JP3942253B2 - Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode - Google Patents

Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode Download PDF

Info

Publication number
JP3942253B2
JP3942253B2 JP36053897A JP36053897A JP3942253B2 JP 3942253 B2 JP3942253 B2 JP 3942253B2 JP 36053897 A JP36053897 A JP 36053897A JP 36053897 A JP36053897 A JP 36053897A JP 3942253 B2 JP3942253 B2 JP 3942253B2
Authority
JP
Japan
Prior art keywords
active material
weight
nickel
nickel electrode
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36053897A
Other languages
Japanese (ja)
Other versions
JPH11191415A (en
Inventor
尊之 矢野
幹朗 田所
正夫 武江
良貴 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP36053897A priority Critical patent/JP3942253B2/en
Publication of JPH11191415A publication Critical patent/JPH11191415A/en
Application granted granted Critical
Publication of JP3942253B2 publication Critical patent/JP3942253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電池などのアルカリ蓄電池に係り、特に、この種のアルカリ蓄電池に用いるニッケル電極活物質およびこのニッケル電極活物質を用いた非焼結式ニッケル電極ならびにこの非焼結式ニッケル電極を用いたアルカリ蓄電池に関する。
【0002】
【従来の技術】
近年、携帯機器の急速な普及により従来に増して高性能な蓄電池が要請されるようになった。このような背景にあって、本出願人は、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池などのアルカリ蓄電池に用いられるニッケル電極活物質として、活物質利用率、過放電後の容量回復率などを向上させるために、水酸化ニッケル活物質粒子の表面にナトリウムイオン等のカチオンを含有して結晶性が乱れた高次コバルト化合物層を有する水酸化ニッケル複合粒子を、例えば、特開平8−148145号公報にて提案した。
【0003】
この特開平8−148145号公報にて提案した、ナトリウムイオン等のカチオンを含有して結晶性が乱れた高次コバルト化合物層を有する水酸化ニッケル複合粒子は次のようにして作製されるものである。即ち、水酸化ニッケルが析出した溶液中に硫酸コバルト水溶液と水酸化ナトリウム水溶液を添加して、水酸化ニッケル析出物を結晶核として、この核の周囲に水酸化コバルトを析出させる。ついで、この析出物を水洗、乾燥した後、水酸化ナトリウム水溶液を滴下して水酸化ナトリウム液含浸ニッケル活物質粒子とし、加熱空気中で加熱して、高次化処理を行う。このようして、水酸化ニッケル活物質粒子の表面に結晶性が乱れた高次コバルト化合物を有する水酸化ニッケル複合粒子が得られる。
【0004】
このような水酸化ニッケル複合粒子は、高次コバルト化合物の高導電性効果が発揮されることで活物質利用率が向上した非焼結式ニッケル電極が得られるようになる。また、水酸化ニッケル粒子の表面に存在するコバルト化合物は、水酸化ニッケル粒子の内部との境界において水酸化ニッケルを取り込んだ状態で結晶化するため、コバルト化合物は電解液に対する溶解性が抑制され、過放電後の容量低下を抑制されるようになる。
【0005】
一方、高温雰囲気下で充電効率の優れたニッケル電極とするため、水酸化ニッケル活物質にコバルト化合物とイットリウム化合物とを添加することが特開平5−28992号公報にて提案された。この特開平5−28992号公報にて提案された方法にあっては、水酸化ニッケル活物質にイットリウム化合物を添加すると、高温雰囲気下における充電の競争反応である酸素発生の過電圧を上昇させるため、水酸化ニッケルのオキシ水酸化ニッケルへの充電反応を十分に行われるようになって、活物質利用率が向上する。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平8−148145号公報にて提案した水酸化ニッケル複合粒子にあっては、この水酸化ニッケル複合粒子を用いた電池が長期的に短絡状態に晒された場合、この水酸化ニッケル複合粒子が電解液と接触しているため、高次コバルト化合物が還元されて電解液に溶出し、導電ネットワークが乱される。このため、長期的に短絡状態に晒された後に充電を行っても、充分に電池容量が回復することなく、電池容量が低下するという問題を生じた。
【0007】
一方、特開平5−28992号公報にて提案されたニッケル電極にあっては、イットリウム化合物は電池内で溶解・析出することで導電ネットワークを構成する2価以下のコバルト化合物と同時に添加されるため、イットリウム化合物が高次コバルト化合物から形成される導電ネットワークの内部に存在する。その結果、電解液と活物質の界面に存在するイットリウム化合物の全添加量に対する量が相対的に少なくなり、イットリウム化合物の添加効果が充分に発揮されず、活物質利用率の向上が充分でないという問題を生じた。
【0008】
そこで、本発明は上記問題点に鑑みてなされたものであり、長期的に短絡状態に晒されても電池容量が低下しないニッケル電極活物質を提供するとともに、このニッケル電極活物質を用いた非焼結式電極ならびにこの非焼結式電極を用いたアルカリ蓄電池を提供することにある。
【0009】
【課題を解決するための手段およびその作用・効果】
本発明は水酸化ニッケルを活物質とするアルカリ蓄電池用ニッケル電極活物質であって、上記課題を解決するために、本発明のアルカリ蓄電池用ニッケル電極活物質は、水酸化ニッケル粒子の表面にアルカリ金属イオンを含有する高次コバルト化合物層を有する複合粒子の表面にフッ素樹脂を存在させたことを特徴とする。
【0010】
フッ素樹脂は、導電性が無く、かつ非水溶性であるため、このようなフッ素樹脂を添加するのみでは活物質間相互の電子伝導性および電解液と活物質間のイオン伝導性に悪影響を及ぼす。しかしながら、本発明のように、アルカリ金属イオンを含有する高次コバルト化合物のような高導電性被覆層が形成された活物質の表面にフッ素樹脂を存在させることにより、従来例のような水酸化ニッケルにフッ素樹脂を別添成分と同時に添加する場合に比べて容量低下を招くことはなく、フッ素樹脂が有する結着力および撥水性により、極板膨潤抑制効果を発揮するようになる。
【0011】
更には、この撥水性により長期的に短絡状態に晒されても活物質粒子の電解液との接触が軽減され、コバルト化合物の電解液中への溶出を阻害する。このため、長期的に短絡状態に晒されても充電を行うことにより、充分に電池容量が回復するようになる。また、極板膨潤抑制効果を発揮することから、充放電のサイクル経過に伴う内部抵抗の増大が抑制されて、サイクル寿命が増大する非焼結式ニッケル電極が得られるようになる。
【0012】
そして、フッ素樹脂を存在させるとともにイットリウム化合物をフッ素樹脂と共存させるようにすると、イットリウム化合物はフッ素樹脂の結着力により水酸化ニッケル活物質粒子表面に均一に固定化され、電解液中への溶出を防ぎ、少量添加であっても水酸化ニッケル活物質粒子表面での酸素発生電位を増大させて、効率的に充電効率を向上させて放電容量を増大させることが可能となる。また、イッテルビウム、エルビウム、ビスマスの化合物はイットリウム化合物と同様に酸素発生電位を増大させる効果を有するので、イットリウム化合物に代えてイッテルビウム、エルビウム、ビスマスの化合物を用いても、イットリウム化合物を用いた場合と同様な効果が得られる。
【0013】
そして、フッ素樹脂の添加量を多くし過ぎると活物質間相互の電子伝導性および電解液と活物質間のイオン伝導性に悪影響を及ぼすため、その添加量の上限値は固形成分として高導電性高次コバルト被覆層を有する水酸化ニッケル活物質粉末100重量部に対して3.0重量部以下とするのが好ましく、また、添加量が少なすぎると結着力および撥水性の効果が発揮できないため、その下限値は固形成分として高導電性高次コバルト被覆層を有する水酸化ニッケル活物質粉末に対して0.05重量部以上とするのが好ましい。
【0014】
また、イットリウム、イッテルビウム、エルビウム、ビスマスの化合物は電池反応に寄与しないため、イットリウム、イッテルビウム、エルビウム、ビスマスの化合物を多量に添加すると水酸化ニッケル量が相対的に減少して電池容量が減少することとなり、また添加量があまりに少ないと充電効率を向上させる効果が小さいため、その添加量は高導電性高次コバルト被覆層を有する水酸化ニッケル活物質粉末100重量部に対して0.05〜5.0重量部とするのが好ましい。
【0015】
また、本発明の非焼結式ニッケル電極は、上述したニッケル電極活物質をスラリーとし、このスラリーを三次元的に網目構造をもった活物質保持体に充填したことを特徴とする。一般的に、非焼結式ニッケル電極は焼結式電極より活物質の充填量を多くすることが可能であるとともに製造方法も容易であることから広く用いられるようになった。しかしながら、単に活物質保持体に水酸化ニッケル活物質を充填しただけでは、集電性が焼結式ニッケル電極に比べて劣ることから活物質利用率が低下し、電池容量が増大しない。
【0016】
このため、本発明の非焼結式ニッケル電極は、水酸化ニッケル活物質粒子の表面に高次コバルト化合物層を形成させて複合粒子とし、電極内に導電ネットワークを形成して活物質利用率を向上させ、電池容量を増大させる。そして、この複合粒子の表面にフッ素樹脂を存在させて、長期的に短絡状態に晒されても活物質粒子の電解液との接触が制限され、高次コバルト化合物が電解液中に溶出することを最小限に抑えられる。このため、長期的に短絡状態に晒された後に充電を行うことにより、充分に電池容量が回復するようになる。また、極板膨潤抑制効果を発揮することから、充放電のサイクル経過に伴う内部抵抗の増大が抑制されて、高容量で長寿命の非焼結式ニッケル電極が得られるようになる。
【0017】
また、本発明のアルカリ蓄電池は、上述した非焼結式ニッケル電極と水素吸蔵合金負極とをセパレータを介して渦巻状に巻回あるいは積層した電極体を外装缶内に備えたことを特徴とする。このように、上述した非焼結式ニッケル電極と水素吸蔵合金負極とをセパレータを介して渦巻状に巻回あるいは積層した電極体を外装缶内に備えることで高容量かつ放電特性、過放電特性および極板膨潤抑制効果の優れたニッケル−水素蓄電池が得られるようになる。
【0018】
【発明の実施の形態】
以下に、本発明のニッケル電極活物質、非焼結式ニッケル電極およびアルカリ蓄電池についての実施の形態を説明する。
1.非焼結式ニッケル正極板の作製
a.実施例1
金属ニッケルに対して、亜鉛1重量%、コバルト3重量%となるような硫酸ニッケル、硫酸亜鉛、硫酸コバルトの混合水溶液を攪拌しながら、水酸化ナトリウム水溶液を徐々に添加し、反応中のpHを13〜14に安定させて水酸化ニッケルを析出させる。この水酸化ニッケルが析出した水溶液中に、反応中のpHを9〜10に維持するようにして、比重1.30の硫酸コバルト水溶液を添加して、主成分が水酸化ニッケルである球状水酸化物粒子を結晶核として、この結晶核の周囲に主成分が水酸化ニッケルである球状水酸化物に対して5重量%の水酸化コバルトを析出させる。この析出物を採取して水洗、乾燥して、水酸化ニッケル粒子の表面に水酸化コバルトの析出層を形成した複合粒子粉末を得る。
【0019】
ついで、100℃の加熱空気の雰囲気中で、この複合粒子粉末に対して25重量%の水酸化ナトリウムを0.5時間噴霧し、水酸化ニッケルの表面に析出した水酸化コバルトを酸化させるアルカリ熱処理を施す。このようなアルカリ熱処理工程により、粒状の水酸化ニッケルの表面に形成されたコバルト化合物の結晶構造が破壊されて結晶構造に乱れを生じると共に、水酸化コバルトの酸化が強力に促進されて、ナトリウムイオンを含有するとともにその平均価数が2価より大きい高次のコバルト化合物となる。
【0020】
このため、導電性のよい高次コバルト化合物をその表面に形成させた粒状の水酸化ニッケル複合粒子が形成されることとなる。また、高次コバルト化合物はアルカリ水溶液(アルカリ電解液)に溶解しにくい物質である。このアルカリ熱処理の後、この複合粒子粉末に対して、10倍の量の純水で3回洗浄した後、脱水、乾燥することにより、ナトリウムイオンを約0.4重量%含有した高次コバルト被覆層を有する水酸化ニッケル活物質を作製する。
【0021】
上述のようにして作製した高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部と、60重量%のポリテトラフルオロエチレン(PTFE)ディスパージョン液の所定量とを混合して活物質スラリーを作製する。この活物質スラリーの作製において、水酸化ニッケル活物質粒子のナトリウムイオンを含有した高次コバルト被覆層の表面にPTFEが存在することとなる。
【0022】
ここで、上述のPTFEディスパージョン液の所定量は次のように添加して調整する。即ち、PTFEの固形成分で高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に対して、0.05重量部添加した活物質スラリーを活物質スラリーa1とし、0.1重量部添加した活物質スラリーを活物質スラリーa2とし、0.5重量部添加した活物質スラリーを活物質スラリーa3とし、1.0重量部添加した活物質スラリーを活物質スラリーa4とし、3.0重量部添加した活物質スラリーを活物質スラリーa5とし、5.0重量部添加した活物質スラリーを活物質スラリーa6とする。
【0023】
このようにして作製した活物質スラリーa1〜a6を、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、それぞれ圧延後の活物質充填密度が約2.9g/cc−void(ニッケル発泡体の空間体積に対する活物質量)となるように充填し、乾燥させた後、厚みが約0.7mmになるまでそれぞれ圧延して、実施例1の各非焼結式ニッケル正極板A1,A2,A3,A4,A5,A6をそれぞれ作製する。
【0024】
b.実施例2
実施例1と同様にして作製した高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部と、PTFEの固形成分で1重量部となるように調整した60重量%のPTFEディスパージョン液と、酸化イットリウム(Y23)の所定量とを混合して活物質スラリーを作製する。この活物質スラリーの作製において、水酸化ニッケル活物質粒子のナトリウムイオンを含有した高次コバルト被覆層の表面にPTFEと酸化イットリウム(Y23)とが存在することとなる。
【0025】
ここで、上述の酸化イットリウム(Y23)の所定量は次のように添加して調整する。即ち、高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に対して0.05重量部添加した活物質スラリーを活物質スラリーb1とし、0.1重量部添加した活物質スラリーを活物質スラリーb2とし、0.5重量部添加した活物質スラリーを活物質スラリーb3とし、1.0重量部添加した活物質スラリーを活物質スラリーb4とし、3.0重量部添加した活物質スラリーを活物質スラリーb5とし、5.0重量部添加した活物質スラリーを活物質スラリーb6とし、7.0重量部添加した活物質スラリーを活物質スラリーb7とする。
【0026】
このようにして作製した活物質スラリーb1〜b7を、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、それぞれ圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させた後、厚みが約0.7mmになるまでそれぞれ圧延して、実施例2の各非焼結式ニッケル正極板B1,B2,B3,B4,B5,B6,B7をそれぞれ作製する。
【0027】
c.実施例3
実施例1と同様にして作製した高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部と、PTFEの固形成分で1重量部となるように調整した60重量%のPTFEディスパージョン液と、1重量部となるように調整した酸化イッテルビウム(Yb23)とを混合して活物質スラリーcを作製する。
【0028】
このようにして作製した活物質スラリーcを、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させた後、厚みが約0.7mmになるまで圧延して、実施例3の非焼結式ニッケル正極板Cを作製する。
【0029】
d.実施例4
実施例1と同様にして作製した高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部と、PTFEの固形成分で1重量部となるように調整した60重量%のPTFE液ディスパージョンと、1重量部となるように調整した酸化エルビウム(Er23)とを混合して活物質スラリーdを作製する。
【0030】
このようにして作製した活物質スラリーdを、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させた後、厚みが約0.7mmになるまで圧延して、実施例4の非焼結式ニッケル正極板Dを作製する。
【0031】
e.実施例5
実施例1と同様にして作製した高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部と、PTFEの固形成分で1重量部となるように調整した60重量%のPTFEディスパージョン液と、1重量部となるように調整した酸化ビスマス(Bi23)とを混合して活物質スラリーeを作製する。
【0032】
このようにして作製した活物質スラリーeを、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させた後、厚みが約0.7mmになるまで圧延して、実施例5の非焼結式ニッケル正極板Eを作製する。
【0033】
f.比較例1
実施例1と同様にして作製した高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部を添加混合して活物質スラリーfを作製する。このようにして作製した活物質スラリーfを、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させた後、厚みが約0.7mmになるまで圧延して、比較例1の非焼結式ニッケル正極板Fを作製する。
【0034】
g.比較例2
比較例1と同様にして作製した活物質スラリーfを、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させる。この後、この表面にPTFEの固形成分で高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に対して1重量部となるように調整した5重量%のPTFEディスパージョン液を塗布し、乾燥させた後、厚みが約0.7mmになるまで圧延して、比較例2の非焼結式ニッケル正極板Gを作製する。
【0035】
h.比較例3
実施例1と同様にして作製した高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部と、1重量部となるように調整した酸化イットリウム(Y23)とを混合して活物質スラリーhを作製する。このようにして作製した活物質スラリーhを、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させる。この後、この表面にPTFEの固形成分で高導電性高次コバルト被覆層を有する水酸化ニッケル活物質100重量部に対して1重量部となるように調整した5重量%のPTFEディスパージョン液を塗布し、乾燥させた後、厚みが約0.7mmになるまで圧延して、比較例3の非焼結式ニッケル正極板Hを作製する。
【0036】
i.比較例4
1重量%のコバルトおよび3重量%の亜鉛を共沈成分として含有する粒状水酸化ニッケルに、5重量%の水酸化コバルトを遊離状態で混合して活物質粉末を作製する。この活物質粉末100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部と、PTFEの固形成分で1重量部となるように調整した60重量%のPTFEディスパージョン液を添加、混合して活物質スラリーiを作製をする。
【0037】
このようにして作製した活物質スラリーiを、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させた後、厚みが約0.7mmになるまで圧延して、比較例4の非焼結式ニッケル正極板Iを作製する。
【0038】
j.比較例5
1重量%のコバルトおよび3重量%の亜鉛を共沈成分として含有する粒状水酸化ニッケルに、5重量%の水酸化コバルトおよび1重量%の酸化イットリウム(Y23)とを遊離状態で混合して活物質粉末を作製する。この活物質粉末100重量部に、0.2重量%のヒドロキシプロピルセルロース水溶液40重量部と、PTFEの固形成分で1重量部となるように調整した60重量%のPTFEディスパージョン液を添加、混合して活物質スラリーjを作製する。
【0039】
このようにして作製した活物質スラリーjを、基体目付が600g/m2で厚みが1.5mmであるニッケル発泡体(ニッケルスポンジ)に、圧延後の活物質充填密度が約2.9g/cc−voidとなるように充填し、乾燥させた後、厚みが約0.7mmになるまで圧延して、比較例5の非焼結式ニッケル正極板Jを作製する。
【0040】
3.水素吸蔵合金負極の作製
ミッシュメタル(Mm:希土類元素の混合物)、ニッケル、コバルト、アルミニウム、およびマンガンを1:3.4:0.8:0.2:0.6の比率で混合し、この混合物をアルゴンガス雰囲気の高周波誘導炉で誘導加熱して合金溶湯となす。この合金溶湯を公知の方法で冷却し、組成式Mm1.0Ni3.4Co0.8Al0.2Mn0.6で表される水素吸蔵合金のインゴットを作製する。
【0041】
この水素吸蔵合金インゴットを機械的に粗粉砕した後、不活性ガス雰囲気中で平均粒子径が約150μmになるまで機械的に粉砕する。このようにして作製した水素吸蔵合金粉末にポリエチレンオキサイド等の結着剤と、適量の水を加えて混合して水素吸蔵合金スラリーを作製する。このスラリーをパンチングメタルからなる活物質保持体の両面に、圧延後の活物質密度が所定量になるように塗着した後、乾燥、圧延を行った後、所定寸法に切断して水素吸蔵合金負極を作製する。
【0042】
4.ニッケル−水素蓄電池の作製
ついで、上述のように作製した各非焼結式ニッケル正極板A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6,B7,C,D,E,F,G,H,I,Jと、上述のように作製した水素吸蔵合金負極とを、厚みが約0.2mmのポリプロピレン製不織布からなるセパレータをそれぞれ介して、最外周が水素吸蔵合金負極となるようにして渦巻状に卷回してそれぞれ渦巻状電極体を作製する。ついで、このようにして作製した渦巻状電極体を負極端子を兼ねる有底円筒形の金属外装缶内に挿入する。
【0043】
この後、負極から延出する負極用リードを金属外装缶の底部に溶接するとともに、正極から延出する正極用リードを正極端子を兼ねる封口体に溶接した後、電解液(例えば、LiOHおよびNaOHを含有した7〜8.5NのKOH)を金属外装缶内に注入する。ついで、封口体をガスケットを介して金属外装缶の開口部に載置し、金属外装缶の開口を封口体側にカシメることにより開口部を封口して、公称容量が1200mAの各ニッケル−水素蓄電池を作製する。
【0044】
ついで、上述のように作製した各ニッケル−水素蓄電池を120mA(0.1C)の充電々流で16時間充電した後、1時間休止させる。その後、240mA(0.2C)の放電々流で終止電圧が1.0Vになるまで放電させた後、1時間休止させる。この充放電を室温で3サイクル繰り返して、各ニッケル−水素蓄電池を活性化する。
【0045】
5.試験
a.単極試験
上述のように作製した各非焼結式ニッケル正極板A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6,B7,C,D,E,F,G,H,I,Jを水酸化ニッケル活物質が1gとなるようなサイズに切断する。この所定のサイズに切断された各ニッケル正極板と、ニッケル金属板を対極とし、約25重量%の水酸化カリウム(KOH)水溶液を電解液として開放型の簡易セルを作製する。
【0046】
この簡易セルを、30mAの充電々流で24時間充電した後、1時間休止させる。その後、100mAの放電々流で放電させ、終止電圧が対極のニッケル金属に対して−0.8Vになるまで放電させる。この後、放電時間から理論容量に対する放電容量の比率から活物質の利用率を求めると、以下の表2,表3,表4に示すような結果となった。
【0047】
b.電池試験
上述したように活性化した各ニッケル−水素蓄電池を、1200mA(1C)の充電々流で1.5時間充電した後、1時間休止させる。その後、1200mA(1C)の放電々流で終止電圧が1.0Vになるまで放電させ、放電時間から放置前の電池容量を求める。この後、60℃で14日間短絡状態で放置した後、1200mA(1C)の充電々流で1.5時間充電した後、1時間休止させる。その後、1200mA(1C)の放電々流で終止電圧が1.0Vになるまで放電させ、放電時間から放置後の電池容量を求める。
【0048】
ついで、このようにして求めた放置前の電池容量と放置後の電池容量とから、下記の(1)式に基づいて容量回復率を求めると、下記の表1、表2に示すような結果となった。
【0049】
【数1】
容量回復率(%)=(放置後の容量/放置前の容量)×100(%)・・・(1)
6.試験結果
以上の試験結果より、PTFEの添加効果を下記の表1に基づいて検討する。
【0050】
【表1】

Figure 0003942253
【0051】
なお、上記表1においては、実施例1の非焼結式ニッケル正極板A4の容量回復率を100として示している。
【0052】
上記表1より明らかなように、実施例1の非焼結式ニッケル正極板A4を用いると、PTFEの無添加の極板(比較例1の極板F)、PTFEを同量添加しても極板表面に塗布した極板(比較例2の極板G)あるいはPTFEを同量添加しても別添成分である2価の水酸化コバルトと同時に添加して作製した極板(比較例4の極板I)よりも容量回復率が向上することが分かる。これは、撥水性を有するPTFEが高導電性高次コバルト被覆層の表面に存在することにより、長期的な短絡時における電解液との接触が軽減され、コバルトの電解液中への溶出を防止するように作用するために、容量回復率が向上するものと考えられる。
【0053】
(PTFE添加量の検討)
ついで、PTFE添加量について、下記の表2に基づいて検討する。
【0054】
【表2】
Figure 0003942253
【0055】
なお、上記表2においては、容量回復率は実施例1の非焼結式ニッケル正極板A6を100として示しており、活物質利用率は実施例2の非焼結式ニッケル正極板B4を100として示している。
【0056】
上記表2より明らかなように、短絡放置後の容量回復率は、PTFEの添加量を増大させるに伴い増加することが分かる。しかしながら、0.5重量部以上になるとその増加効果は少なくなり、その増加効果はやがては飽和する。一方、活物質利用率はPTFEの添加量を増大させるに伴い低下することが分かる。これは、PTFEの添加量を増大させると、導電性およびイオン伝導性が低下するためと考えられる。このため、PTFEの添加量は高導電性高次コバルト被覆層を有する水酸化ニッケル活物質粉末100重量部に対して0.05〜3.0重量部とするのが好ましい。しかしながら、PTFEを5.0重量部添加(A6)しても、活物質利用率では高導電性高次コバルト被覆層を有しない比較例4の極板Iより向上する。
【0057】
(酸化イットリウム等の酸化物の添加効果についての検討)
ついで、酸化イットリウム等の酸化物の添加効果について、下記の表3に基づいて検討する。
【0058】
【表3】
Figure 0003942253
【0059】
なお、上記表3における活物質利用率は実施例2の非焼結式ニッケル正極板B4を100として示している。
【0060】
上記表3より明らかなように、活物質の表面に高導電性高次コバルト被覆層を有するとともに、この被覆層の表面にPTFEと酸化イットリウム(Y23)を存在させたニッケル電極活物質を用いた実施例2の非焼結式ニッケル正極板B4、同様にイッテルビウム(Yb23)を存在させたニッケル電極活物質を用いた実施例3の非焼結式ニッケル正極板C、同様に酸化エルビウム(Er23)を存在させたニッケル電極活物質を用いた実施例4の非焼結式ニッケル正極板D、同様に酸化ビスマス(Bi23)を存在させたニッケル電極活物質を用いた実施例5の非焼結式ニッケル正極板Eを用いると、酸化物を添加していない実施例1の非焼結式ニッケル正極板A4より活物質利用率が向上することが分かる。
【0061】
しかしながら、ここで注目すべき点は、PTFEと酸化イットリウムが高導電性高次コバルト被覆層を有した複合粒子個々の表面に存在した実施例2の非焼結式ニッケル正極板B4は、酸化イットリウムを添加しても、同量のPTFEを極板表面に塗布した比較例3の非焼結式ニッケル正極板Hや、同量のPTFEを別添成分である水酸化コバルトと同時添加した比較例5の非焼結式ニッケル正極板Jよりも活物質利用率が向上することである。
【0062】
これは、活物質粒子単位でPTFEにより酸化イットリウムが結着されていることにより、酸化イットリウムがコバルト中に分散したり、電解液への溶出を伴う比較例3の非焼結式ニッケル正極板Hや比較例5の非焼結式ニッケル正極板Jよりも効果的に利用率が向上したものと考えることができる。このことは、酸化イッテルビウム、酸化エルビウム、酸化ビスマス等の酸化物を添加しても同様である。このように、酸化イットリウム、酸化イッテルビウム、酸化エルビウム、酸化ビスマス等の酸化物が高導電性高次コバルト被覆層を有した複合粒子個々の表面に均一に固定化させることにより、活物質表面での酸素過電圧を増大させる。 この結果、各比較例のような添加方法に比較して、活物質利用率を効率的に向上させることが可能となる。また、これによりPTFEの添加量を増大させることが可能となり、容量回復率も同時に向上させることができるようになる。
【0063】
(酸化イットリウム添加量の検討)
ついで、酸化イットリウム添加量について下記の表4に基づいて検討する。
【0064】
【表4】
Figure 0003942253
【0065】
なお、上記表4における活物質利用率は、酸化イットリウムを1重量部添加した実施例2の非焼結式ニッケル正極板B4の活物質利用率を100として示している。上記表4より明らかなように、酸化イットリウムを1重量部添加した場合に活物質利用率が最大となり、これより多くても、あるいは少なくても活物質利用率は徐々に低下することが分かる。
【0066】
これは、酸化イットリウムの添加量が0.05重量部未満であると酸素過電圧増大効果が少なく、5重量部を越えると充放電反応に寄与する水酸化ニッケル量が相対的に減少するとともに、酸化イットリウムは導電性が劣るため、その充填量を多くし過ぎると活物質利用率が低下し、放電容量が低下するためと考えられる。このことから、酸化イットリウムの添加量は高導電性高次コバルト被覆層を有する水酸化ニッケル活物質粉末100重量部に対して、0.05〜5.0重量部の範囲にすることが好ましい。
【0067】
なお、表には示していないが、酸化イッテルビウム、酸化エルビウム、酸化ビスマスの添加量についても同様に検討したが、酸化イットリウムを添加した場合の上記表4とほぼ同様な結果となった。したがって、酸化イッテルビウム、酸化エルビウム、酸化ビスマスの添加量も高導電性高次コバルト被覆層を有する水酸化ニッケル活物質粉末100重量部に対して、0.05〜5.0重量部の範囲にすることが好ましい。
【0068】
なお、上述した実施形態においては、フッ素樹脂としてPTFEを用いる例について説明したが、フッ素樹脂としてTFE(テトラフロロエチレン樹脂)、PFA(パーフロロアルコキシ樹脂)、FEP(フッ化エチレンプロピレン樹脂)等を用いても同様な効果を奏することを確認している。また、イットリウム、イッテルビウム、エルビウム、ビスマス等の化合物として酸化物を用いる例について説明したが、これらの水酸化物を用いても同様な効果を奏することを確認している。
【0069】
また、上述した実施形態においては、三次元的に網目構造をもった活物質保持体として発泡ニッケルを用いる例について説明したが、活物質保持体としてはニッケル繊維多孔体などのように三次元的に網目構造をもつものであればどのようなものを用いてもよい。
【0070】
また、上述した実施形態においては、正・負の電極をセパレータを介して渦巻状に巻回して渦巻電極体とし、この渦巻電極体を円筒状の外装缶に挿入して円筒状電池を作製する例について説明したが、正・負の電極をセパレータを介して積層して積層電極体として、この積層電極体を角形の外装缶に挿入して角形電池を作製するようにしてもよい。
【0071】
なお、上述した実施形態においては、本発明をニッケル−水素蓄電池に適用した例について説明したが、これに限らず、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電池などのニッケル電極活物質を用いる電極およびこの電極を用いるアルカリ蓄電池であれば、どのような電池であっても同様の効果が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline storage battery such as a nickel / hydrogen storage battery, a nickel / cadmium storage battery, or a nickel / zinc storage battery, and in particular, a nickel electrode active material used in this type of alkaline storage battery and a non-sintered type using the nickel electrode active material The present invention relates to a nickel electrode and an alkaline storage battery using the non-sintered nickel electrode.
[0002]
[Prior art]
In recent years, due to the rapid spread of portable devices, higher performance storage batteries have been required. Against this background, the present applicant has improved the active material utilization rate, the capacity recovery rate after overdischarge, etc. as a nickel electrode active material used in alkaline storage batteries such as nickel / hydrogen storage batteries and nickel / cadmium storage batteries. In order to achieve this, for example, a nickel hydroxide composite particle having a high-order cobalt compound layer containing cations such as sodium ions and having disordered crystallinity on the surface of nickel hydroxide active material particles is disclosed in, for example, JP-A-8-148145. Proposed.
[0003]
The nickel hydroxide composite particles proposed in Japanese Patent Laid-Open No. 8-148145 and having a high-order cobalt compound layer containing cations such as sodium ions and disordered in crystallinity are prepared as follows. is there. That is, a cobalt sulfate aqueous solution and a sodium hydroxide aqueous solution are added to a solution in which nickel hydroxide is precipitated, and nickel hydroxide precipitates are used as crystal nuclei to deposit cobalt hydroxide around the nuclei. Next, the precipitate is washed with water and dried, and then an aqueous sodium hydroxide solution is dropped to obtain sodium hydroxide liquid-impregnated nickel active material particles, which are heated in heated air to perform a higher order treatment. In this way, nickel hydroxide composite particles having a higher cobalt compound with disordered crystallinity on the surface of the nickel hydroxide active material particles are obtained.
[0004]
Such nickel hydroxide composite particles are capable of obtaining a non-sintered nickel electrode with improved active material utilization by exhibiting the high conductivity effect of the higher cobalt compound. In addition, since the cobalt compound present on the surface of the nickel hydroxide particles is crystallized in a state in which nickel hydroxide is taken in at the boundary with the inside of the nickel hydroxide particles, the solubility of the cobalt compound in the electrolytic solution is suppressed, Capacity reduction after overdischarge is suppressed.
[0005]
On the other hand, Japanese Patent Laid-Open No. 5-28992 proposes to add a cobalt compound and an yttrium compound to a nickel hydroxide active material in order to obtain a nickel electrode having excellent charging efficiency in a high temperature atmosphere. In the method proposed in Japanese Patent Laid-Open No. 5-28992, when an yttrium compound is added to the nickel hydroxide active material, the overvoltage of oxygen generation, which is a competitive reaction of charging in a high temperature atmosphere, is increased. Charging reaction of nickel hydroxide to nickel oxyhydroxide is sufficiently performed, and the active material utilization rate is improved.
[0006]
[Problems to be solved by the invention]
However, in the nickel hydroxide composite particles proposed in JP-A-8-148145, when a battery using the nickel hydroxide composite particles is exposed to a short-circuit state for a long time, the nickel hydroxide composite particles Since the particles are in contact with the electrolytic solution, the higher-order cobalt compound is reduced and eluted into the electrolytic solution, and the conductive network is disturbed. For this reason, even if it charged after having been exposed to the short circuit state for a long term, the battery capacity fell, without fully recovering battery capacity.
[0007]
On the other hand, in the nickel electrode proposed in Japanese Patent Application Laid-Open No. 5-28992, the yttrium compound is dissolved and precipitated in the battery, so that it is added at the same time as the divalent cobalt compound constituting the conductive network. The yttrium compound is present inside the conductive network formed from the higher order cobalt compound. As a result, the amount of the yttrium compound present at the interface between the electrolytic solution and the active material is relatively small, the effect of adding the yttrium compound is not sufficiently exhibited, and the active material utilization rate is not sufficiently improved. Caused a problem.
[0008]
Therefore, the present invention has been made in view of the above problems, and provides a nickel electrode active material that does not decrease battery capacity even when exposed to a short-circuit condition for a long time. An object of the present invention is to provide a sintered electrode and an alkaline storage battery using the non-sintered electrode.
[0009]
[Means for solving the problems and their functions and effects]
The present invention is a nickel electrode active material for an alkaline storage battery using nickel hydroxide as an active material, and in order to solve the above-mentioned problems, the nickel electrode active material for an alkaline storage battery of the present invention has an alkali on the surface of nickel hydroxide particles. A fluororesin is present on the surface of the composite particle having a higher cobalt compound layer containing metal ions.
[0010]
Since the fluororesin has no electrical conductivity and is insoluble in water, the addition of such a fluororesin only adversely affects the electronic conductivity between the active materials and the ionic conductivity between the electrolyte and the active material. . However, as in the present invention, the presence of a fluororesin on the surface of an active material on which a highly conductive coating layer such as a high-order cobalt compound containing an alkali metal ion is formed allows hydroxylation as in the conventional example. Compared with the case where a fluororesin is added to nickel at the same time as an additional component, the capacity is not reduced, and the binding force and water repellency of the fluororesin exhibit an effect of suppressing electrode plate swelling.
[0011]
Furthermore, the water repellency reduces the contact of the active material particles with the electrolytic solution even when exposed to a short-circuit state for a long time, and inhibits the elution of the cobalt compound into the electrolytic solution. For this reason, even if it is exposed to a short-circuit state for a long time, the battery capacity is sufficiently recovered by charging. In addition, since the electrode plate swelling suppression effect is exhibited, an increase in internal resistance with the progress of charge / discharge cycles is suppressed, and a non-sintered nickel electrode with an increased cycle life can be obtained.
[0012]
When the fluororesin is present and the yttrium compound is allowed to coexist with the fluororesin, the yttrium compound is uniformly immobilized on the surface of the nickel hydroxide active material particles due to the binding force of the fluororesin, and the elution into the electrolytic solution is prevented. Thus, even when added in a small amount, it is possible to increase the oxygen generation potential on the surface of the nickel hydroxide active material particles, efficiently improve the charging efficiency, and increase the discharge capacity. In addition, ytterbium, erbium, and bismuth compounds have the effect of increasing the oxygen generation potential in the same manner as yttrium compounds. Therefore, ytterbium, erbium, and bismuth compounds can be used instead of yttrium compounds. Similar effects can be obtained.
[0013]
If the amount of fluororesin added is too large, the electronic conductivity between the active materials and the ionic conductivity between the electrolyte and the active material are adversely affected, so the upper limit of the amount added is high conductivity as a solid component. The amount is preferably 3.0 parts by weight or less based on 100 parts by weight of the nickel hydroxide active material powder having a higher cobalt coating layer, and if the addition amount is too small, the effect of binding force and water repellency cannot be exhibited. The lower limit is preferably 0.05 parts by weight or more with respect to the nickel hydroxide active material powder having a highly conductive high-order cobalt coating layer as a solid component.
[0014]
In addition, yttrium, ytterbium, erbium, and bismuth compounds do not contribute to the battery reaction, so adding a large amount of yttrium, ytterbium, erbium, and bismuth compounds will decrease the amount of nickel hydroxide and reduce battery capacity. In addition, since the effect of improving the charging efficiency is small if the addition amount is too small, the addition amount is 0.05 to 5 with respect to 100 parts by weight of the nickel hydroxide active material powder having the highly conductive higher cobalt coating layer. 0.0 part by weight is preferable.
[0015]
The non-sintered nickel electrode of the present invention is characterized in that the above-described nickel electrode active material is used as a slurry, and this slurry is filled in an active material holding body having a three-dimensional network structure. In general, a non-sintered nickel electrode has been widely used because it can have a larger amount of active material than a sintered electrode and can be easily manufactured. However, simply filling the active material holder with a nickel hydroxide active material results in a lower current collecting efficiency than a sintered nickel electrode, resulting in a decrease in active material utilization and no increase in battery capacity.
[0016]
For this reason, the non-sintered nickel electrode of the present invention has a high-order cobalt compound layer formed on the surface of nickel hydroxide active material particles to form composite particles, and a conductive network is formed in the electrode to increase the active material utilization rate. Improve and increase battery capacity. And even if a fluororesin is present on the surface of the composite particles and exposed to a short-circuit state for a long time, the contact of the active material particles with the electrolytic solution is restricted, and higher cobalt compounds are eluted in the electrolytic solution. Can be minimized. For this reason, the battery capacity is sufficiently recovered by charging after being exposed to a short-circuit state for a long time. Further, since the effect of suppressing the electrode plate swelling is exhibited, an increase in internal resistance with the progress of charge / discharge cycles is suppressed, and a high-capacity and long-life non-sintered nickel electrode can be obtained.
[0017]
Moreover, the alkaline storage battery of the present invention is characterized in that an outer can is provided with an electrode body in which the above-described non-sintered nickel electrode and a hydrogen storage alloy negative electrode are spirally wound or laminated through a separator. . As described above, the electrode body in which the above-described non-sintered nickel electrode and the hydrogen storage alloy negative electrode are wound or laminated in a spiral shape via a separator is provided in the outer can so that high capacity, discharge characteristics, and over discharge characteristics are obtained. And the nickel-hydrogen storage battery excellent in the electrode plate swelling inhibitory effect comes to be obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the nickel electrode active material, the non-sintered nickel electrode and the alkaline storage battery of the present invention will be described.
1. Production of non-sintered nickel positive electrode plate
a. Example 1
While stirring a mixed aqueous solution of nickel sulfate, zinc sulfate, and cobalt sulfate such that zinc is 1% by weight and cobalt is 3% by weight with respect to metallic nickel, an aqueous sodium hydroxide solution is gradually added to adjust the pH during the reaction. It stabilizes to 13-14, and nickel hydroxide is deposited. In this aqueous solution in which nickel hydroxide is precipitated, a cobalt sulfate aqueous solution having a specific gravity of 1.30 is added so that the pH during the reaction is maintained at 9 to 10, and spherical hydroxide whose main component is nickel hydroxide is added. Using the product particles as crystal nuclei, 5% by weight of cobalt hydroxide is precipitated around the crystal nuclei with respect to the spherical hydroxide whose main component is nickel hydroxide. The precipitate is collected, washed with water, and dried to obtain a composite particle powder in which a cobalt hydroxide precipitate layer is formed on the surface of nickel hydroxide particles.
[0019]
Next, an alkaline heat treatment is performed in which 25% by weight of sodium hydroxide is sprayed on the composite particle powder for 0.5 hours in an atmosphere of heated air at 100 ° C. to oxidize cobalt hydroxide deposited on the surface of nickel hydroxide. Apply. By such an alkali heat treatment step, the crystal structure of the cobalt compound formed on the surface of the granular nickel hydroxide is destroyed and the crystal structure is disturbed, and the oxidation of cobalt hydroxide is strongly promoted, so that the sodium ion And a higher-order cobalt compound having an average valence greater than two.
[0020]
For this reason, the granular nickel hydroxide composite particle which formed the high-order cobalt compound with good electroconductivity on the surface will be formed. Higher order cobalt compounds are substances that are difficult to dissolve in an alkaline aqueous solution (alkaline electrolyte). After this alkali heat treatment, the composite particle powder is washed three times with 10 times the amount of pure water, then dehydrated and dried to provide a higher cobalt coating containing about 0.4% by weight of sodium ions. A nickel hydroxide active material having a layer is prepared.
[0021]
To 100 parts by weight of nickel hydroxide active material having a highly conductive high-order cobalt coating layer produced as described above, 40 parts by weight of 0.2 wt% hydroxypropylcellulose aqueous solution and 60 wt% polytetrafluoroethylene (PTFE) A predetermined amount of the dispersion liquid is mixed to prepare an active material slurry. In the production of this active material slurry, PTFE is present on the surface of the higher cobalt coating layer containing sodium ions of nickel hydroxide active material particles.
[0022]
Here, the predetermined amount of the above-mentioned PTFE dispersion liquid is added and adjusted as follows. That is, with respect to 100 parts by weight of the nickel hydroxide active material having a high-conductivity high-order cobalt coating layer, which is a solid component of PTFE, an active material slurry added as 0.05 parts by weight is referred to as an active material slurry a1, and 0.1 wt. Part of the added active material slurry is designated as active material slurry a2, 0.5 part by weight of active material slurry is designated as active material slurry a3, 1.0 part by weight of active material slurry is designated as active material slurry a4, and 3.0 parts by weight. The active material slurry added with parts by weight is referred to as an active material slurry a5, and the active material slurry added with 5.0 parts by weight is referred to as an active material slurry a6.
[0023]
The active material slurries a1 to a6 thus produced have a basis weight of 600 g / m. 2 In the nickel foam (nickel sponge) having a thickness of 1.5 mm, the active material filling density after rolling is about 2.9 g / cc-void (the amount of active material relative to the space volume of the nickel foam). After filling and drying, each of the non-sintered nickel positive plates A1, A2, A3, A4, A5, and A6 of Example 1 is produced by rolling until the thickness is about 0.7 mm.
[0024]
b. Example 2
100 parts by weight of nickel hydroxide active material having a highly conductive high-order cobalt coating layer prepared in the same manner as in Example 1, 40 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution, and 1 PTFE solid component 60% by weight of PTFE dispersion adjusted to be parts by weight and yttrium oxide (Y 2 O Three ) Is mixed with a predetermined amount to prepare an active material slurry. In the preparation of this active material slurry, PTFE and yttrium oxide (Y) were formed on the surface of the higher cobalt coating layer containing sodium ions of nickel hydroxide active material particles. 2 O Three ) And exist.
[0025]
Here, the yttrium oxide (Y 2 O Three ) Is adjusted by adding as follows. That is, an active material slurry in which 0.05 part by weight is added to 100 parts by weight of the nickel hydroxide active material having a highly conductive high-order cobalt coating layer is defined as an active material slurry b1, and an active material slurry in which 0.1 part by weight is added. Active material slurry b2, 0.5 parts by weight of the active material slurry added as active material slurry b3, 1.0 parts by weight of active material slurry added as active material slurry b4, and 3.0 parts by weight of active material added The slurry is referred to as active material slurry b5, the active material slurry added with 5.0 parts by weight is referred to as active material slurry b6, and the active material slurry added with 7.0 parts by weight is referred to as active material slurry b7.
[0026]
The active material slurries b1 to b7 thus produced have a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void, and after drying, the thickness is about 0. Each of the non-sintered nickel positive electrode plates B1, B2, B3, B4, B5, B6, and B7 of Example 2 is produced by rolling to 0.7 mm.
[0027]
c. Example 3
100 parts by weight of nickel hydroxide active material having a highly conductive high-order cobalt coating layer prepared in the same manner as in Example 1, 40 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution, and 1 PTFE solid component 60 wt% PTFE dispersion adjusted to be parts by weight and ytterbium oxide (Yb adjusted to be 1 part by weight) 2 O Three ) To produce an active material slurry c.
[0028]
The active material slurry c thus produced has a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void and dried, and then the thickness is about 0.00. The non-sintered nickel positive electrode plate C of Example 3 is produced by rolling to 7 mm.
[0029]
d. Example 4
100 parts by weight of nickel hydroxide active material having a highly conductive high-order cobalt coating layer prepared in the same manner as in Example 1, 40 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution, and 1 PTFE solid component 60 wt% PTFE liquid dispersion adjusted to be parts by weight and erbium oxide (Er) adjusted to be 1 part by weight 2 O Three ) To produce an active material slurry d.
[0030]
The active material slurry d thus produced has a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void and dried, and then the thickness is about 0.00. The unsintered nickel positive electrode plate D of Example 4 is produced by rolling to 7 mm.
[0031]
e. Example 5
100 parts by weight of nickel hydroxide active material having a highly conductive high-order cobalt coating layer prepared in the same manner as in Example 1, 40 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution, and 1 PTFE solid component 60 wt% PTFE dispersion liquid adjusted to be parts by weight and bismuth oxide (Bi adjusted to be 1 part by weight) 2 O Three ) To prepare an active material slurry e.
[0032]
The active material slurry e thus produced has a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void and dried, and then the thickness is about 0.00. It rolls until it becomes 7 mm, The non-sintered nickel positive electrode plate E of Example 5 is produced.
[0033]
f. Comparative Example 1
An active material slurry prepared by adding 40 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution to 100 parts by weight of a nickel hydroxide active material having a highly conductive high-order cobalt coating layer produced in the same manner as in Example 1. f is produced. The active material slurry f thus prepared has a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void and dried, and then the thickness is about 0.00. The non-sintered nickel positive electrode plate F of Comparative Example 1 is produced by rolling to 7 mm.
[0034]
g. Comparative Example 2
An active material slurry f produced in the same manner as in Comparative Example 1 has a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void and dried. Thereafter, a PTFE dispersion liquid of 5% by weight adjusted to be 1 part by weight with respect to 100 parts by weight of the nickel hydroxide active material having a solid conductive PTFE coating layer with a solid PTFE component on this surface. After applying and drying, the non-sintered nickel positive electrode plate G of Comparative Example 2 is manufactured by rolling until the thickness is about 0.7 mm.
[0035]
h. Comparative Example 3
To 100 parts by weight of nickel hydroxide active material having a highly conductive high-order cobalt coating layer produced in the same manner as in Example 1, 40 parts by weight of a 0.2% by weight hydroxypropylcellulose aqueous solution and 1 part by weight Yttrium oxide (Y 2 O Three ) To produce an active material slurry h. The active material slurry h thus produced has a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void and dried. Thereafter, a PTFE dispersion liquid of 5% by weight adjusted to be 1 part by weight with respect to 100 parts by weight of the nickel hydroxide active material having a solid conductive PTFE coating layer with a solid PTFE component on this surface. After applying and drying, the non-sintered nickel positive electrode plate H of Comparative Example 3 is manufactured by rolling until the thickness is about 0.7 mm.
[0036]
i. Comparative Example 4
An active material powder is prepared by mixing 5% by weight of cobalt hydroxide in a free state with granular nickel hydroxide containing 1% by weight of cobalt and 3% by weight of zinc as coprecipitation components. To 100 parts by weight of this active material powder, 40 parts by weight of a 0.2% by weight hydroxypropyl cellulose aqueous solution and 60% by weight of PTFE dispersion liquid adjusted to 1 part by solid component of PTFE were added and mixed. Thus, an active material slurry i is prepared.
[0037]
The active material slurry i thus prepared has a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void and dried, and then the thickness is about 0.00. The unsintered nickel positive electrode plate I of Comparative Example 4 is produced by rolling to 7 mm.
[0038]
j. Comparative Example 5
Granular nickel hydroxide containing 1 wt% cobalt and 3 wt% zinc as coprecipitation components was added to 5 wt% cobalt hydroxide and 1 wt% yttrium oxide (Y 2 O Three ) In a free state to produce an active material powder. To 100 parts by weight of this active material powder, 40 parts by weight of a 0.2% by weight hydroxypropyl cellulose aqueous solution and 60% by weight of PTFE dispersion liquid adjusted to 1 part by solid component of PTFE were added and mixed. Thus, an active material slurry j is produced.
[0039]
The active material slurry j thus produced has a basis weight of 600 g / m. 2 The nickel foam (nickel sponge) having a thickness of 1.5 mm is filled so that the active material filling density after rolling is about 2.9 g / cc-void and dried, and then the thickness is about 0.00. The unsintered nickel positive electrode plate J of Comparative Example 5 is produced by rolling to 7 mm.
[0040]
3. Fabrication of hydrogen storage alloy negative electrode
Mish metal (Mm: mixture of rare earth elements), nickel, cobalt, aluminum, and manganese were mixed at a ratio of 1: 3.4: 0.8: 0.2: 0.6. Inductively heated in a high frequency induction furnace to make a molten alloy. This molten alloy is cooled by a known method, and the composition formula Mm 1.0 Ni 3.4 Co 0.8 Al 0.2 Mn 0.6 An ingot of a hydrogen storage alloy represented by
[0041]
The hydrogen storage alloy ingot is mechanically coarsely pulverized and then mechanically pulverized in an inert gas atmosphere until the average particle size becomes about 150 μm. A hydrogen storage alloy slurry is prepared by adding and mixing a binder such as polyethylene oxide and an appropriate amount of water to the hydrogen storage alloy powder thus prepared. After applying this slurry to both sides of the active material holder made of punching metal so that the active material density after rolling becomes a predetermined amount, drying and rolling, the slurry is cut to a predetermined size and hydrogen storage alloy A negative electrode is produced.
[0042]
4). Preparation of nickel-hydrogen storage battery
Next, the non-sintered nickel positive plates A1, A2, A3, A4, A5, A6, B1, B2, B3, B4, B5, B6, B7, C, D, E, F, manufactured as described above. G, H, I, and J, and the hydrogen storage alloy negative electrode produced as described above are arranged so that the outermost periphery becomes a hydrogen storage alloy negative electrode through a separator made of a polypropylene nonwoven fabric having a thickness of about 0.2 mm. Thus, the spiral electrode body is produced by winding it in a spiral shape. Next, the spiral electrode body produced in this way is inserted into a bottomed cylindrical metal outer can that also serves as a negative electrode terminal.
[0043]
Thereafter, the negative electrode lead extending from the negative electrode is welded to the bottom of the metal outer can, and the positive electrode lead extending from the positive electrode is welded to the sealing body that also serves as the positive electrode terminal, and then the electrolyte (for example, LiOH and NaOH). 7-8.5N KOH containing) is poured into the metal outer can. Then, the sealing body is placed on the opening of the metal outer can through a gasket, and the opening is sealed by crimping the opening of the metal outer can to the sealing body side, and each nickel-hydrogen storage battery having a nominal capacity of 1200 mA. Is made.
[0044]
Next, each nickel-hydrogen storage battery manufactured as described above is charged for 16 hours with a charging current of 120 mA (0.1 C), and then rested for 1 hour. Thereafter, the battery is discharged at a discharge current of 240 mA (0.2 C) until the final voltage reaches 1.0 V, and then rested for 1 hour. This charging / discharging is repeated three times at room temperature to activate each nickel-hydrogen storage battery.
[0045]
5). test
a. Unipolar test
Non-sintered nickel positive plates A1, A2, A3, A4, A5, A6, B1, B2, B3, B4, B5, B6, B7, C, D, E, F, G, manufactured as described above. H, I, and J are cut to a size such that the nickel hydroxide active material is 1 g. Each nickel positive electrode plate cut into a predetermined size and a nickel metal plate are used as counter electrodes, and an open-type simple cell is manufactured using an aqueous solution of about 25 wt% potassium hydroxide (KOH) as an electrolyte.
[0046]
This simple cell is charged for 24 hours at a charging current of 30 mA and then rested for 1 hour. Thereafter, discharging is performed with a discharge current of 100 mA, and discharging is performed until the end voltage becomes −0.8 V with respect to the nickel metal of the counter electrode. Thereafter, when the utilization factor of the active material was determined from the ratio of the discharge capacity to the theoretical capacity from the discharge time, the results shown in Table 2, Table 3, and Table 4 below were obtained.
[0047]
b. Battery test
Each nickel-hydrogen storage battery activated as described above is charged with a charging current of 1200 mA (1C) for 1.5 hours and then rested for 1 hour. Thereafter, the battery is discharged at a discharge current of 1200 mA (1 C) until the final voltage becomes 1.0 V, and the battery capacity before being left is determined from the discharge time. After that, after being left in a short-circuit state at 60 ° C. for 14 days, it is charged for 1.5 hours with a charging current of 1200 mA (1C) and then rested for 1 hour. Thereafter, the battery is discharged at a discharge current of 1200 mA (1 C) until the final voltage becomes 1.0 V, and the battery capacity after being left is determined from the discharge time.
[0048]
Next, when the capacity recovery rate is determined based on the following equation (1) from the battery capacity before being left and the battery capacity after being left as described above, the results shown in Tables 1 and 2 below are obtained. It became.
[0049]
[Expression 1]
Capacity recovery rate (%) = (capacity after being left / capacity before being left) x 100 (%) (1)
6). Test results
Based on the above test results, the effect of adding PTFE is examined based on Table 1 below.
[0050]
[Table 1]
Figure 0003942253
[0051]
In Table 1, the capacity recovery rate of the non-sintered nickel positive electrode plate A4 of Example 1 is shown as 100.
[0052]
As apparent from Table 1 above, when the non-sintered nickel positive electrode plate A4 of Example 1 is used, the PTFE additive-free electrode plate (electrode plate F of Comparative Example 1) and the same amount of PTFE are added. An electrode plate (Comparative Example 4) applied on the surface of the electrode plate (Comparative Example 2 Electrode G) or PTFE that was added simultaneously with divalent cobalt hydroxide as an additional component even if the same amount of PTFE was added. It can be seen that the capacity recovery rate is improved as compared with the electrode plate I). This is because PTFE having water repellency is present on the surface of the highly conductive high-order cobalt coating layer, so that contact with the electrolyte during a long-term short-circuit is reduced, and elution of cobalt into the electrolyte is prevented. Therefore, it is considered that the capacity recovery rate is improved.
[0053]
(Examination of PTFE addition amount)
Next, the amount of PTFE added is examined based on Table 2 below.
[0054]
[Table 2]
Figure 0003942253
[0055]
In Table 2, the capacity recovery rate is 100 for the non-sintered nickel positive plate A6 of Example 1, and the active material utilization rate is 100 for the non-sintered nickel positive plate B4 of Example 2. As shown.
[0056]
As is apparent from Table 2 above, it can be seen that the capacity recovery rate after being short-circuited increases as the amount of PTFE added is increased. However, when the amount is 0.5 parts by weight or more, the increase effect is reduced, and the increase effect is eventually saturated. On the other hand, it can be seen that the active material utilization rate decreases as the amount of PTFE added is increased. This is considered to be because when the amount of PTFE added is increased, the conductivity and ionic conductivity are lowered. For this reason, it is preferable that the addition amount of PTFE shall be 0.05-3.0 weight part with respect to 100 weight part of nickel hydroxide active material powder which has a highly conductive high order cobalt coating layer. However, even when 5.0 parts by weight of PTFE is added (A6), the active material utilization rate is improved from the electrode plate I of Comparative Example 4 which does not have a highly conductive high-order cobalt coating layer.
[0057]
(Examination of the effect of oxides such as yttrium oxide)
Next, the effect of adding an oxide such as yttrium oxide will be examined based on Table 3 below.
[0058]
[Table 3]
Figure 0003942253
[0059]
In addition, the active material utilization in Table 3 is shown as 100 for the non-sintered nickel positive electrode plate B4 of Example 2.
[0060]
As is clear from Table 3 above, the surface of the active material has a highly conductive high-order cobalt coating layer, and PTFE and yttrium oxide (Y 2 O Three ), A non-sintered nickel positive electrode plate B4 of Example 2 using a nickel electrode active material, and ytterbium (Yb 2 O Three The non-sintered nickel positive plate C of Example 3 using a nickel electrode active material in the presence of erbium oxide (Er) 2 O Three The non-sintered nickel positive electrode plate D of Example 4 using a nickel electrode active material in the presence of bismuth oxide (Bi) 2 O Three When the non-sintered nickel positive electrode plate E of Example 5 using the nickel electrode active material in the presence of) was used, the active material was more active than the non-sintered nickel positive electrode plate A4 of Example 1 to which no oxide was added. It can be seen that the utilization rate is improved.
[0061]
However, what should be noted here is that the non-sintered nickel positive electrode plate B4 of Example 2 in which PTFE and yttrium oxide were present on the surface of each composite particle having a highly conductive high-order cobalt coating layer was obtained by using yttrium oxide. The comparative example of adding the same amount of PTFE to the non-sintered nickel positive electrode plate H of Comparative Example 3 coated with the same amount of PTFE on the surface of the electrode plate and the same amount of PTFE with cobalt hydroxide as an additional component The active material utilization rate is improved as compared with the non-sintered nickel positive electrode plate 5 of FIG.
[0062]
This is because non-sintered nickel positive electrode plate H of Comparative Example 3 with yttrium oxide being dispersed in cobalt due to binding of yttrium oxide by PTFE in units of active material particles or elution into the electrolyte solution. It can be considered that the utilization rate is more effectively improved than the non-sintered nickel positive electrode plate J of Comparative Example 5. This is the same even when an oxide such as ytterbium oxide, erbium oxide, or bismuth oxide is added. In this way, oxides such as yttrium oxide, ytterbium oxide, erbium oxide, and bismuth oxide are uniformly immobilized on the surface of each composite particle having a highly conductive high-order cobalt coating layer, so that Increase oxygen overvoltage. As a result, it becomes possible to efficiently improve the active material utilization rate as compared with the addition method as in each comparative example. In addition, this makes it possible to increase the amount of PTFE added and to simultaneously improve the capacity recovery rate.
[0063]
(Examination of the amount of yttrium oxide added)
Next, the amount of yttrium oxide added is examined based on Table 4 below.
[0064]
[Table 4]
Figure 0003942253
[0065]
In addition, the active material utilization rate in the said Table 4 has shown as 100 the active material utilization rate of the non-sintering-type nickel positive electrode plate B4 of Example 2 which added 1 weight part of yttrium oxide. As is apparent from Table 4 above, it can be seen that when 1 part by weight of yttrium oxide is added, the active material utilization rate is maximized, and the active material utilization rate is gradually decreased even if it is more or less than this.
[0066]
This is because if the amount of yttrium oxide added is less than 0.05 parts by weight, the effect of increasing the oxygen overvoltage is small, and if it exceeds 5 parts by weight, the amount of nickel hydroxide contributing to the charge / discharge reaction is relatively reduced and the oxidation is reduced. Since yttrium is inferior in conductivity, it is considered that if the filling amount is excessively increased, the active material utilization rate is lowered and the discharge capacity is lowered. Therefore, it is preferable that the amount of yttrium oxide added is in the range of 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the nickel hydroxide active material powder having the highly conductive high-order cobalt coating layer.
[0067]
Although not shown in the table, the addition amounts of ytterbium oxide, erbium oxide, and bismuth oxide were also examined in the same manner, but the results were almost the same as in Table 4 when yttrium oxide was added. Therefore, the addition amount of ytterbium oxide, erbium oxide, and bismuth oxide is also in the range of 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the nickel hydroxide active material powder having the highly conductive high-order cobalt coating layer. It is preferable.
[0068]
In the above-described embodiment, an example in which PTFE is used as the fluororesin has been described. However, as the fluororesin, TFE (tetrafluoroethylene resin), PFA (perfluoroalkoxy resin), FEP (fluorinated ethylenepropylene resin), and the like are used. It has been confirmed that the same effect can be obtained even if it is used. Moreover, although the example which uses an oxide as compounds, such as yttrium, ytterbium, erbium, and bismuth was demonstrated, even if it uses these hydroxides, it has confirmed that there exists the same effect.
[0069]
In the above-described embodiment, the example in which the foamed nickel is used as the active material holding body having a three-dimensional network structure has been described. However, the active material holding body is a three-dimensional type such as a nickel fiber porous body. Any material may be used as long as it has a network structure.
[0070]
In the above-described embodiment, the positive and negative electrodes are spirally wound via a separator to form a spiral electrode body, and this spiral electrode body is inserted into a cylindrical outer can to produce a cylindrical battery. Although the example has been described, positive and negative electrodes may be stacked via a separator to form a stacked electrode body, and the stacked electrode body may be inserted into a rectangular outer can to produce a rectangular battery.
[0071]
In the above-described embodiment, an example in which the present invention is applied to a nickel-hydrogen storage battery has been described. However, the present invention is not limited thereto, and an electrode using a nickel electrode active material such as a nickel / cadmium storage battery or a nickel / zinc storage battery, and this The same effect can be obtained with any battery as long as it is an alkaline storage battery using electrodes.

Claims (12)

水酸化ニッケルを主成分とするアルカリ蓄電池用ニッケル電極活物質であって、
水酸化ニッケル粒子の表面にアルカリ金属イオンを含有した高次コバルト化合物層を有する複合粒子の表面にフッ素樹脂を存在させたことを特徴とするアルカリ蓄電池用ニッケル電極活物質。
A nickel electrode active material for an alkaline storage battery mainly composed of nickel hydroxide,
A nickel electrode active material for an alkaline storage battery, wherein a fluorine resin is present on the surface of a composite particle having a higher cobalt compound layer containing an alkali metal ion on the surface of the nickel hydroxide particle.
前記高次コバルト化合物層を有する複合粒子の表面に前記フッ素樹脂を存在させるとともにイットリウム、イッテルビウム、エルビウム、ビスマスの化合物から選択されるいずれか1種を存在させたことを特徴とする請求項1に記載のアルカリ蓄電池用ニッケル電極活物質。2. The composite particle having the higher cobalt compound layer, wherein the fluororesin is present and any one selected from yttrium, ytterbium, erbium, and bismuth compounds is present. The nickel electrode active material for alkaline storage batteries as described. 前記フッ素樹脂は固形成分が前記複合粒子粉末100重量部に対して0.05〜3.0重量部であることを特徴とする請求項1または請求項2に記載のアルカリ蓄電池用ニッケル電極活物質。The nickel electrode active material for an alkaline storage battery according to claim 1 or 2, wherein the fluororesin has a solid component of 0.05 to 3.0 parts by weight with respect to 100 parts by weight of the composite particle powder. . 前記化合物は前記複合粒子粉末100重量部に対して0.05〜5.0重量部であることを特徴とする請求項2に記載のアルカリ蓄電池用ニッケル電極活物質。The nickel electrode active material for an alkaline storage battery according to claim 2, wherein the compound is 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the composite particle powder. ニッケル電極活物質をスラリーとし、このスラリーを三次元的に網目構造をもった活物質保持体に充填した非焼結式ニッケル電極であって、
前記ニッケル電極活物質は、水酸化ニッケル粒子の表面にアルカリ金属イオンを含有する高次コバルト化合物層を有する複合粒子の表面にフッ素樹脂を存在させたことを特徴とする非焼結式ニッケル電極。
A non-sintered nickel electrode in which a nickel electrode active material is used as a slurry, and the slurry is filled in an active material holder having a three-dimensional network structure,
The non-sintered nickel electrode characterized in that the nickel electrode active material has a fluororesin present on the surface of a composite particle having a higher cobalt compound layer containing alkali metal ions on the surface of the nickel hydroxide particle.
前記高次コバルト化合物層を有する複合粒子の表面に前記フッ素樹脂を存在させるとともにイットリウム、イッテルビウム、エルビウム、ビスマスの化合物から選択されるいずれか1種を存在させたことを特徴とする請求項5に記載の非焼結式ニッケル電極。6. The composite particle having the higher cobalt compound layer, wherein the fluorine resin is present and any one selected from yttrium, ytterbium, erbium, and bismuth compounds is present. The non-sintered nickel electrode as described. 前記フッ素樹脂は固形成分が前記複合粒子粉末100重量部に対して0.05〜3.0重量部であることを特徴とする請求項5または請求項6に記載の非焼結式ニッケル電極。The non-sintered nickel electrode according to claim 5 or 6, wherein a solid component of the fluororesin is 0.05 to 3.0 parts by weight with respect to 100 parts by weight of the composite particle powder. 前記化合物は前記複合粒子粉末100重量部に対して0.05〜5.0重量部であることを特徴とする請求項6に記載の非焼結式ニッケル電極。The non-sintered nickel electrode according to claim 6, wherein the compound is 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the composite particle powder. ニッケル電極活物質をスラリーとし、このスラリーを三次元的に網目構造をもった活物質保持体に充填した非焼結式ニッケル電極と水素吸蔵合金負極とをセパレータを介して渦巻状に巻回あるいは積層した電極体を外装缶内にアルカリ電解液とともに備えたアルカリ蓄電池であって、
前記ニッケル電極活物質は、水酸化ニッケル粒子の表面にアルカリ金属イオンを含有する高次コバルト化合物層を有する複合粒子の表面にフッ素樹脂を存在させたことを特徴とするアルカリ蓄電池。
A nickel electrode active material is used as a slurry, and a non-sintered nickel electrode filled with an active material holding body having a three-dimensional network structure and a hydrogen storage alloy negative electrode are wound in a spiral shape through a separator. An alkaline storage battery comprising a laminated electrode body in an outer can together with an alkaline electrolyte,
2. The alkaline storage battery according to claim 1, wherein the nickel electrode active material has a fluorine resin present on the surface of the composite particle having a higher cobalt compound layer containing alkali metal ions on the surface of the nickel hydroxide particle.
前記高次コバルト化合物層を有する複合粒子の表面に前記フッ素樹脂を存在させるとともにイットリウム、イッテルビウム、エルビウム、ビスマスの化合物から選択されるいずれか1種を存在させたことを特徴とする請求項9に記載のアルカリ蓄電池。10. The composite particle having the higher cobalt compound layer, wherein the fluororesin is present and any one selected from yttrium, ytterbium, erbium, and bismuth compounds is present. The alkaline storage battery described. 前記フッ素樹脂は固形成分が前記複合粒子粉末100重量部に対して0.05〜3.0重量部であることを特徴とする請求項9または請求項10に記載のアルカリ蓄電池。The alkaline storage battery according to claim 9 or 10, wherein a solid component of the fluororesin is 0.05 to 3.0 parts by weight with respect to 100 parts by weight of the composite particle powder. 前記化合物は前記複合粒子粉末100重量部に対して0.05〜5.0重量部であることを特徴とする請求項10に記載のアルカリ蓄電池。The alkaline storage battery according to claim 10, wherein the compound is 0.05 to 5.0 parts by weight with respect to 100 parts by weight of the composite particle powder.
JP36053897A 1997-12-26 1997-12-26 Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode Expired - Lifetime JP3942253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36053897A JP3942253B2 (en) 1997-12-26 1997-12-26 Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36053897A JP3942253B2 (en) 1997-12-26 1997-12-26 Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode

Publications (2)

Publication Number Publication Date
JPH11191415A JPH11191415A (en) 1999-07-13
JP3942253B2 true JP3942253B2 (en) 2007-07-11

Family

ID=18469834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36053897A Expired - Lifetime JP3942253B2 (en) 1997-12-26 1997-12-26 Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode

Country Status (1)

Country Link
JP (1) JP3942253B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707315B (en) * 2019-11-26 2022-06-24 河北省科学院能源研究所 Surface modified nickel-based electrode material

Also Published As

Publication number Publication date
JPH11191415A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
KR100725609B1 (en) Composite positive electrode material and method for making same
JP3738052B2 (en) Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
JP2004179064A (en) Nickel-hydrogen secondary battery
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP5142428B2 (en) Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JP2000223119A (en) Positive electrode active material for alkaline storage battery, its manufacture, and manufacture of positive electrode for alkaline storage battery using positive electrode active material
JP5219338B2 (en) Method for producing alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3942253B2 (en) Nickel electrode active material, non-sintered nickel electrode using the same, and alkaline storage battery using the non-sintered nickel electrode
JP2005142146A (en) Nickel hydrogen storage battery
JP3695927B2 (en) Non-sintered nickel positive electrode for alkaline storage battery, electrolytic solution for alkaline storage battery, and alkaline storage battery using these nickel positive electrode and electrolytic solution
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP2004119271A (en) Nickel-hydrogen storage battery
JP3543601B2 (en) Alkaline storage battery
JP2001313069A (en) Nickel hydrogen storage battery
JP3543607B2 (en) Alkaline storage battery
JP4128635B2 (en) Manufacturing method of nickel metal hydride storage battery
JP3481095B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP5769028B2 (en) Nickel metal hydride storage battery
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term