivity and high alkali resistance, coating this component on the alloy surface of the negative electrode significantly improves the corrosion resistance of the alloy and suppresses the deterioration of the negative electrode. As a result, there is an advantage that the life of the battery can be extended.
[0040]
【The invention's effect】
As is clear from the above description, the nickel-hydrogen storage battery of the present invention is excellent in high-rate discharge characteristics, and at the same time, has a long charge-discharge cycle life.

Claims (5)

高次水酸化ニッケルを含む正極と、この正極にセパレータを介して配置された水素吸蔵合金を含む負極と、アルカリ電解液が外装ケース内に収納されてなるニッケル・水素蓄電池において、前記水素吸蔵合金は、一般式:
Ln1−xMg(Ni1−y      (1)
(ただし、式中、LnはLa,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Ca,Sr,Sc,Y,Ti,ZrおよびHfよりなる群から選ばれる少なくとも1つの元素であり、TはV,Nb,Ta,Cr,Mo,Fe,Co,Al,Ga,Zn,Sn,In,Cu,Si,PおよびBよりなる群から選ばれる少なくとも1つの元素であり、x,y,zはそれぞれ、0<x<1,0≦y≦0.5,2.5≦z≦4.5として規定される数値である)
で示されるものであることを特徴とするニッケル・水素蓄電池。
In a nickel-hydrogen storage battery in which a positive electrode containing high-order nickel hydroxide, a negative electrode containing a hydrogen storage alloy disposed on the positive electrode via a separator, and an alkaline electrolyte are housed in an outer case, the hydrogen storage alloy Is the general formula:
Ln 1-x Mg x (Ni 1-y T y ) z (1)
(Where Ln is from La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr and Hf. T is at least one element selected from the group consisting of V, Nb, Ta, Cr, Mo, Fe, Co, Al, Ga, Zn, Sn, In, Cu, Si, P and B. X, y, and z are numerical values defined as 0 <x <1, 0 ≦ y ≦ 0.5, and 2.5 ≦ z ≦ 4.5, respectively.)
A nickel-metal hydride storage battery characterized by the following.
前記式(1)中のLnにおけるLaの含有率が50質量%以下である請求項1記載のニッケル・水素蓄電池。The nickel-metal hydride storage battery according to claim 1, wherein the content of La in Ln in the formula (1) is 50% by mass or less. 前記高次水酸化ニッケルの平均価数が2価を超える請求項1または2記載のニッケル・水素蓄電池。3. The nickel-metal hydride storage battery according to claim 1, wherein an average valence of said higher nickel hydroxide is more than two. 前記高次水酸化ニッケルの表面がコバルト化合物で被覆されている請求項1〜3記載のニッケル・水素蓄電池。The nickel-metal hydride storage battery according to any one of claims 1 to 3, wherein a surface of the high order nickel hydroxide is coated with a cobalt compound. 前記コバルト化合物はアルカリカチオンを含む高次コバルト化合物である請求項4記載のニッケル・水素蓄電池。The nickel-metal hydride storage battery according to claim 4, wherein the cobalt compound is a higher-order cobalt compound containing an alkali cation.
JP2002286106A 2002-09-30 2002-09-30 Nickel-hydrogen storage battery Pending JP2004127549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286106A JP2004127549A (en) 2002-09-30 2002-09-30 Nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286106A JP2004127549A (en) 2002-09-30 2002-09-30 Nickel-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JP2004127549A true JP2004127549A (en) 2004-04-22

Family

ID=32279241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286106A Pending JP2004127549A (en) 2002-09-30 2002-09-30 Nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP2004127549A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315209C (en) * 2005-04-30 2007-05-09 中国科学院长春应用化学研究所 Fast charging type hydrogen storage alloy electrode material and preparing process thereof
JP2007149646A (en) * 2005-10-28 2007-06-14 Sanyo Electric Co Ltd Nickel metal hydride storage battery
JP2011008994A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Alkaline storage battery, and alkaline storage battery system
CN102660700A (en) * 2012-05-27 2012-09-12 桂林理工大学 AB3-type hydrogen storage alloy and preparation method
JP5302890B2 (en) * 2007-09-19 2013-10-02 パナソニック株式会社 Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery using the same, and method for treating negative electrode active material for nickel metal hydride battery
CN107686903A (en) * 2017-09-03 2018-02-13 王增琪 Mg base hydrogen bearing alloy prepared by a kind of ball-milling method
CN112048652A (en) * 2020-09-11 2020-12-08 中国石油大学(华东) Magnesium air battery anode material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315209C (en) * 2005-04-30 2007-05-09 中国科学院长春应用化学研究所 Fast charging type hydrogen storage alloy electrode material and preparing process thereof
JP2007149646A (en) * 2005-10-28 2007-06-14 Sanyo Electric Co Ltd Nickel metal hydride storage battery
JP5302890B2 (en) * 2007-09-19 2013-10-02 パナソニック株式会社 Negative electrode active material for nickel metal hydride battery, nickel metal hydride battery using the same, and method for treating negative electrode active material for nickel metal hydride battery
JP2011008994A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Alkaline storage battery, and alkaline storage battery system
CN102660700A (en) * 2012-05-27 2012-09-12 桂林理工大学 AB3-type hydrogen storage alloy and preparation method
CN107686903A (en) * 2017-09-03 2018-02-13 王增琪 Mg base hydrogen bearing alloy prepared by a kind of ball-milling method
CN112048652A (en) * 2020-09-11 2020-12-08 中国石油大学(华东) Magnesium air battery anode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4020769B2 (en) Nickel metal hydride secondary battery
JP5984287B2 (en) Alkaline storage battery
US8053114B2 (en) Hydrogen-absorbing alloy electrode, alkaline storage battery, and method of manufacturing the alkaline storage battery
JP2024023286A (en) Manufacturing method of hydrogen storage material
US20050175896A1 (en) Hydrogen-absorbing alloy for alkaline storage batteries, alkaline storage battery, and method of manufacturing alkaline storage battery
JP6422111B2 (en) Nickel metal hydride secondary battery
JP2003132940A (en) Nickel - hydrogen storage battery
JP2004127549A (en) Nickel-hydrogen storage battery
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JPH1125967A (en) Nickel electrode active material for alkaline storage battery and its manufacture
JP2000223119A (en) Positive electrode active material for alkaline storage battery, its manufacture, and manufacture of positive electrode for alkaline storage battery using positive electrode active material
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JP4420767B2 (en) Nickel / hydrogen storage battery
JP2009228096A (en) Hydrogen storage alloy
JP3579273B2 (en) Hydrogen storage alloy electrode
JP3976520B2 (en) Method for producing nickel electrode for alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP4511298B2 (en) Nickel metal hydride storage battery
JP2004296299A (en) Alkaline storage battery
JP6049048B2 (en) Nickel metal hydride secondary battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JPH10326613A (en) Electrode of hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070704