JP2000223119A - Positive electrode active material for alkaline storage battery, its manufacture, and manufacture of positive electrode for alkaline storage battery using positive electrode active material - Google Patents

Positive electrode active material for alkaline storage battery, its manufacture, and manufacture of positive electrode for alkaline storage battery using positive electrode active material

Info

Publication number
JP2000223119A
JP2000223119A JP11022620A JP2262099A JP2000223119A JP 2000223119 A JP2000223119 A JP 2000223119A JP 11022620 A JP11022620 A JP 11022620A JP 2262099 A JP2262099 A JP 2262099A JP 2000223119 A JP2000223119 A JP 2000223119A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
compound
positive electrode
active material
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11022620A
Other languages
Japanese (ja)
Other versions
JP4159161B2 (en
Inventor
Yoshitaka Baba
良貴 馬場
Mikiaki Tadokoro
幹朗 田所
Takayuki Yano
尊之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP02262099A priority Critical patent/JP4159161B2/en
Publication of JP2000223119A publication Critical patent/JP2000223119A/en
Application granted granted Critical
Publication of JP4159161B2 publication Critical patent/JP4159161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cobalt compound good in conductivity and provide a cobalt coating layer high in mechanical strength to provide a high capacity storage battery, by providing a nickel hydroxide higher than bivalent, providing its surface with a higher-valent cobalt compound containing first alkaline cation, and providing the inside with alkaline cation. SOLUTION: A nickel hydroxide compound is coated with a cobalt compound and is heat treated under existence of oxygen and alkaline solution containing first alkaline cation, and thereby, a higher-valent cobalt compound layer good in conductivity is formed on the surface of the nickel hydroxide compound. When this nickel hydroxide compound is oxidized with oxidant, replacement occurs between trivalent cobalt on the surface and atoms in a crystal during conversion of bivalent nickel hydroxide to trivalent nickel hydroxide, and mechanical strength of active material particles is improved. The higher-valent cobalt compound layer is not peeled and coefficient of use of active material is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は正極活物質として水
酸化ニッケルを用いたニッケル・水素蓄電池、ニッケル
・カドミウム蓄電池、ニッケル・亜鉛蓄電池などのアル
カリ蓄電池の正極活物質およびその製造方法ならびにこ
の正極活物質を用いたアルカリ蓄電池用正極の製造方法
に関する。
The present invention relates to a positive electrode active material for an alkaline storage battery such as a nickel-hydrogen storage battery, a nickel-cadmium storage battery, and a nickel-zinc storage battery using nickel hydroxide as the positive electrode active material, a method for producing the same, and the positive electrode active material. The present invention relates to a method for producing a positive electrode for an alkaline storage battery using a substance.

【0002】[0002]

【従来の技術】近年、携帯用電子・通信機器の急速な普
及により従来に増して高性能な蓄電池が要請されてい
る。このような背景にあって、水酸化ニッケルを正極活
物質とするアルカリ蓄電池においても、蓄電池の一層の
高性能化、高容量化のため、水酸化ニッケル活物質の利
用率を改良して高容量化する方法が種々提案されてい
る。例えば、水酸化ニッケル活物質に導電補助剤として
コバルト化合物あるいはニッケル金属粉末を添加する方
法、水酸化ニッケル活物質の表面にコバルト化合物ある
いはニッケル金属を析出させる方法等が提案されてい
る。
2. Description of the Related Art In recent years, with the rapid spread of portable electronic and communication equipment, there has been a demand for higher performance storage batteries than ever. Against this background, even in alkaline storage batteries using nickel hydroxide as the positive electrode active material, the utilization rate of the nickel hydroxide active material was improved by improving the utilization rate of the nickel hydroxide active material in order to further enhance the performance and capacity of the storage battery. Various methods have been proposed. For example, a method of adding a cobalt compound or nickel metal powder as a conductive auxiliary agent to a nickel hydroxide active material, a method of depositing a cobalt compound or nickel metal on the surface of a nickel hydroxide active material, and the like have been proposed.

【0003】特に、コバルト化合物は、2価の状態では
導電性がないが、電池の初回充放電により酸化されて導
電性が良好な高次コバルト化合物となる。また、その充
放電により、まず、充電により水酸化コバルトが酸化さ
れて水酸化ニッケル活物質の表面にオキシ水酸化コバル
トが析出し、放電により一部のオキシ水酸化コバルトが
還元されて水酸化コバルトが電解液中に溶解する。この
ように、充放電により溶解析出反応を伴うため、導電ネ
ットワークが水酸化ニッケル活物質の表面に均一に形成
され、電位的に孤立した部分が少なくなるため、活物質
利用率が向上することとなって、幅広く採用されるよう
になった。
[0003] In particular, a cobalt compound has no conductivity in a divalent state, but is oxidized by the first charge / discharge of a battery to become a high-order cobalt compound having good conductivity. In addition, due to the charge and discharge, first, cobalt hydroxide is oxidized by charging, and cobalt oxyhydroxide precipitates on the surface of the nickel hydroxide active material. Dissolves in the electrolyte. As described above, since the dissolution and precipitation reaction is accompanied by charge and discharge, the conductive network is formed uniformly on the surface of the nickel hydroxide active material, and the potential isolated portion is reduced, so that the active material utilization rate is improved. It has become widely adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、オキシ
水酸化ニッケル活物質の表面にコバルト化合物を析出さ
せる方法においては、十分な容量を取り出すことができ
ないという問題を生じた。これは、酸化還元電位が水酸
化ニッケルより卑な2価以下のコバルトが、オキシ水酸
化ニッケルの存在により高次化の影響を受け、かつ、極
板乾燥時等のアルカリが存在しない状態があるため、導
電性の低いコバルト酸化物に変化し、活物質間の導電性
を阻害するためと考えられている。
However, in the method of depositing the cobalt compound on the surface of the nickel oxyhydroxide active material, there has been a problem that a sufficient capacity cannot be obtained. This is because there is a state in which cobalt having a valence of 2 or less, whose oxidation-reduction potential is lower than that of nickel hydroxide, is affected by higher order due to the presence of nickel oxyhydroxide, and there is no alkali when the electrode plate is dried. Therefore, it is considered that the oxide is changed to a cobalt oxide having low conductivity, thereby inhibiting conductivity between active materials.

【0005】ここで、オキシ水酸化ニッケルと2価以下
のコバルト化合物を共存させた場合、アルカリが存在し
ないと下記の(1)式の反応式に基づく反応が進行す
る。
Here, when nickel oxyhydroxide and a cobalt compound having a valency of 2 or less coexist, a reaction based on the following reaction formula (1) proceeds unless an alkali is present.

【化1】 NiOOH+Co(OH)2→CoHO2・・・(1)(Electrochimica Acta 1964 Vol19 P275参照) この反応は下記の(2)式、(3)式の反応式から成り
立っている。
Embedded image NiOOH + Co (OH) 2 → CoHO 2 (1) (see Electrochimica Acta 1964 Vol19 P275) This reaction is composed of the following equations (2) and (3).

【0006】[0006]

【化2】 NiOOH+1/2H2O→Ni(OH)2+1/4O2 ・・・(2) Co(OH)2+1/4O2→CoHO2+Ni(OH)2・・・(3) 上記(2),(3)式は当然、下記の(4)式の半反応
式が関与する。
NiOOH + 1 / 2H 2 O → Ni (OH) 2 + / O 2 ... (2) Co (OH) 2 + / O 2 → CoHO 2 + Ni (OH) 2. The equations (2) and (3) naturally involve a semi-reaction equation of the following equation (4).

【化3】 H2O→1/2O2 +2H++2e- ・・・(4)[Formula 3] H 2 O → 1 / 2O 2 + 2H + + 2e - ··· (4)

【0007】上記(1)〜(4)式から言えることは、
水酸化コバルトが酸素により酸化された場合、電子の授
受が少ないために電子導電性が阻害されるということが
できる。換言すると、オキシ水酸化ニッケルを正極材料
とした場合、2価以下のコバルト化合物を導電補助剤に
用いると、導電性が阻害されて容量が低下する結果とな
る。つまり、オキシ水酸化ニッケルを正極活物質として
用いる場合には、酸化による影響を受けない導電補助剤
を用いることが必須の条件となる。
From the above equations (1) to (4), it can be said that
When cobalt hydroxide is oxidized by oxygen, it can be said that electron conductivity is hindered due to little transfer of electrons. In other words, when nickel oxyhydroxide is used as the positive electrode material, if a divalent or lower valent cobalt compound is used as the conductive additive, the conductivity is impaired, resulting in a reduction in capacity. That is, when nickel oxyhydroxide is used as the positive electrode active material, it is an essential condition to use a conductive auxiliary agent that is not affected by oxidation.

【0008】また、水酸化コバルトは空気暴露により徐
々に変色することから、オキシ水酸化コバルト共存下で
はより酸化が加速され、H2OとO2の介在と電子の授受
により、オキシ水酸化ニッケルの還元と水酸化コバルト
の酸化がそれぞれの存在により加速されると考えられ
る。このことは、水酸化コバルトのみではなく、酸化コ
バルト、金属コバルトなどの2価以下のコバルトあるい
はコバルト化合物を用いた場合も同様である。以上のこ
とから、オキシ水酸化ニッケルをニッケル正極活物質と
して用いる場合は、2価以下のコバルト化合物は導電補
助剤としては適しないことを意味するということができ
る。
[0008] Further, since cobalt hydroxide gradually discolors due to exposure to air, oxidation is further accelerated in the presence of cobalt oxyhydroxide, and nickel oxyhydroxide is interposed between H 2 O and O 2 and exchange of electrons. It is believed that the reduction of OH and the oxidation of cobalt hydroxide are accelerated by their respective presence. The same applies to the case where not only cobalt hydroxide but also divalent or lower-valent cobalt such as cobalt oxide and metallic cobalt or a cobalt compound is used. From the above, it can be said that when nickel oxyhydroxide is used as the nickel positive electrode active material, a divalent or lower valent cobalt compound is not suitable as a conductive auxiliary.

【0009】[0009]

【課題を解決するための手段およびその作用・効果】そ
こで、本発明は上記問題点に鑑みてなされたものであ
り、オキシ水酸化ニッケルを正極活物質として用いて
も、導電性に優れたコバルト化合物を得るとともに、機
械的強度の高いコバルトの被覆層を設けて高容量のアル
カリ蓄電池が得られるようにすることをその目的とす
る。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above-mentioned problems, and it has been found that even if nickel oxyhydroxide is used as a positive electrode active material, cobalt having excellent conductivity can be obtained. It is an object of the present invention to obtain a compound and provide a coating layer of cobalt having high mechanical strength so that a high-capacity alkaline storage battery can be obtained.

【0010】このため、本発明のアルカリ蓄電池用正極
活物質は、2価より高次な水酸化ニッケルを備えるとと
もに、この2価より高次な水酸化ニッケルの表面に第1
のアルカリカチオンを含有する高次コバルト化合物を備
え、2価より高次な水酸化ニッケルの内部に第2のアル
カリカチオンを含有するようにしている。
For this reason, the positive electrode active material for an alkaline storage battery of the present invention comprises nickel hydroxide having a higher order than divalent, and the first surface of the nickel hydroxide having a higher order than divalent.
And a second alkali cation is contained inside nickel hydroxide having a higher valence than two.

【0011】このように、2価より高次な水酸化ニッケ
ルの表面に第1のアルカリカチオンを含有する高次コバ
ルト化合物を備えるとともに、2価より高次な水酸化ニ
ッケルの内部に第2のアルカリカチオンを含有すると、
2価より高次な水酸化ニッケルの表面に形成された高次
コバルト化合物と内部の2価より高次な水酸化ニッケル
との境界がなくなるため、ニッケル−コバルト間の結合
が強固になって活物質粒子の機械的強度が増大するとと
もに、ニッケル−コバルト間の電気抵抗が低下して、高
率放電時の容量が高くなる。
As described above, the surface of the nickel hydroxide having a higher valence than 2 is provided with the higher cobalt compound containing the first alkali cation, and the inside of the nickel hydroxide having the higher valence than the second is contained. When containing alkali cations,
Since there is no boundary between the higher-order cobalt compound formed on the surface of the higher-order nickel hydroxide and the inner-order higher-order nickel hydroxide, the bond between nickel and cobalt is strengthened and active. As the mechanical strength of the material particles increases, the electric resistance between nickel and cobalt decreases, and the capacity during high-rate discharge increases.

【0012】そして、2価より高次な水酸化ニッケルの
表面に第1のアルカリカチオンを含有する高次コバルト
化合物を備えると、第1のアルカリカチオンはコバルト
化合物が酸化剤により酸化されることを防止する作用を
有するため、コバルト化合物の安定性を確保できるよう
になる。また、表面に第1のアルカリカチオンを含有す
る高次コバルト化合物を備えた2価より高次な水酸化ニ
ッケルの内部にも第2のアルカリカチオンを存在させる
と、充放電サイクルに伴い、γ−オキシ水酸化ニッケル
が生成した場合でも電解液中のアルカリカチオンの変化
を小さくできるため、電池の充放電に伴う電解液濃度の
変化を抑制でき、放電電圧の平坦性を増すことができる
ようになる。
[0012] When a high-order cobalt compound containing a first alkali cation is provided on the surface of nickel hydroxide having a higher valence than divalent, the first alkali cation indicates that the cobalt compound is oxidized by an oxidizing agent. Since it has the effect of preventing, the stability of the cobalt compound can be secured. In addition, when the second alkali cation is also present inside nickel hydroxide having a higher order than 2 valence which has a higher cobalt compound containing the first alkali cation on the surface, γ- Even when nickel oxyhydroxide is generated, the change in the alkali cation in the electrolyte can be reduced, so that the change in the electrolyte concentration due to the charging and discharging of the battery can be suppressed, and the flatness of the discharge voltage can be increased. .

【0013】このことは、例えば、Journal of Power S
ources 8 1982 p229には「β−オキシ水酸化ニッケル中
にはアルカリカチオンは含有されておらず、γ−オキシ
水酸化ニッケルにはアルカリカチオンを含有する」なる
記載があり、本発明の活物質をX線回折による分析結果
においても、γ−オキシ水酸化ニッケルが検出されず、
アルカリカチオンは過剰な洗浄においても減少しないこ
とから、本発明の活物質は第2のアルカリカチオンを含
んだβ−オキシ水酸化ニッケルであると考えられる。そ
して、第2のアルカリカチオンとしては、カリウムイオ
ン、ナトリウムイオン、リチウムイオンから選択して用
いることができるが、特に、リチウムイオンを用いる
と、このリチウムイオンが電解液中の水と結びつき、水
による酸化が抑制されるとともに、酸素発生電位が向上
して放置後の自己放電が抑制されたため、高温での充電
放置後の容量を確保できるため好ましい。
This is, for example, the case of the Journal of Power S
Ources 8 1982 p229 states that “β-nickel oxyhydroxide does not contain alkali cations, and γ-nickel oxyhydroxide contains alkali cations”. In the analysis results by X-ray diffraction, γ-nickel oxyhydroxide was not detected,
Since the alkali cation does not decrease even in excessive washing, it is considered that the active material of the present invention is β-nickel oxyhydroxide containing the second alkali cation. As the second alkali cation, potassium ions, sodium ions, and lithium ions can be selected and used. In particular, when lithium ions are used, the lithium ions bind to water in the electrolytic solution, and Oxidation is suppressed, and the oxygen generation potential is improved, and self-discharge after standing is suppressed. Therefore, the capacity after charging and standing at a high temperature is preferably secured.

【0014】また、本発明のアルカリ蓄電池用正極活物
質の製造方法においては、水酸化ニッケル化合物の表面
に第1のアルカリカチオンを含む高次コバルト化合物を
保持させる保持工程と、表面に第1のアルカリカチオン
を含む高次コバルト化合物を保持させた水酸化ニッケル
化合物を第2のアルカリカチオンを含む水溶液中に酸化
剤とともに浸漬してこの水酸化ニッケル化合物を2価よ
り高次な水酸化ニッケルに高次化するとともに、第2の
アルカリカチオンを2価より高次な水酸化ニッケルの内
部に含有させる高次化含有工程とを備えるようにしてい
る。
In the method for producing a positive electrode active material for an alkaline storage battery according to the present invention, a holding step of holding a high-order cobalt compound containing a first alkali cation on the surface of the nickel hydroxide compound; A nickel hydroxide compound holding a high-order cobalt compound containing an alkali cation is immersed in an aqueous solution containing a second alkali cation together with an oxidizing agent to convert the nickel hydroxide compound into nickel hydroxide having a higher valence than two. And a step of containing a second alkali cation inside nickel hydroxide having a higher valence than two.

【0015】保持工程により、水酸化ニッケル化合物の
表面に第1のアルカリカチオンを含む高次コバルト化合
物を保持させた後、酸化剤とともに第2のアルカリカチ
オンを含む水溶液中に浸漬してこの水酸化ニッケル化合
物の一部を2価より高次な水酸化ニッケルに高次化する
と、粒子表面のコバルト層と粒子内部のニッケル層との
境界がなくなるため、ニッケル層−コバルト層間の結合
が強固になって活物質粒子の機械的強度が増大するとと
もに、ニッケル層−コバルト層間の電気抵抗が低下し
て、高率放電時の容量が高くなる。
[0015] In the holding step, the high-order cobalt compound containing the first alkali cation is held on the surface of the nickel hydroxide compound, and then immersed in an aqueous solution containing the second alkali cation together with the oxidizing agent. When a part of the nickel compound is converted to nickel hydroxide having a higher valence than divalent, the boundary between the cobalt layer on the particle surface and the nickel layer inside the particle disappears, so that the bond between the nickel layer and the cobalt layer becomes strong. As a result, the mechanical strength of the active material particles increases, the electrical resistance between the nickel layer and the cobalt layer decreases, and the capacity during high-rate discharge increases.

【0016】つまり、酸化剤により2価の水酸化ニッケ
ルが3価の水酸化ニッケルに高次化される際に、粒子表
面の3価のコバルトと結晶内のニッケル原子間で入れ替
えが生じて、コバルト層−ニッケル層の境界が不明瞭に
なって、機械的強度が向上する。水酸化ニッケルの機械
的強度が向上すると、コバルト層−ニッケル層間の電気
抵抗が減少するため、大電流放電においても電圧降下が
小さくなり、結果として高率放電時の容量が増加する。
That is, when divalent nickel hydroxide is converted into trivalent nickel hydroxide by the oxidizing agent, exchange occurs between trivalent cobalt on the particle surface and nickel atoms in the crystal, The boundary between the cobalt layer and the nickel layer becomes unclear, and the mechanical strength is improved. When the mechanical strength of nickel hydroxide is improved, the electric resistance between the cobalt layer and the nickel layer is reduced, so that the voltage drop is reduced even in a large current discharge, and as a result, the capacity at the time of high rate discharge is increased.

【0017】そして、保持工程において粒状の水酸化ニ
ッケル化合物をコバルト化合物と混合するかあるいは粒
状の水酸化ニッケル化合物をコバルト化合物で被覆した
後、アルカリ水溶液と酸素の共存下で加熱処理するよう
にすると、下記の(5)、(6)の反応式に基づく反応
が進行して、粒状の水酸化ニッケル化合物の表面に第1
のアルカリカチオンを含む高次コバルト化合物層が容易
に形成できるようになる。
In the holding step, the particulate nickel hydroxide compound is mixed with a cobalt compound, or the particulate nickel hydroxide compound is coated with a cobalt compound, and then heat-treated in the presence of an aqueous alkali solution and oxygen. A reaction based on the following reaction formulas (5) and (6) proceeds, and the surface of the granular nickel hydroxide compound
A high-order cobalt compound layer containing an alkali cation can be easily formed.

【0018】[0018]

【化4】 Co(OH)2+NaOH→Co(Na)OOH+H2O+e-・・・(5) 1/2O2+2H++2e- →H2 ・・・(6) 上記(5)、(6)式より明らかなように、電気化学的
に酸化(つまり、アルカリの存在の元での酸化)される
ことにより、電子伝導性が高くなる。
Embedded image Co (OH) 2 + NaOH → Co (Na) OOH + H 2 O + e (5) 1 / 2O 2 + 2H + + 2e → H 2 O (6) As is clear from the above equations (5) and (6), the electron conductivity is increased by electrochemical oxidation (that is, oxidation in the presence of an alkali).

【0019】また、本発明のアルカリ蓄電用正極の製造
方法においては、水酸化ニッケル化合物をコバルト化合
物と混合するかあるいは水酸化ニッケル化合物をコバル
ト化合物で被覆した後、第1のアルカリカチオンを含有
するアルカリ水溶液と酸素の共存下で加熱処理して、水
酸化ニッケル化合物の表面に第1のアルカリカチオンを
含んだ高次コバルト化合物を生成させる生成工程と、そ
の表面に第1のアルカリカチオンを含んだ高次コバルト
化合物が生成された水酸化ニッケル化合物を第2のアル
カリカチオンを含有するアルカリ水溶液中で酸化剤と共
に撹拌して、水酸化ニッケル化合物の一部を2価より高
次な水酸化ニッケルに高次化するとともに、第2のアル
カリカチオンを2価より高次な水酸化ニッケルの内部に
含有させる高次化含有工程と、水酸化ニッケル化合物に
純水を添加してスラリーとし、このスラリーを発泡ニッ
ケルから成る基板に充填する充填工程とを備えるように
している。
Further, in the method for producing a positive electrode for an alkaline storage battery according to the present invention, a nickel hydroxide compound is mixed with a cobalt compound or the nickel hydroxide compound is coated with a cobalt compound and then contains a first alkali cation. A heating step in the presence of an aqueous alkali solution and oxygen to form a higher order cobalt compound containing the first alkali cation on the surface of the nickel hydroxide compound; and a step of containing the first alkali cation on the surface. The nickel hydroxide compound in which the higher cobalt compound has been formed is stirred together with an oxidizing agent in an aqueous alkali solution containing a second alkali cation to convert a portion of the nickel hydroxide compound to nickel hydroxide having a higher valence than divalent. Higher order and higher order in which the second alkali cation is contained inside nickel hydroxide higher than divalent. And chromatic step, the slurry was added pure water to the nickel hydroxide compound, so that and a filling step of filling the substrate comprising the slurry from the foamed nickel.

【0020】このように、水酸化ニッケル化合物をコバ
ルト化合物で被覆した後、第1のアルカリカチオンを含
有するアルカリ水溶液と酸素の共存下で加熱処理するこ
とにより、水酸化ニッケル化合物の表面に、導電性に優
れた第1のアルカリカチオンを含んだ高次コバルト化合
物層が形成される。この導電性に優れた高次コバルト化
合物層が形成された水酸化ニッケル化合物が酸化剤によ
り酸化されると、2価の水酸化ニッケルが3価の水酸化
ニッケルに高次化される際に、表面の3価のコバルトと
結晶内原子間で入れ替えが生じて、コバルト層−ニッケ
ル層の境界が不明瞭になって、活物質粒子の機械的強度
が向上する。活物質粒子の機械的強度が向上すると、後
の工程においてスラリーとするための撹拌を行っても、
導電性に優れた高次コバルト化合物が剥離することがな
いので、導電性に優れた、即ち、活物質利用率が向上し
たアルカリ蓄電用正極が得られるようになる。
As described above, after the nickel hydroxide compound is coated with the cobalt compound, the surface of the nickel hydroxide compound is subjected to heat treatment in the presence of oxygen and an aqueous alkali solution containing the first alkali cation. A high-order cobalt compound layer containing a first alkali cation having excellent properties is formed. When the nickel hydroxide compound on which the high-order cobalt compound layer having excellent conductivity is formed is oxidized by an oxidizing agent, when divalent nickel hydroxide is converted to trivalent nickel hydroxide, Interchange occurs between the trivalent cobalt on the surface and the atoms in the crystal, the boundary between the cobalt layer and the nickel layer becomes unclear, and the mechanical strength of the active material particles is improved. When the mechanical strength of the active material particles is improved, even if stirring for forming a slurry in a later step is performed,
Since the high-order cobalt compound having excellent conductivity is not exfoliated, a positive electrode for alkaline storage having excellent conductivity, that is, having an improved utilization rate of the active material can be obtained.

【0021】そして、高次化含有工程により水酸化ニッ
ケル化合物の一部を2価より高次な水酸化ニッケルに高
次化するとともに、第2のアルカリカチオンを2価より
高次な水酸化ニッケルの内部に含有させた後、充填工程
によりこの活物質をスラリーとして基板に充填しても、
あるいは充填工程により高次化されていない活物質をス
ラリーとして基板に充填した後、高次化含有工程により
水酸化ニッケル化合物の一部を2価より高次な水酸化ニ
ッケルに高次化するとともに、第2のアルカリカチオン
を2価より高次な水酸化ニッケルの内部に含有させて
も、第1のアルカリカチオンを含んだ高次コバルト化合
物を表面に備えた水酸化ニッケル化合物の一部が2価よ
り高次な水酸化ニッケルに高次化されるという点で格別
相違しないので、高次化含有工程と充填工程との順序が
入れ替わってもよい。
Then, a part of the nickel hydroxide compound is converted to nickel hydroxide having a higher valence than divalent by the step of containing higher order, and the second alkali cation is converted to nickel hydroxide having a higher valence than divalent. After being contained in the inside, even if this active material is filled into a substrate as a slurry by a filling step,
Alternatively, after filling the substrate with the active material that has not been converted into a higher order by the filling step, the nickel oxide compound is partially converted to a nickel hydroxide having a higher valence than divalent by the higher order containing step. Even if the second alkali cation is contained in the interior of the nickel hydroxide having a higher valence than two, a part of the nickel hydroxide compound provided on the surface with the higher cobalt compound containing the first alkali cation may have Since there is no particular difference in that the higher order nickel hydroxide is converted into higher order, the order of the higher order containing step and the filling step may be interchanged.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

1.正極材料の作製 (1)実施例1 重量比でニッケル100に対して亜鉛5重量%、コバル
ト2重量%となるような硫酸ニッケル、硫酸亜鉛、硫酸
コバルトの混合水溶液を攪拌しながら、水酸化ナトリウ
ム水溶液およびアンモニア水溶液を徐々に添加し、反応
溶液中のpHが13〜14になるように維持させて粒状
の水酸化ニッケルを析出させる。
1. Preparation of Positive Electrode Material (1) Example 1 While stirring a mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate at a weight ratio of 5% by weight of zinc and 2% by weight of cobalt with respect to 100% of nickel, sodium hydroxide was stirred. An aqueous solution and an aqueous ammonia solution are gradually added, and the pH in the reaction solution is maintained at 13 to 14 to precipitate granular nickel hydroxide.

【0023】次に、粒状の水酸化ニッケルが析出した溶
液に、比重1.30の硫酸コバルト水溶液と25重量%
の水酸化ナトリウム水溶液を添加し、この反応溶液中の
pHが9〜10になるように維持させて、水酸化ニッケ
ル析出物を結晶核として、この核の周囲に水酸化コバル
トを析出させる。これらの粒状物を採取し、水洗、乾燥
して、粒状でその表面に水酸化コバルトを形成した水酸
化ニッケル化合物を作製する。なお、このようにして表
面に水酸化コバルトを形成させると、水酸化ニッケル化
合物全体に対して8重量%(水酸化物換算)の水酸化コ
バルトが生成される。
Next, an aqueous solution of cobalt sulfate having a specific gravity of 1.30 and 25% by weight were added to the solution in which the granular nickel hydroxide was precipitated.
Of sodium hydroxide is added, and the pH in the reaction solution is maintained at 9 to 10 to precipitate cobalt hydroxide around the nucleus using the nickel hydroxide precipitate as a crystal nucleus. These granules are collected, washed with water, and dried to produce a nickel hydroxide compound which is granular and has cobalt hydroxide formed on its surface. When cobalt hydroxide is formed on the surface in this way, 8% by weight (in terms of hydroxide) of cobalt hydroxide is generated with respect to the entire nickel hydroxide compound.

【0024】このようにして得られたその表面に水酸化
コバルトが形成された粒状の水酸化ニッケル化合物を酸
素雰囲気の熱気流下でアルカリ水溶液(35重量%の水
酸化ナトリウム)を噴霧する。この場合、その表面に水
酸化コバルトが形成された粒状の水酸化ニッケル化合物
の温度が60℃となるように加熱度合いを調整し、コバ
ルト量に対して5倍のアルカリ水溶液(35重量%の水
酸化ナトリウム)を噴霧した後、水酸化ニッケル化合物
の温度が90℃に到達するまで昇温する。
An alkaline aqueous solution (35% by weight of sodium hydroxide) is sprayed on the thus-obtained granular nickel hydroxide compound having cobalt hydroxide formed on the surface thereof in a hot air stream of an oxygen atmosphere. In this case, the degree of heating is adjusted so that the temperature of the particulate nickel hydroxide compound having cobalt hydroxide formed on its surface is 60 ° C., and an alkaline aqueous solution (35% by weight of water) is five times the amount of cobalt. After spraying (sodium oxide), the temperature is raised until the temperature of the nickel hydroxide compound reaches 90 ° C.

【0025】このようなアルカリ熱処理工程により、粒
状の水酸化ニッケルの表面に形成された水酸化コバルト
の結晶構造が破壊されて結晶構造に乱れを生じると共
に、水酸化コバルトの酸化が強力に促進されて、その平
均価数が2価より大きい、例えば、2.9価の高次コバ
ルト化合物となる。これにより、導電性のよいアルカリ
カチオンを含有した高次コバルト化合物をその表面に偏
在形成させた粒状の水酸化ニッケル化合物が形成される
こととなる。
By such an alkaline heat treatment step, the crystal structure of the cobalt hydroxide formed on the surface of the granular nickel hydroxide is destroyed and the crystal structure is disturbed, and the oxidation of the cobalt hydroxide is strongly promoted. As a result, a high-order cobalt compound having an average valence of more than two, for example, 2.9 is obtained. As a result, a granular nickel hydroxide compound in which a high-order cobalt compound containing a highly conductive alkali cation is unevenly formed on its surface is formed.

【0026】ついで、このようにして形成された表面に
アルカリカチオンを含有した高次コバルト化合物を有す
る水酸化ニッケル化合物を100gを用意する。この水
酸化ニッケル化合物を、10重量%の水酸化ナトリウム
水溶液1000mlに12重量%の次亜塩素酸ナトリウ
ム(NaClO)(酸化剤)を125ml溶解させた水
溶液中に浸漬して、10分間撹拌する。これにより、表
面にアルカリカチオンを含有した高次コバルト化合物を
有するとともに、その内部にナトリウムイオンを含有し
た平均価数が2.2価の水酸化ニッケル化合物が得られ
た。なお、この水酸化ニッケル化合物を組成分析する
と、0.2重量%程度のナトリウムイオンを含有してい
ることが分かった。このようにして作製された水酸化ニ
ッケル化合物を実施例1の正極活物質とする。
Then, 100 g of a nickel hydroxide compound having a higher cobalt compound containing an alkali cation on the surface thus formed is prepared. The nickel hydroxide compound is immersed in an aqueous solution in which 125 ml of 12% by weight of sodium hypochlorite (NaClO) (oxidizing agent) is dissolved in 1000 ml of an aqueous solution of 10% by weight of sodium hydroxide and stirred for 10 minutes. As a result, a nickel hydroxide compound having an average valence of 2.2 and containing a sodium ion therein was obtained while having a high-order cobalt compound containing an alkali cation on the surface. In addition, composition analysis of the nickel hydroxide compound revealed that the nickel hydroxide compound contained about 0.2% by weight of sodium ions. The thus produced nickel hydroxide compound is used as the positive electrode active material of Example 1.

【0027】(2)実施例2 実施例1と同様にして作製した、導電性のよいアルカリ
カチオンを含有した高次コバルト化合物をその表面に偏
在形成させた粒状の水酸化ニッケル化合物100gを用
意する。この水酸化ニッケル化合物を、10重量%の水
酸化リチウム水溶液1000mlに12重量%の次亜塩
素酸ナトリウム(NaClO)(酸化剤)を125ml
溶解させた水溶液中に浸漬して、10分間撹拌する。こ
れにより、表面にアルカリカチオンを含有した高次コバ
ルト化合物を有するとともに、その内部にリチウムイオ
ンを有する平均価数が2.2価の水酸化ニッケル化合物
が得られた。なお、この水酸化ニッケル化合物を組成分
析すると、0.7重量%程度のリチウムイオンを含有し
ていることが分かった。このようにして作製された水酸
化ニッケル化合物を実施例2の正極活物質とする。
(2) Example 2 100 g of a granular nickel hydroxide compound produced in the same manner as in Example 1 and having a high-order cobalt compound containing a highly conductive alkali cation unevenly formed on its surface is prepared. . This nickel hydroxide compound was mixed with 12% by weight of sodium hypochlorite (NaClO) (oxidizing agent) in 125 ml of a 10% by weight aqueous solution of lithium hydroxide.
Immerse in the dissolved aqueous solution and stir for 10 minutes. As a result, a nickel hydroxide compound having an average valence of 2.2 and having a lithium ion in the interior was obtained while having a high-order cobalt compound containing an alkali cation on the surface. In addition, composition analysis of this nickel hydroxide compound revealed that it contained about 0.7% by weight of lithium ions. The nickel hydroxide compound produced in this manner is used as a positive electrode active material of Example 2.

【0028】(3)比較例1 重量比でニッケル100に対して亜鉛5重量%、コバル
ト2重量%となるような硫酸ニッケル、硫酸亜鉛、硫酸
コバルトの混合水溶液を攪拌しながら、水酸化ナトリウ
ム水溶液およびアンモニア水溶液を徐々に添加し、反応
溶液中のpHが13〜14になるように維持させて粒状
の水酸化ニッケルを析出させる。ついで、粒状の水酸化
ニッケルが析出した溶液に、25重量%の水酸化ナトリ
ウム水溶液と次亜塩素酸ナトリウム(NaClO)(酸
化剤)を添加して混合した。これにより、水酸化ニッケ
ルは高次化されてオキシ水酸化ニッケルとなり、その平
均価数は2.2価となった。なお、酸化剤(次亜塩素酸
ナトリウム(NaClO))の量を加減することによ
り、水酸化ニッケル中の平均価数を調整することができ
る。
(3) Comparative Example 1 An aqueous sodium hydroxide solution was stirred while stirring a mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate so that the weight ratio of zinc and cobalt was 5% by weight and 2% by weight with respect to 100% nickel. And an aqueous ammonia solution are gradually added to maintain the pH of the reaction solution at 13 to 14 to precipitate particulate nickel hydroxide. Next, a 25% by weight aqueous sodium hydroxide solution and sodium hypochlorite (NaClO) (oxidizing agent) were added to the solution in which the granular nickel hydroxide was precipitated, and mixed. As a result, nickel hydroxide was converted to higher order nickel oxyhydroxide, and the average valence became 2.2. The average valence in nickel hydroxide can be adjusted by adjusting the amount of the oxidizing agent (sodium hypochlorite (NaClO)).

【0029】次に、このようにして高次化された水酸化
ニッケルを採取し、水洗、乾燥して、粒状の水酸化ニッ
ケル化合物とする。この水酸化ニッケル化合物に水酸化
コバルトを添加して、水酸化コバルトを含有する水酸化
ニッケル化合物を作製する。なお、水酸化コバルトの添
加量は水酸化ニッケル化合物全体に対して8重量%(水
酸化物換算)になるようにした。このようにして作製さ
れた水酸化ニッケル化合物を比較例1の正極活物質とす
る。
Next, the nickel hydroxide thus obtained is collected, washed with water and dried to obtain a granular nickel hydroxide compound. Cobalt hydroxide is added to this nickel hydroxide compound to produce a nickel hydroxide compound containing cobalt hydroxide. The amount of cobalt hydroxide was adjusted to 8% by weight (in terms of hydroxide) based on the entire nickel hydroxide compound. The nickel hydroxide compound thus produced is used as a positive electrode active material of Comparative Example 1.

【0030】(4)比較例2 比較例1と同様にして作製された高次化された水酸化ニ
ッケルに、比重1.30の硫酸コバルト水溶液と25重
量%の水酸化ナトリウム水溶液を添加し、この反応溶液
中のpHが9〜10になるように維持させて、高次化さ
れた水酸化ニッケルを結晶核として、この核の周囲に水
酸化コバルトを析出させる。これらの粒状物を採取し、
水洗、乾燥して、粒状でその表面に水酸化コバルトを形
成した水酸化ニッケル化合物を作製する。なお、このよ
うにして表面に水酸化コバルトを形成させると、水酸化
ニッケル化合物全体に対して8重量%(水酸化物換算)
の水酸化コバルトが生成される。このようにして作製さ
れた水酸化ニッケル化合物を比較例2の正極活物質とす
る。
(4) Comparative Example 2 An aqueous solution of cobalt sulfate having a specific gravity of 1.30 and an aqueous solution of 25% by weight of sodium hydroxide were added to the enhanced nickel hydroxide prepared in the same manner as in Comparative Example 1, By maintaining the pH in the reaction solution at 9 to 10, using higher-order nickel hydroxide as a crystal nucleus, cobalt hydroxide is precipitated around the nucleus. Collect these granules,
After washing with water and drying, a nickel hydroxide compound in which cobalt hydroxide is formed in a granular form on the surface is produced. When cobalt hydroxide is formed on the surface in this manner, 8% by weight (in terms of hydroxide) of the entire nickel hydroxide compound.
Of cobalt hydroxide is produced. The thus prepared nickel hydroxide compound is used as a positive electrode active material of Comparative Example 2.

【0031】(5)比較例3 重量比でニッケル100に対して亜鉛5重量%、コバル
ト2重量%となるような硫酸ニッケル、硫酸亜鉛、硫酸
コバルトの混合水溶液を攪拌しながら、水酸化ナトリウ
ム水溶液およびアンモニア水溶液を徐々に添加し、反応
溶液中のpHが13〜14になるように維持させて粒状
の水酸化ニッケルを析出させる。ついで、このように析
出させた水酸化ニッケルに、比重1.30の硫酸コバル
ト水溶液と25重量%の水酸化ナトリウム水溶液を添加
し、この反応溶液中のpHが9〜10になるように維持
させて、水酸化ニッケルを結晶核として、この核の周囲
に水酸化コバルトを析出させる。
(5) Comparative Example 3 An aqueous sodium hydroxide solution was stirred while stirring a mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate so that the weight ratio of zinc and cobalt was 5% by weight and 100% by weight with respect to 100% nickel. And an aqueous ammonia solution are gradually added to maintain the pH of the reaction solution at 13 to 14 to precipitate particulate nickel hydroxide. Then, an aqueous solution of cobalt sulfate having a specific gravity of 1.30 and an aqueous solution of sodium hydroxide of 25% by weight were added to the nickel hydroxide thus precipitated, and the pH of the reaction solution was maintained at 9 to 10. Then, cobalt hydroxide is precipitated around the nucleus using nickel hydroxide as a crystal nucleus.

【0032】これらの粒状物を採取し、水洗、乾燥し
て、粒状でその表面に水酸化コバルトを形成した水酸化
ニッケル化合物を作製する。なお、このようにして表面
に水酸化コバルトを形成させると、水酸化ニッケル化合
物全体に対して8重量%(水酸化物換算)の水酸化コバ
ルトが生成される。このようにして表面に水酸化コバル
トを形成させた水酸化ニッケル化合物を、10重量%の
水酸化リチウム水溶液1000mlに12重量%の次亜
塩素酸ナトリウム(NaClO)(酸化剤)を125m
l溶解させた水溶液中に浸漬して、10分間撹拌して、
水酸化ニッケル化合物を高次化し、平均価数が2.2価
の水酸化ニッケル化合物を作製する。このようにして作
製された水酸化ニッケル化合物を比較例3の正極活物質
とする。
These granules are collected, washed with water, and dried to produce a nickel hydroxide compound which is granular and has cobalt hydroxide formed on its surface. When cobalt hydroxide is formed on the surface in this way, 8% by weight (in terms of hydroxide) of cobalt hydroxide is generated with respect to the entire nickel hydroxide compound. The nickel hydroxide compound having cobalt hydroxide formed on the surface in this manner was prepared by adding 12% by weight of sodium hypochlorite (NaClO) (oxidizing agent) to 1000 ml of a 10% by weight aqueous solution of lithium hydroxide in an amount of 125 m.
l immersed in the dissolved aqueous solution and stirred for 10 minutes,
The order of the nickel hydroxide compound is increased to produce a nickel hydroxide compound having an average valence of 2.2. The nickel hydroxide compound prepared in this manner is used as a positive electrode active material of Comparative Example 3.

【0033】(6)比較例4 比較例3と同様にして作製された粒状でその表面に水酸
化コバルトを形成した水酸化ニッケル化合物を、コバル
トのみを酸化する酸化剤、例えば、過酸化水素水で表面
の水酸化コバルトを高次化してオキシ水酸化コバルトと
した。このようにして作製された表面に高次コバルト化
合物を有する水酸化ニッケル化合物を、10重量%の水
酸化リチウム水溶液1000mlに12重量%の次亜塩
素酸ナトリウム(NaClO)(酸化剤)を125ml
溶解させた水溶液中に浸漬して、10分間撹拌して、表
面に高次コバルト化合物を有するとともに、その内部に
ナトリウムイオンを有する平均価数が2.2の水酸化ニ
ッケル化合物を作製する。このようにして作製された水
酸化ニッケル化合物を比較例4の正極活物質とする。
(6) Comparative Example 4 A granular nickel hydroxide compound having cobalt hydroxide formed on its surface, produced in the same manner as in Comparative Example 3, was treated with an oxidizing agent for oxidizing only cobalt, for example, aqueous hydrogen peroxide. Then, the surface of the cobalt hydroxide was made higher to obtain cobalt oxyhydroxide. The nickel hydroxide compound having a high-order cobalt compound on the surface prepared as described above was mixed with 125 ml of 12 wt% sodium hypochlorite (NaClO) (oxidizing agent) in 1000 ml of 10 wt% aqueous lithium hydroxide solution.
It is immersed in the dissolved aqueous solution and stirred for 10 minutes to produce a nickel hydroxide compound having a higher cobalt compound on the surface and having sodium ions therein having an average valence of 2.2. The nickel hydroxide compound prepared in this manner is used as a positive electrode active material of Comparative Example 4.

【0034】2.ニッケル正極の作製 上述のように作製した実施例1,2および比較例1,
2,3,4の活物質100重量部に対して、5重量%の
PTFE(ポリテトラフルオロエチレン)溶液50重量
部を添加混合してそれぞれ活物質スラリーを作製する。
これらの活物質スラリーをそれぞれ多孔度95%で、厚
み1.6mmの発泡ニッケルからなる基板に圧延後の充
填密度が700g/m2となるように充填し、乾燥後、
厚みが0.60mmとなるように圧延を行って非焼結式
ニッケル正極をそれぞれ作製した。 3.負極の作製
2. Production of Nickel Positive Electrode Examples 1 and 2 and Comparative Example 1 produced as described above
An active material slurry is prepared by adding and mixing 50 parts by weight of a 5% by weight PTFE (polytetrafluoroethylene) solution to 100 parts by weight of the 2, 3, and 4 active materials.
Each of these active material slurries was filled into a substrate made of foamed nickel having a porosity of 95% and a thickness of 1.6 mm so that the packing density after rolling was 700 g / m 2, and after drying,
Rolling was performed so that the thickness became 0.60 mm, thereby producing non-sintered nickel positive electrodes. 3. Fabrication of negative electrode

【0035】ミッシュメタル(Mm:希土類元素の混合
物)、ニッケル、コバルト、アルミニウム、およびマン
ガンを1:3.6:0.6:0.2:0.6の比率で混
合し、この混合物をアルゴンガス雰囲気の高周波誘導炉
で誘導加熱して合金溶湯となす。この合金溶湯を公知の
方法で冷却し、組成式Mm1.0Ni3.6Co0.6Al0.2
0.6で表される水素吸蔵合金のインゴットを作製す
る。この水素吸蔵合金インゴットを機械的に粉砕し、平
均粒子径が約100μmの水素吸蔵合金粉末となし、こ
の水素吸蔵合金粉末にポリエチレンオキサイド等の結着
剤と、適量の水を加えて混合して水素吸蔵合金ペースト
を作製する。このペーストをパンチングメタルに塗布
し、乾燥した後、厚み0.4mmに圧延して水素吸蔵合
金負極を作製する。
Misch metal (Mm: a mixture of rare earth elements), nickel, cobalt, aluminum and manganese are mixed in a ratio of 1: 3.6: 0.6: 0.2: 0.6, and the mixture is mixed with argon. Induction heating is performed in a high-frequency induction furnace in a gas atmosphere to form a molten alloy. The molten alloy is cooled by a known method, and the composition formula is Mm 1.0 Ni 3.6 Co 0.6 Al 0.2 M
A hydrogen storage alloy ingot represented by n 0.6 is produced. The hydrogen storage alloy ingot is mechanically pulverized to form a hydrogen storage alloy powder having an average particle diameter of about 100 μm, and a binder such as polyethylene oxide and an appropriate amount of water are added to the hydrogen storage alloy powder and mixed. A hydrogen storage alloy paste is produced. This paste is applied to a punching metal, dried, and then rolled to a thickness of 0.4 mm to produce a hydrogen storage alloy negative electrode.

【0036】4.電池の作製 上述のように作製したそれぞれの非焼結式ニッケル正極
(水酸化ニッケル活物質が約5gとなるように所定寸法
に切断したもの)と水素吸蔵合金負極とをポリプロピレ
ン製不織布のセパレータを介して卷回して、渦巻状の電
極群を作製した後、この電極群を外装缶に挿入する。そ
の後、外装缶内に電解液として水酸化カリウム水溶液を
注入し、更に外装缶を封口して、公称容量1250mA
HのAAサイズのニッケル−水素蓄電池をそれぞれ組み
立てる。
4. Fabrication of Battery The non-sintered nickel positive electrode (cut to a predetermined size so that the nickel hydroxide active material becomes about 5 g) and the hydrogen storage alloy negative electrode prepared as described above and a hydrogen-absorbing alloy negative electrode were separated by a polypropylene nonwoven fabric separator. After forming a spiral electrode group, the electrode group is inserted into an outer can. Thereafter, an aqueous solution of potassium hydroxide was injected as an electrolytic solution into the outer can, and the outer can was further sealed to have a nominal capacity of 1250 mA.
A nickel-hydrogen storage battery of HAA size is assembled.

【0037】5.試験 (1)単位活物質容量 上述のように作製した各ニッケル−水素蓄電池を雰囲気
温度25℃において、125mA(0.1C)の充電電
流で16時間充電した後、625mA(0.5C)の放
電電流で電池電圧が1.0Vになるまで放電させ、この
ときの放電時間から水酸化ニッケル活物質1g当たりの
放電容量(単位活物質容量)を求めると、下記の表1に
示すような結果となった。なお、表1において、実施例
1の活物質を用いた電池の単位活物質容量を100とし
て求めた。
5. Test (1) Unit Active Material Capacity Each nickel-hydrogen storage battery prepared as described above was charged at a charging current of 125 mA (0.1 C) at an ambient temperature of 25 ° C. for 16 hours, and then discharged at 625 mA (0.5 C). The battery was discharged with a current until the battery voltage became 1.0 V. The discharge capacity per unit of nickel hydroxide active material (unit active material capacity) was determined from the discharge time at this time, and the results shown in Table 1 below were obtained. became. In Table 1, the unit active material capacity of the battery using the active material of Example 1 was determined as 100.

【0038】(2)高率放電時容量 上述のように作製したニッケル−水素蓄電池を雰囲気温
度25℃において、125mA(0.1C)の充電電流
で16時間充電した後、2500mA(2C)の放電電
流で電池電圧が1.0Vになるまで放電させ、このとき
の放電時間から放電容量を求め、上述した単位活物質容
量に対する容量比を下記の数1の算出式から高率放電時
容量として求めると、下記の表1に示すような結果とな
った。なお、表1において、実施例1の活物質を用いた
電池の高率放電時容量を100として求めた。
(2) High Rate Discharge Capacity The nickel-hydrogen storage battery prepared as described above was charged at a charging current of 125 mA (0.1 C) for 16 hours at an ambient temperature of 25 ° C., and then discharged at 2500 mA (2 C). The battery is discharged with a current until the battery voltage becomes 1.0 V, the discharge capacity is obtained from the discharge time at this time, and the capacity ratio with respect to the unit active material capacity is obtained as the high rate discharge capacity from the following equation (1). And the results as shown in Table 1 below. In addition, in Table 1, the capacity at the time of high-rate discharge of the battery using the active material of Example 1 was determined as 100.

【0039】[0039]

【数1】高率放電時容量=(高率放電時の放電容量/単
位活物質容量)×100
## EQU1 ## High-rate discharge capacity = (discharge capacity at high-rate discharge / unit active material capacity) × 100

【0040】(3)高温保存時容量 上述のように作製したニッケル−水素蓄電池を雰囲気温
度60℃において、2週間放置後、125mA(0.1
C)の充電電流で16時間充電した後、625mA
(0.5C)の放電電流で電池電圧が1.0Vになるま
で放電させ、このときの放電時間から放電容量を求め、
通常の放電容量に対する容量比を下記の数2の算出式か
ら高温保存時容量として求めると、下記の表1に示すよ
うな結果となった。なお、表1において、実施例1の活
物質を用いた電池の高温保存時容量を100として求め
た。
(3) High-Temperature Storage Capacity The nickel-hydrogen storage battery prepared as described above was left at 125 ° C. (0.1
625 mA after charging for 16 hours with the charging current of C)
The battery was discharged at a discharge current of (0.5 C) until the battery voltage reached 1.0 V, and the discharge capacity was determined from the discharge time at this time.
When the capacity ratio with respect to the normal discharge capacity was obtained as the high-temperature storage capacity from the following equation (2), the results shown in Table 1 below were obtained. In Table 1, the capacity at high temperature storage of a battery using the active material of Example 1 was determined as 100.

【数2】高温保存時容量=(高温保存時の放電容量/通
常放電容量)×100
## EQU2 ## High-temperature storage capacity = (discharge capacity at high-temperature storage / normal discharge capacity) .times.100

【0041】[0041]

【表1】 [Table 1]

【0042】上記表1から明らかなように、比較例1〜
4の活物質を用いた電池の単位活物質容量および高率放
電時容量が低下していることが分かる。これは、以下の
原因が考えられる。即ち、比較例1の活物質を用いた電
池の場合、酸化剤により水酸化ニッケルの一部をオキシ
水酸化ニッケルに変化させて、平均価数を2.2とした
水酸化ニッケル化合物に添加した水酸化コバルトが電池
が初期充電される前に酸素により酸化され、上述した反
応式(1)〜(3)により、導電性の低いコバルト酸化
物に変化して、単位活物質容量および高率放電時容量が
大幅に低下したと考えられる。
As is clear from Table 1 above, Comparative Examples 1 to
It can be seen that the unit active material capacity and the high-rate discharge capacity of the battery using the active material of No. 4 decreased. This may be due to the following causes. That is, in the case of the battery using the active material of Comparative Example 1, a part of nickel hydroxide was changed to nickel oxyhydroxide by an oxidizing agent and added to a nickel hydroxide compound having an average valence of 2.2. The cobalt hydroxide is oxidized by oxygen before the battery is initially charged, and is converted into a low-conductivity cobalt oxide according to the above-mentioned reaction formulas (1) to (3), and the unit active material capacity and the high rate discharge are reduced. It is considered that the hourly capacity was greatly reduced.

【0043】また、比較例2の活物質を用いた電池の場
合、酸化剤により水酸化ニッケルの一部をオキシ水酸化
ニッケルに変化させて、平均価数を2.2とした水酸化
ニッケル化合物に水酸化コバルトを被覆しただけである
ため、コバルトは完全には酸化されておらず、比較例1
の活物質と同様に導電性の低いコバルト酸化物に変化し
たためと考えられる。これは、析出反応を制御して水酸
化コバルトを被覆しているため、析出速度が遅いと添加
したコバルトイオンがオキシ水酸化コバルトのイオンと
して所定量の水酸化コバルトが被覆できず、また、析出
速度が速いと深緑色の化合物(この化合物の構造式は不
明であるが、酸素不足のため、導電性の低い高次コバル
ト化合物が析出したと考えられる)が生成され、析出条
件を調整した場合であっても、容量が低下した結果とな
った。そして、活物質に超音波を当てた場合、表面のコ
バルト化合物は剥がれやすい状態になった。これは、酸
化がニッケルとコバルトで同時に進行するため、コバル
ト層−ニッケル層間での原子交換が生じなかったためと
考えられる。
In the case of the battery using the active material of Comparative Example 2, a part of nickel hydroxide was changed to nickel oxyhydroxide by an oxidizing agent to obtain a nickel hydroxide compound having an average valence of 2.2. Comparative Example 1 was not completely oxidized because it was only coated with cobalt hydroxide.
It is considered that the oxide material has changed to a cobalt oxide having low conductivity like the active material. This is because the deposition reaction is controlled to coat the cobalt hydroxide, and if the deposition rate is low, the added cobalt ions cannot coat the predetermined amount of cobalt hydroxide as the ions of the cobalt oxyhydroxide. When the rate is high, a dark green compound is generated (the structural formula of this compound is unknown, but it is considered that a high-order cobalt compound having low conductivity is precipitated due to lack of oxygen), and the deposition conditions are adjusted. However, the result was that the capacity was reduced. Then, when ultrasonic waves were applied to the active material, the cobalt compound on the surface was in a state of being easily peeled. This is presumably because the oxidation proceeded simultaneously with nickel and cobalt, and no atom exchange occurred between the cobalt layer and the nickel layer.

【0044】また、比較例3の活物質を用いた電池の場
合、酸化剤により水酸化ニッケルの一部をオキシ水酸化
ニッケルに変化させて、平均価数を2.2とした水酸化
ニッケル化合物に水酸化コバルトを被覆した後、酸化剤
により酸化するので、導電性が低いコバルト化合物が生
成し、容量が低下したと考えられる。導電性が高いコバ
ルト化合物と導電性が低いコバルト化合物の差は、溶解
→酸化→析出のプロセスを経るか否かによることが経験
上分かっている。そして、酸化剤により酸化されたコバ
ルトは溶解→酸化→析出のプロセスを経ていないため、
導電性が低く、結果として容量が低下したと考えられ
る。また、比較例2の活物質と同様に超音波を当てた場
合、表面のコバルト化合物は剥がれやすい状態になっ
た。これは、酸化がニッケルとコバルトで同時に進行す
るため、コバルト層−ニッケル層間での原子交換が生じ
なかったためと考えられる。
In the case of the battery using the active material of Comparative Example 3, a nickel hydroxide compound having an average valence of 2.2 was obtained by changing a part of nickel hydroxide to nickel oxyhydroxide using an oxidizing agent. It is conceivable that, after coating with cobalt hydroxide, oxidizing was carried out with an oxidizing agent, so that a cobalt compound having low conductivity was generated and the capacity was reduced. Experience has shown that the difference between a cobalt compound having high conductivity and a cobalt compound having low conductivity depends on whether or not a dissolution → oxidation → precipitation process is performed. And because the cobalt oxidized by the oxidizing agent has not gone through the process of dissolution → oxidation → precipitation,
It is considered that the conductivity was low and the capacity was reduced as a result. Further, when ultrasonic waves were applied similarly to the active material of Comparative Example 2, the cobalt compound on the surface was in a state of being easily peeled. This is presumably because the oxidation proceeded simultaneously with nickel and cobalt, and no atom exchange occurred between the cobalt layer and the nickel layer.

【0045】また、比較例4の活物質を用いた電池の場
合であっても、オキシ水酸化ニッケルの表面に存在する
オキシ水酸化コバルトはアルカリカチオンを含有しない
ため、酸化剤で酸化の影響を受けて、上述と同様に導電
性が低く、結果として容量が低下したと考えられる。
Even in the case of the battery using the active material of Comparative Example 4, since the cobalt oxyhydroxide present on the surface of the nickel oxyhydroxide does not contain alkali cations, the effect of oxidation with an oxidizing agent is reduced. Accordingly, it is considered that the conductivity was low as described above, and as a result, the capacity was reduced.

【0046】一方、実施例1,2の活物質を用いた電池
の場合は、単位活物質容量および高率放電時容量もとも
に増大した結果となった。これは、アルカリカチオンを
含む高次コバルト化合物を表面に被覆した水酸化ニッケ
ル化合物をアルカリ水溶液中で酸化剤により高次化する
ことで、水酸化ニッケルが高次化される際に、溶解→酸
化→析出のプロセスを経ているので、表面のコバルト化
合物と結晶構造中で置換が生じたたためと考えられる。
On the other hand, in the case of the batteries using the active materials of Examples 1 and 2, both the unit active material capacity and the high rate discharge capacity were increased. This is because the nickel hydroxide compound, whose surface is coated with a high-order cobalt compound containing an alkali cation, is made higher order with an oxidizing agent in an alkaline aqueous solution. → It is probable that substitution occurred in the crystal structure with the cobalt compound on the surface because of the precipitation process.

【0047】つまり、酸化剤により2価のニッケルが3
価のニッケルに高次化される際に、ニッケルの近傍に存
在する3価のコバルトと結晶内原子間で入れ替えが生じ
て、結果として、コバルト層−ニッケル層の境界が不明
瞭となり、機械的強度が向上したものと考えられる。水
酸化化合物の機械的強度が向上することにより、コバル
ト層−ニッケル層間の電気抵抗が低下し、大電流放電時
に特に顕著な差となって現れる。そして、ニッケル電極
の製造時においては、スラリーとするために撹拌処理を
行うので、水酸化化合物の機械的強度が向上することは
重要な要素となる。
That is, the divalent nickel is converted to 3 by the oxidizing agent.
When higher order nickel is used, exchange between atoms in the crystal and trivalent cobalt existing in the vicinity of nickel occurs. As a result, the boundary between the cobalt layer and the nickel layer becomes unclear and mechanical It is considered that the strength was improved. When the mechanical strength of the hydroxide compound is improved, the electrical resistance between the cobalt layer and the nickel layer is reduced, and this appears as a particularly remarkable difference during large-current discharge. In the production of the nickel electrode, a stirring treatment is performed to obtain a slurry. Therefore, it is an important factor to improve the mechanical strength of the hydroxide compound.

【0048】また、実施例1の活物質を用いた電池より
実施例2の活物質を用いた電池の方が高温保存時容量が
大きい理由は、実施例2の活物質は水酸化ニッケル化合
物中にリチウムイオンが存在するため、このリチウムイ
オンが電解液中の水と結びつき、水による酸化が抑制さ
れるとともに、酸素発生電位が向上して放置後の自己放
電が抑制されたためと考えられる。
The reason that the battery using the active material of Example 2 has a larger capacity at high temperature storage than the battery using the active material of Example 1 is that the active material of Example 2 is a nickel hydroxide compound. It is presumed that the presence of lithium ions causes the lithium ions to bind to water in the electrolytic solution, thereby suppressing oxidation by water, and improving the oxygen generation potential, thereby suppressing self-discharge after standing.

【0049】6.酸化処理時のアルカリ濃度と活物質の
嵩密度との関係 ついで、実施例1,2の活物質を製造するに際して、水
酸化ニッケル化合物の表面に水酸化コバルトを被覆した
後、アルカリ水溶液(水酸化ナトリウム(NaOH)水
溶液)−酸素共存下で加熱処理して水酸化コバルトを結
晶構造の乱れた第1のアルカリカチオン含む高次コバル
トにする。その後水酸化ニッケルを高次化するための酸
化処理時のアルカリ水溶液の濃度を5重量%、10重量
%、15重量%、20重量%、25重量%と変化させ
て、アルカリ水溶液の濃度と活物質の嵩密度との関係に
ついて測定すると下記の表2に示すような結果となっ
た。
6. Relationship Between Alkali Concentration During Oxidation Treatment and Bulk Density of Active Material Next, in producing the active materials of Examples 1 and 2, after coating the surface of the nickel hydroxide compound with cobalt hydroxide, an alkaline aqueous solution (hydroxide) was used. A heat treatment is carried out in the presence of sodium (NaOH) aqueous solution-oxygen to convert the cobalt hydroxide into a higher-order cobalt containing a first alkali cation having a disordered crystal structure. Thereafter, the concentration of the alkaline aqueous solution at the time of the oxidation treatment for increasing the degree of nickel hydroxide was changed to 5% by weight, 10% by weight, 15% by weight, 20% by weight, and 25% by weight, and the concentration of the alkaline aqueous solution and the activity were changed. Measurement of the relationship with the bulk density of the substance gave the results shown in Table 2 below.

【0050】[0050]

【表2】 [Table 2]

【0051】上記表2より明らかなように、水酸化ナト
リウム(NaOH)水溶液の濃度が20重量%以下であ
ると、嵩密度の高いオキシ水酸化ニッケル活物質が得ら
れることが分かる。水酸化ナトリウム水溶液の濃度が高
い場合の活物質粉体をX線回析で分析すると、γ−オキ
シ水酸化ニッケルの存在が確認できた。このことから、
水酸化ニッケル粒子の表面でγ−オキシ水酸化ニッケル
が生成し、嵩密度低下したと考えられる。
As is clear from Table 2, when the concentration of the aqueous sodium hydroxide (NaOH) solution is 20% by weight or less, a nickel oxyhydroxide active material having a high bulk density can be obtained. When the active material powder when the concentration of the aqueous sodium hydroxide solution was high was analyzed by X-ray diffraction, the presence of γ-nickel oxyhydroxide was confirmed. From this,
It is considered that γ-nickel oxyhydroxide was generated on the surface of the nickel hydroxide particles, and the bulk density was reduced.

【0052】なお、上述の実施形態においては、水酸化
ニッケル化合物の一部を2価より高次な水酸化ニッケル
に高次化するとともに、第2のアルカリカチオンを2価
より高次な水酸化ニッケルの内部に含有させた後、充填
工程によりこの活物質をスラリーとして基板に充填する
例について説明したが、高次化されていない水酸化ニッ
ケル化合物をスラリーとして基板に充填した後、水酸化
ニッケル化合物の一部を2価より高次な水酸化ニッケル
に高次化するとともに、第2のアルカリカチオンを2価
より高次な水酸化ニッケルの内部に含有させても、第1
のアルカリカチオンを含んだ高次コバルト化合物を表面
に備えた水酸化ニッケル化合物の一部が2価より高次な
水酸化ニッケルに高次化されるという点で格別相違しな
いので、高次化含有工程と充填工程との順序を入れ替え
てもよい。
In the above-described embodiment, a part of the nickel hydroxide compound is converted to nickel hydroxide having a higher valence than divalent, and the second alkali cation is converted to nickel hydroxide having a higher valence than divalent. An example in which this active material is filled into a substrate as a slurry by a filling step after being contained in nickel has been described, but after a non-ordered nickel hydroxide compound is filled into the substrate as a slurry, nickel hydroxide is added. Even if a part of the compound is converted into higher-order nickel hydroxide having a higher valence than two, the second alkali cation is contained in the nickel hydroxide having a higher valence than two.
Since there is no particular difference in that a part of the nickel hydroxide compound provided on the surface with the higher cobalt compound containing the alkali cation of the above is converted to nickel hydroxide having a higher valence than divalent, The order of the step and the filling step may be interchanged.

フロントページの続き (72)発明者 矢野 尊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 4G048 AA02 AA04 AA10 AB02 AB06 AC06 AE05 4K018 AD20 BC09 BD10 GA01 KA38 5H003 AA01 AA04 AA06 BA01 BA02 BA03 BA07 BB04 BB12 BC05 BD00 5H016 AA02 BB01 BB06 BB08 BB09 BB10 BB18 CC04 EE05 HH00 5H028 AA01 BB03 BB05 BB06 BB15 EE04 EE05 HH00 Continued on the front page (72) Inventor Takayuki Yano 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 4G048 AA02 AA04 AA10 AB02 AB06 AC06 AE05 4K018 AD20 BC09 BD10 GA01 KA38 5H003 AA01 AA04 AA06 BA01 BA02 BA03 BA07 BB04 BB12 BC05 BD00 5H016 AA02 BB01 BB06 BB08 BB09 BB10 BB18 CC04 EE05 HH00 5H028 AA01 BB03 BB05 BB06 BB15 EE04 EE05 HH00

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル化合物を主正極活物質と
するアルカリ蓄電池用正極活物質であって、 前記水酸化ニッケル化合物は2価より高次な水酸化ニッ
ケルを備えるとともに、 前記2価より高次な水酸化ニッケルの表面に第1のアル
カリカチオンを含有する高次コバルト化合物を備え、 前記2価より高次な水酸化ニッケルの内部に第2のアル
カリカチオンを含有することを特徴とするアルカリ蓄電
池用正極活物質。
1. A positive electrode active material for an alkaline storage battery comprising a nickel hydroxide compound as a main positive electrode active material, wherein said nickel hydroxide compound comprises nickel hydroxide having a higher order than divalent and higher than said divalent. An alkali, comprising a high-order cobalt compound containing a first alkali cation on the surface of the next nickel hydroxide, and containing a second alkali cation inside the nickel hydroxide having a higher valence than two. Positive electrode active material for storage batteries.
【請求項2】 前記第2のアルカリカチオンはカリウム
イオン、ナトリウムイオン、リチウムイオンの内の少な
くともいずれか1種であることを特徴とする請求項1に
記載のアルカリ蓄電池用正極活物質。
2. The positive electrode active material for an alkaline storage battery according to claim 1, wherein the second alkali cation is at least one of a potassium ion, a sodium ion, and a lithium ion.
【請求項3】 前記第2のアルカリカチオンは少なくと
もリチウムイオンを含有することを特徴とする請求項1
または請求項2に記載のアルカリ蓄電池用正極活物質。
3. The method according to claim 1, wherein the second alkali cation contains at least a lithium ion.
Alternatively, the positive electrode active material for an alkaline storage battery according to claim 2.
【請求項4】 水酸化ニッケル化合物を主正極活物質と
するアルカリ蓄電池用正極活物質の製造方法であって、 粒状の水酸化ニッケル化合物の表面に第1のアルカリカ
チオンを含む高次コバルト化合物を保持させる保持工程
と、 前記表面に第1のアルカリカチオンを含む高次コバルト
化合物を保持させた水酸化ニッケル化合物を第2のアル
カリカチオンを含む水溶液中に酸化剤とともに浸漬して
この水酸化ニッケル化合物を2価より高次な水酸化ニッ
ケルに高次化するとともに、前記第2のアルカリカチオ
ンを前記2価より高次な水酸化ニッケルの内部に含有さ
せる高次化含有工程とを備えたことを特徴とするアルカ
リ蓄電池用正極活物質の製造方法。
4. A method for producing a positive electrode active material for an alkaline storage battery using a nickel hydroxide compound as a main positive electrode active material, wherein a high-order cobalt compound containing a first alkali cation is provided on the surface of a granular nickel hydroxide compound. A holding step of holding, and immersing a nickel hydroxide compound holding a higher cobalt compound containing a first alkali cation on the surface thereof in an aqueous solution containing a second alkali cation together with an oxidizing agent; To a higher order nickel hydroxide having a higher valence than 2, and a higher order containing step of containing the second alkali cation inside the nickel hydroxide having a higher than 2 valence. A method for producing a positive electrode active material for an alkaline storage battery.
【請求項5】 前記保持工程において前記水酸化ニッケ
ル化合物をコバルト化合物と混合するかあるいは水酸化
ニッケル化合物をコバルト化合物で被覆した後、アルカ
リ水溶液と酸素の共存下で加熱処理するようにしたこと
を特徴とする請求項4に記載のアルカリ蓄電池用正極活
物質の製造方法。
5. The method according to claim 1, wherein, in the holding step, the nickel hydroxide compound is mixed with a cobalt compound or the nickel hydroxide compound is coated with the cobalt compound, and then heat-treated in the presence of an aqueous alkali solution and oxygen. The method for producing a positive electrode active material for an alkaline storage battery according to claim 4.
【請求項6】 前記第2のアルカリカチオンはカリウム
イオン、ナトリウムイオン、リチウムイオンの内の少な
くともいずれか1種であることを特徴とする請求項4ま
たは請求項5に記載のアルカリ蓄電池用正極活物質の製
造方法。
6. The positive electrode for an alkaline storage battery according to claim 4, wherein the second alkali cation is at least one of a potassium ion, a sodium ion, and a lithium ion. The method of manufacturing the substance.
【請求項7】 前記第2のアルカリカチオンは少なくと
もリチウムイオンを含有することを特徴とする請求項4
から請求項6のいずれかに記載のアルカリ蓄電池用正極
活物質の製造方法。
7. The method according to claim 4, wherein the second alkali cation contains at least a lithium ion.
A method for producing a positive electrode active material for an alkaline storage battery according to any one of claims 1 to 6.
【請求項8】 水酸化ニッケル化合物を主正極活物質と
するアルカリ蓄電池用正極の製造方法であって、 水酸化ニッケル化合物をコバルト化合物と混合するかあ
るいは水酸化ニッケル化合物をコバルト化合物で被覆し
た後、第1のアルカリカチオンを含有するアルカリ水溶
液と酸素の共存下で加熱処理して、水酸化ニッケル化合
物の表面に第1のアルカリカチオンを含んだ高次コバル
ト化合物を生成させる生成工程と、 前記表面に第1のアルカリカチオンを含んだ高次コバル
ト化合物が生成された水酸化ニッケル化合物を第2のア
ルカリカチオンを含有するアルカリ水溶液中で酸化剤と
共に撹拌して、前記水酸化ニッケル化合物の一部を2価
より高次な水酸化ニッケルに高次化するとともに、前記
第2のアルカリカチオンを前記2価より高次な水酸化ニ
ッケルの内部に含有させる高次化含有工程と、 前記水酸化ニッケル化合物に純水を添加してスラリーと
し、このスラリーを発泡ニッケルからなる基板に充填す
る充填工程とを備えたことを特徴とするアルカリ蓄電池
用正極の製造方法。
8. A method for producing a positive electrode for an alkaline storage battery using a nickel hydroxide compound as a main positive electrode active material, comprising mixing the nickel hydroxide compound with a cobalt compound or coating the nickel hydroxide compound with the cobalt compound. A heat treatment in the presence of an aqueous alkali solution containing a first alkali cation and oxygen to form a higher cobalt compound containing a first alkali cation on the surface of the nickel hydroxide compound; Is stirred with an oxidizing agent in an aqueous alkali solution containing a second alkali cation to form a higher cobalt compound containing a first alkali cation, and a part of the nickel hydroxide compound is removed. A higher order nickel hydroxide having a higher valence than 2 is used, and the second alkali cation is converted into a higher order nickel hydroxide. A higher-order containing step of containing nickel hydroxide inside; and a filling step of adding pure water to the nickel hydroxide compound to form a slurry, and filling the slurry into a substrate made of foamed nickel. Of producing a positive electrode for an alkaline storage battery.
【請求項9】 水酸化ニッケル化合物を主正極活物質と
するアルカリ蓄電池用正極の製造方法であって、 水酸化ニッケル化合物をコバルト化合物と混合するかあ
るいは水酸化ニッケル化合物をコバルト化合物で被覆し
た後、第1のアルカリカチオンを含有するアルカリ水溶
液と酸素の共存下で加熱処理して、水酸化ニッケル化合
物の表面に第1のアルカリカチオンを含んだ高次コバル
ト化合物を生成させる生成工程と、 前記表面に第1のアルカリカチオンを含んだ高次コバル
ト化合物が生成された水酸化ニッケル化合物に純水を添
加してスラリーとし、このスラリーを発泡ニッケルから
なる基板に充填する充填工程と前記スラリーが充填され
た基板を第2のアルカリカチオンを含有するアルカリ水
溶液中で酸化剤とともに浸漬して、前記水酸化ニッケル
化合物の一部をアルカリカチオンを含んだ2価より高次
な水酸化ニッケルに高次化するとともに、前記第2のア
ルカリカチオンを前記2価より高次な水酸化ニッケルの
内部に含有させる高次化含有工程とを備えたことを特徴
とするアルカリ蓄電池用正極の製造方法。
9. A method for producing a positive electrode for an alkaline storage battery using a nickel hydroxide compound as a main positive electrode active material, comprising mixing the nickel hydroxide compound with a cobalt compound or coating the nickel hydroxide compound with a cobalt compound. A heat treatment in the presence of an aqueous alkali solution containing a first alkali cation and oxygen to form a higher cobalt compound containing a first alkali cation on the surface of the nickel hydroxide compound; A pure water is added to a nickel hydroxide compound in which a higher cobalt compound containing a first alkali cation is generated to form a slurry, and the slurry is filled in a substrate made of nickel foam, and the slurry is filled. The substrate thus immersed together with an oxidizing agent in an aqueous alkali solution containing a second alkali cation, A part of the nickel compound is converted to higher-order nickel hydroxide containing alkali cations and the second alkali cation is contained inside the higher-order nickel hydroxide. A method for producing a positive electrode for an alkaline storage battery, comprising:
【請求項10】 前記アルカリカチオンはカリウムイオ
ン、ナトリウムイオン、リチウムイオンの内の少なくと
もいずれか1種であることを特徴とする請求項8または
請求項9に記載のアルカリ蓄電池用正極の製造方法。
10. The method according to claim 8, wherein the alkali cation is at least one of a potassium ion, a sodium ion, and a lithium ion.
【請求項11】 前記アルカリカチオンは少なくともリ
チウムイオンを含有することを特徴とする請求項8から
請求項10のいずれかに記載のアルカリ蓄電池用正極の
製造方法。
11. The method for producing a positive electrode for an alkaline storage battery according to claim 8, wherein the alkali cation contains at least lithium ion.
JP02262099A 1999-01-29 1999-01-29 Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material Expired - Lifetime JP4159161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02262099A JP4159161B2 (en) 1999-01-29 1999-01-29 Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02262099A JP4159161B2 (en) 1999-01-29 1999-01-29 Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material

Publications (2)

Publication Number Publication Date
JP2000223119A true JP2000223119A (en) 2000-08-11
JP4159161B2 JP4159161B2 (en) 2008-10-01

Family

ID=12087887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02262099A Expired - Lifetime JP4159161B2 (en) 1999-01-29 1999-01-29 Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material

Country Status (1)

Country Link
JP (1) JP4159161B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110154A (en) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive pole active material for alkaline battery
JP2002203546A (en) * 2000-12-27 2002-07-19 Sony Corp Beta-type oxynickel hydroxide and its manufacturing method, positive electrode active substance, as well as nickel-zinc battery
JP2002338252A (en) * 2001-05-10 2002-11-27 Sony Corp Beta type nickel oxy hydroxide and manufacturing method therefor, positive electrode for battery and battery
JP2003045422A (en) * 2001-07-30 2003-02-14 Hitachi Maxell Ltd Alkaline storage battery
WO2003021698A1 (en) * 2001-09-03 2003-03-13 Yuasa Corporation Nickel electrode material and production method therefor, and nickel electrode and alkaline battery
JP2003077469A (en) * 2001-09-03 2003-03-14 Yuasa Corp Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP2004259515A (en) * 2003-02-25 2004-09-16 Yuasa Corp Thickening agent for nickel electrode, nickel electrode and manufacturing method of the same, and alkaline storage battery
WO2006064979A1 (en) * 2004-12-17 2006-06-22 Gs Yuasa Corporation Alkaline secondary battery-use nickel electrode and production method therefor and alkaline secondary battery
WO2012096294A1 (en) 2011-01-11 2012-07-19 株式会社Gsユアサ Positive electrode active material for alkaline storage battery, manufacturing method for positive electrode active material, and alkaline storage battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110154A (en) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive pole active material for alkaline battery
JP2002203546A (en) * 2000-12-27 2002-07-19 Sony Corp Beta-type oxynickel hydroxide and its manufacturing method, positive electrode active substance, as well as nickel-zinc battery
JP2002338252A (en) * 2001-05-10 2002-11-27 Sony Corp Beta type nickel oxy hydroxide and manufacturing method therefor, positive electrode for battery and battery
JP2003045422A (en) * 2001-07-30 2003-02-14 Hitachi Maxell Ltd Alkaline storage battery
US7635512B2 (en) 2001-09-03 2009-12-22 Yuasa Corporation Nickel electrode material, and production method therefor, and nickel electrode and alkaline battery
WO2003021698A1 (en) * 2001-09-03 2003-03-13 Yuasa Corporation Nickel electrode material and production method therefor, and nickel electrode and alkaline battery
JP2003077469A (en) * 2001-09-03 2003-03-14 Yuasa Corp Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP2004259515A (en) * 2003-02-25 2004-09-16 Yuasa Corp Thickening agent for nickel electrode, nickel electrode and manufacturing method of the same, and alkaline storage battery
JP4569068B2 (en) * 2003-02-25 2010-10-27 株式会社Gsユアサ Thickener for nickel electrode, nickel electrode and method for producing the same, and alkaline storage battery
WO2006064979A1 (en) * 2004-12-17 2006-06-22 Gs Yuasa Corporation Alkaline secondary battery-use nickel electrode and production method therefor and alkaline secondary battery
US8057934B2 (en) 2004-12-17 2011-11-15 Gs Yuasa International Ltd. Nickel electrode for alkaline secondary battery and alkaline secondary battery
JP5099479B2 (en) * 2004-12-17 2012-12-19 株式会社Gsユアサ Nickel electrode for alkaline secondary battery, method for producing the same, and alkaline secondary battery
WO2012096294A1 (en) 2011-01-11 2012-07-19 株式会社Gsユアサ Positive electrode active material for alkaline storage battery, manufacturing method for positive electrode active material, and alkaline storage battery
US9269952B2 (en) 2011-01-11 2016-02-23 Gs Yuasa International Ltd. Positive active material for alkaline secondary battery, method for manufacturing the same and alkaline secondary battery

Also Published As

Publication number Publication date
JP4159161B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP3578992B2 (en) Composite anode material and its manufacturing method
JP3738052B2 (en) Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
JP2004179064A (en) Nickel-hydrogen secondary battery
WO2007049558A1 (en) Nickel-metal hydride battery
US6620549B2 (en) Alkaline storage battery
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP4159161B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and method for producing positive electrode for alkaline storage battery using the positive electrode active material
JP4033660B2 (en) Nickel-hydrogen storage battery
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP3296754B2 (en) Nickel electrode active material for alkaline storage battery and method for producing the same
KR100596117B1 (en) Alkaline Storage Battery and Process for the Production Thereof
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP2004127549A (en) Nickel-hydrogen storage battery
JP2004119271A (en) Nickel-hydrogen storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3543607B2 (en) Alkaline storage battery
JPH1173955A (en) Metal-hydride alkaline storage battery and its manufacture
JP2004296299A (en) Alkaline storage battery
JP3543601B2 (en) Alkaline storage battery
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JP3942253B2 (en) Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JP2007258074A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it
JP2004296190A (en) Nickel-hydrogen storage battery
JP3263601B2 (en) Non-sintered nickel electrode for alkaline storage batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term