JP3322449B2 - Method for producing metal hydride electrode - Google Patents

Method for producing metal hydride electrode

Info

Publication number
JP3322449B2
JP3322449B2 JP21443593A JP21443593A JP3322449B2 JP 3322449 B2 JP3322449 B2 JP 3322449B2 JP 21443593 A JP21443593 A JP 21443593A JP 21443593 A JP21443593 A JP 21443593A JP 3322449 B2 JP3322449 B2 JP 3322449B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
battery
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21443593A
Other languages
Japanese (ja)
Other versions
JPH0765828A (en
Inventor
幹朗 田所
房吾 水瀧
博 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21443593A priority Critical patent/JP3322449B2/en
Publication of JPH0765828A publication Critical patent/JPH0765828A/en
Application granted granted Critical
Publication of JP3322449B2 publication Critical patent/JP3322449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属水素化物電極の製造
方法に関し、より詳しくは活性度の高い金属水素化物電
極の製造方法に関する。
The present invention relates to a method for producing a metal hydride electrode, and more particularly to a method for producing a metal hydride electrode having high activity.

【0002】[0002]

【従来の技術】近年、常温で水素を可逆的に吸蔵、放出
することのできる水素吸蔵合金を負極に用いた金属−水
素化物アルカリ蓄電池が高出力、高容量の電池として、
注目されている。ところで、この金属−水素化物アルカ
リ蓄電池の電池特性を一層向上させるためには、負極構
成材料である水素吸蔵合金の活性度を高める必要がある
が、このための方法として、従来より、水素吸蔵合金に
対し表面改質処理を施す方法が種々提案されている。
2. Description of the Related Art In recent years, a metal-hydride alkaline storage battery using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen at room temperature as a negative electrode has become a high-output, high-capacity battery.
Attention has been paid. By the way, in order to further improve the battery characteristics of the metal-hydride alkaline storage battery, it is necessary to increase the activity of the hydrogen storage alloy which is a negative electrode constituent material. Various methods have been proposed for performing a surface modification treatment.

【0003】例えば、特公平4−79474公報では、
水素吸蔵合金をアルカリ水溶液で処理する方法が提案さ
れている。また特開平3−98259号公報では、水素
吸蔵合金を60℃以上の加熱水で処理する方法が提案さ
れている。これらの処理方法によれば、アルカリ処理ま
たは加熱水処理によって水素吸蔵合金表面にニッケルリ
ッチな層が形成され、該表面におけるニッケルの触媒的
機能が増強されるので、水素吸蔵合金の酸素消費反応が
円滑に進むようになる。よって過充電時に正極から発生
した酸素ガスは、負極水素吸蔵合金に効率よく吸収さ
れ、電池内圧を上昇させることがないので、電池の充放
電サイクル特性が向上するとされる。
[0003] For example, in Japanese Patent Publication No. 4-79474,
A method of treating a hydrogen storage alloy with an alkaline aqueous solution has been proposed. Japanese Patent Application Laid-Open No. 3-98259 proposes a method of treating a hydrogen storage alloy with heated water of 60 ° C. or higher. According to these treatment methods, a nickel-rich layer is formed on the surface of the hydrogen storage alloy by the alkali treatment or the heating water treatment, and the catalytic function of nickel on the surface is enhanced. You will proceed smoothly. Therefore, the oxygen gas generated from the positive electrode at the time of overcharging is efficiently absorbed by the negative electrode hydrogen storage alloy and does not increase the internal pressure of the battery, so that the charge / discharge cycle characteristics of the battery are improved.

【0004】しかしながら、水素吸蔵合金をアルカリ水
溶液等で処理すると、合金表面が相対的にニッケルリッ
チとなり、水素吸蔵合金の酸素吸収能が高まるが、同時
に該処理により合金表面に水酸化物層が形成され、この
水酸化物層が水素吸蔵合金間の導電性を低下させてその
活性度を低下させる。このため、上記の方法は、充放電
サイクル初期の高率放電特性や低温放電特性を悪くする
という欠点があった。
However, when the hydrogen storage alloy is treated with an alkaline aqueous solution or the like, the surface of the alloy becomes relatively nickel-rich, and the oxygen absorbing ability of the hydrogen storage alloy is increased. At the same time, a hydroxide layer is formed on the alloy surface by the treatment. This hydroxide layer lowers the conductivity between the hydrogen storage alloys and lowers its activity. For this reason, the above-mentioned method has a disadvantage that the high-rate discharge characteristics and the low-temperature discharge characteristics at the beginning of the charge / discharge cycle are deteriorated.

【0005】更に、特開平3−49154号公報では、
水素吸蔵合金鋳塊を粉砕して水素吸蔵合金粉末を作製す
る際に、酸化を抑制する添加剤を添加する方法が提案さ
れている。この方法によれば、金属水素化物電極の製造
中における水素吸蔵合金の酸化を抑制でき、合金特性の
劣化を阻止することができる。よって、サイクル初期か
ら高容量でかつサイクル特性の優れた電池と成すことが
できる。
Further, Japanese Patent Application Laid-Open No. 3-49154 discloses that
A method has been proposed in which an additive for suppressing oxidation is added when a hydrogen storage alloy ingot is pulverized to produce a hydrogen storage alloy powder. According to this method, the oxidation of the hydrogen storage alloy during the production of the metal hydride electrode can be suppressed, and the deterioration of the alloy characteristics can be prevented. Therefore, a battery having high capacity and excellent cycle characteristics from the beginning of the cycle can be obtained.

【0006】しかし、この方法は、水素吸蔵合金粉末の
作製時における水素吸蔵合金の酸化を抑制しようとする
ものであり、水素吸蔵合金自体の特性を積極的に高める
という方法ではない。これに対し、特開平5−1357
97号公報では、水素吸蔵合金を水素化ホウ素ナトリウ
ム等の可溶性水素化物のアルカリ水溶液中に浸漬し、発
生する水素を該水素吸蔵合金に吸蔵させて充電状態とな
す方法が提案されている。この方法によれば、水素吸蔵
合金表面が改質されて酸素吸収能が向上するとともに、
還元剤によって充電反応が誘起されて負極(水素吸蔵合
金)が充電状態となるため、合金表面の酸化が抑制さ
れ、電池の充放電サイクル特性が向上するとともに、高
率充放電特性や低温放電特性が向上するとされる。
[0006] However, this method is intended to suppress the oxidation of the hydrogen storage alloy during the preparation of the hydrogen storage alloy powder, and is not a method of positively improving the characteristics of the hydrogen storage alloy itself. On the other hand, Japanese Patent Laid-Open No.
No. 97 proposes a method in which a hydrogen storage alloy is immersed in an alkaline aqueous solution of a soluble hydride such as sodium borohydride, and the generated hydrogen is stored in the hydrogen storage alloy to be in a charged state. According to this method, the surface of the hydrogen storage alloy is reformed to improve the oxygen absorbing ability,
Since the charging reaction is induced by the reducing agent and the negative electrode (hydrogen storage alloy) is charged, oxidation of the alloy surface is suppressed, the charge / discharge cycle characteristics of the battery are improved, and high-rate charge / discharge characteristics and low-temperature discharge characteristics are achieved. Is said to improve.

【0007】しかしながら、この方法にあっても、更に
改良を加えるべき点があった。
[0007] However, even with this method, there was a point that further improvement was required.

【0008】[0008]

【発明が解決しようとする課題】本発明の発明者らは、
水素吸蔵合金を可溶性水素化物等を溶解したアルカリ水
溶液に浸漬する上記方法(特開平5−135797号公
報等)について、さらに種々検討を加えた結果、アルカ
リ水溶液に添加する還元剤の種類を変えたり、還元剤の
添加濃度を高めたり、或いは処理対象とする水素吸蔵合
金をより細かい粒度のものとしたり、さらには浸漬時間
を長くするといった手法では、十分効率的に水素吸蔵合
金の活性度を向上させることができないことを知った。
SUMMARY OF THE INVENTION The inventors of the present invention
The above method of immersing a hydrogen storage alloy in an aqueous alkali solution in which soluble hydrides and the like are dissolved (Japanese Patent Application Laid-Open No. 5-135797, etc.) was further examined, and as a result, the type of reducing agent added to the aqueous alkali solution was changed. By increasing the concentration of the reducing agent added, or reducing the size of the hydrogen storage alloy to be treated, or increasing the immersion time, the activity of the hydrogen storage alloy can be improved sufficiently efficiently. I knew that I couldn't do it.

【0009】上記方法の作用効果は次のような原理に基
づくものと考えられる。即ち、水素吸蔵合金を水素化ホ
ウ素ナトリウム等の還元剤含有アルカリ水溶液に浸漬し
た場合、還元剤より発生する水素が、合金表面に水酸化
物膜の形成されるのを防止する。そして、このような作
用と同時に、還元剤より発生した水素は該合金に吸蔵さ
れ、該合金を充電状態とするので、水素吸蔵合金の活性
度が向上する。このことからすると、還元剤より発生す
る水素の水素吸蔵合金に対する作用を高めてやれば、一
層効果的に水素吸蔵合金の活性度を向上させることがで
きるのではないかと考えられる。しかし、前記した通
り、還元剤の種類や添加濃度の変更、単に合金粒度を変
更するといった手法では、十分に処理効果が向上しなか
った。
It is considered that the operation and effect of the above method are based on the following principle. That is, when the hydrogen storage alloy is immersed in an aqueous alkali solution containing a reducing agent such as sodium borohydride, hydrogen generated by the reducing agent is prevented from forming a hydroxide film on the alloy surface. At the same time as this action, hydrogen generated from the reducing agent is stored in the alloy and the alloy is charged, so that the activity of the hydrogen storage alloy is improved. From this, it is considered that if the action of hydrogen generated from the reducing agent on the hydrogen storage alloy is increased, the activity of the hydrogen storage alloy can be more effectively improved. However, as described above, the method of changing the type and concentration of the reducing agent or simply changing the particle size of the alloy did not sufficiently improve the processing effect.

【0010】本発明が解決しようとする課題は、還元剤
含有アルカリ溶液の水素吸蔵合金に対する作用(表面改
質、水素吸蔵効率の向上)を一層増強することのできる
処理条件を案出し、もって活性度の高い金属水素化物電
極の製造方法を提供することにある。
The problem to be solved by the present invention is to devise processing conditions which can further enhance the action (surface reforming, improvement of hydrogen storage efficiency) of a reducing agent-containing alkali solution on a hydrogen storage alloy, and thereby to increase the activity. An object of the present invention is to provide a method for producing a metal hydride electrode having a high degree.

【0011】[0011]

【課題を解決するための手段】本発明者らは、前記課題
のもとに次のような本発明を完成した。即ち、請求項1
記載の本発明は、水素吸蔵合金鋳塊を粉砕して水素吸蔵
合金粉末とし、この水素吸蔵合金粉末を用いて電極を作
製する金属水素化物電極の製造方法において、水素吸蔵
合金鋳塊を還元剤含有アルカリ溶液中で粉砕して水素吸
蔵合金粉末となす水素吸蔵合金粉砕還元処理工程を有す
る金属水素化物電極の製造方法であることを特徴とす
る。
Means for Solving the Problems The present inventors have completed the following present invention based on the above-mentioned problems. That is, claim 1
The present invention according to the present invention relates to a method for manufacturing a metal hydride electrode, in which a hydrogen storage alloy ingot is pulverized into a hydrogen storage alloy powder and an electrode is produced using the hydrogen storage alloy powder. A method for producing a metal hydride electrode having a hydrogen storage alloy pulverization reduction step of pulverizing in a contained alkaline solution to form a hydrogen storage alloy powder.

【0012】また、請求項2記載の本発明は、不均一歪
みが6×10-3未満である水素吸蔵合金鋳塊に対し、前
記粉砕還元処理を行うことを特徴とする。更に、請求項
3記載の本発明は、PH10以上の還元剤含有アルカリ
溶液を用い前記粉砕還元処理を行うことを特徴とする。
The present invention according to claim 2 is characterized in that the pulverizing and reducing treatment is performed on a hydrogen-absorbing alloy ingot having non-uniform strain of less than 6 × 10 −3 . Further, the present invention according to claim 3 is characterized in that the pulverizing reduction treatment is performed using an alkaline solution containing a reducing agent having a pH of 10 or more.

【0013】[0013]

【作用】上記構成の本発明方法によれば、水素吸蔵合金
粉末あるいは金属水素化物電極を単に還元剤含有アルカ
リ溶液に浸漬する従来方法に比べ、格段に合金活性化作
用を増強させることができる。その理由は、次のようで
あろうと考えられる。本発明方法では、還元剤含有アル
カリ溶液(以下、アルカリ還元処理溶液又は単に処理溶
液という)中で水素吸蔵合金鋳塊を粉砕する工程(以
下、水素吸蔵合金粉砕還元処理工程又は単に粉砕処理工
程という)を有するが、この工程は、合金の粉砕工程と
合金を処理溶液で処理する工程を同時に進行させるもの
である。つまり、従来、2つの工程であったものが1つ
の工程に短縮されるが、その意味するところは、単に工
程の短縮ということではない。即ち、粉砕操作は、水素
吸蔵合金鋳塊を細粒化しその表面積を増大させて、アル
カリ還元処理溶液が合金に作用し易くし、この作用と同
時に次のような作用が相乗的に加わる。
According to the method of the present invention having the above structure, the alloy activating effect can be remarkably enhanced as compared with the conventional method in which the hydrogen storage alloy powder or the metal hydride electrode is simply immersed in an alkaline solution containing a reducing agent. The reason may be as follows. In the method of the present invention, a step of pulverizing the hydrogen storage alloy ingot in a reducing agent-containing alkali solution (hereinafter referred to as an alkali reduction treatment solution or simply a treatment solution) (hereinafter referred to as a hydrogen storage alloy pulverization reduction step or simply a pulverization treatment step) In this step, a step of pulverizing the alloy and a step of treating the alloy with a processing solution are simultaneously performed. In other words, what was conventionally two steps is reduced to one step, but this does not mean simply shortening the steps. That is, the pulverizing operation makes the hydrogen storage alloy ingot finer and increases its surface area, so that the alkali reduction treatment solution easily acts on the alloy. At the same time as this action, the following action is added synergistically.

【0014】先ず、粉砕は、水素吸蔵合金鋳塊に機械的
エネルギーを加えて粉末化する操作であるが、この操作
により水素吸蔵合金には外部からエネルギーが与えられ
ることになる。よって、粉砕時には合金内部のエンタル
ピィが一時的に高まる。したがって、粉砕時及び粉砕直
後の合金は定常より極めて高いエネルギー状態に励起さ
れている(いわゆる活性化された状態となっている)。
そして、このような状態下にある合金の周りには、アル
カリ還元処理溶液が満ちているため、粉砕で新たに形成
された合金の未酸化表面(新生面)は、直ちにアルカリ
還元処理溶液に晒されることになる。つまり、粉砕直後
の合金は、アルカリ還元環境下で、一時的に励起された
状態にあるため、容易に処理溶液の作用を受けるととも
に、還元剤から発生する水素を吸蔵し安定な状態になろ
うとするので、水素を効率的に吸蔵すると考えられる。
First, pulverization is an operation of applying mechanical energy to a hydrogen storage alloy ingot to make it into powder, and this operation gives energy to the hydrogen storage alloy from the outside. Therefore, during crushing, the enthalpy inside the alloy is temporarily increased. Therefore, the alloy at the time of pulverization and immediately after pulverization is excited to an energy state much higher than a steady state (so-called activated state).
Then, since the alkali reduction treatment solution is filled around the alloy under such a state, the unoxidized surface (new surface) of the alloy newly formed by the pulverization is immediately exposed to the alkali reduction treatment solution. Will be. In other words, since the alloy immediately after pulverization is in a state of being temporarily excited in an alkaline reducing environment, the alloy is easily affected by the processing solution, and at the same time, absorbs the hydrogen generated from the reducing agent to be in a stable state. Therefore, it is considered that hydrogen is efficiently absorbed.

【0015】このように、アルカリ還元処理溶液中で水
素吸蔵合金鋳塊を粉砕するという本発明に係る合金粉砕
処理工程は、水素吸蔵合金の表面積を増大し、合金がア
ルカリ還元処理溶液による化学的作用を受け易いように
する作用効果と、水素吸蔵合金自体の内部エンタルピィ
を一時的に高め、合金活性を一時的に増強して一層アル
カリ還元処理溶液による化学的作用を受け易いようにす
るという作用効果を有している。このため、本発明方法
によれば、水素吸蔵合金に対するアルカリ還元処理効果
が顕著に高まり、結果として水素吸蔵合金の活性度が大
幅に向上する。
As described above, in the alloy pulverizing process according to the present invention of pulverizing the hydrogen storage alloy ingot in the alkali reduction treatment solution, the surface area of the hydrogen storage alloy is increased, and the alloy is chemically treated with the alkali reduction treatment solution. The effect of making it more susceptible to the action, and the action of temporarily increasing the internal enthalpy of the hydrogen storage alloy itself and temporarily increasing the alloy activity to make it more susceptible to the chemical action of the alkali reduction treatment solution. Has an effect. For this reason, according to the method of the present invention, the effect of the alkali reduction treatment on the hydrogen storage alloy is significantly increased, and as a result, the activity of the hydrogen storage alloy is greatly improved.

【0016】ここで本発明に係る合金粉砕還元処理工程
においては、不均一歪みが6×10 -3未満の水素吸蔵合
金鋳塊を用いた場合に一層確実な作用効果が得られ、更
に不均一歪みが4.0×10-3以下の水素吸蔵合金鋳塊
に対して行うと、より好ましい作用効果が得られる。そ
の理由は実施例の部で詳しく述べるが、一般に不均一歪
みが増大すると、水素吸蔵合金の活性度が高まるので、
不均一歪み6×10-3以上の合金は活性化に優れている
ので、処理溶液による活性化処理を必要としないからで
ある。
Here, the alloy pulverization reduction process according to the present invention
, The non-uniform distortion is 6 × 10 -3Less than hydrogen storage
A more reliable operation and effect can be obtained when using a gold ingot,
4.0 × 10-3The following hydrogen storage alloy ingots
, More preferable effects can be obtained. So
The reason for this will be described in detail in the embodiment section.
When the concentration increases, the activity of the hydrogen storage alloy increases,
Non-uniform distortion 6 × 10-3These alloys are excellent in activation
Since no activation treatment with a treatment solution is required,
is there.

【0017】また、本発明に係る合金粉砕還元処理工程
において使用するアルカリ還元処理溶液は、PH10以
上とするのが望ましい。その理由は、水素化ホウ素ナト
リウム等の還元剤はPH10以上で分解し、水素を多く
発生するようになるからである。なお、前記不均一歪み
とは、ラウエカメラ等でデバイ環を測定した際、このデ
バイ環がブロードになるという現象の原因の一つであっ
て、下記数1により定義される値をいう。
Further, it is desirable that the alkali reduction treatment solution used in the alloy pulverization reduction step according to the present invention has a pH of 10 or more. The reason is that a reducing agent such as sodium borohydride decomposes at a pH of 10 or more and generates a large amount of hydrogen. The non-uniform distortion is one of the causes of the phenomenon that the Debye ring becomes broad when the Debye ring is measured by a Laue camera or the like, and is a value defined by the following equation (1).

【0018】[0018]

【数1】 (Equation 1)

【0019】[0019]

【実施例】本発明の実施例を以下に示すとともに、本発
明実施例電極を負極として金属−水素化物蓄電池を作製
し、この電池を用いて本発明の作用効果を検証する。 〔実施例1〕次のようにして本発明方法を適用した金属
水素化物電極を作製した。 (水素吸蔵合金のアルカリ還元処理)市販のMm(ミッ
ショメタル)、Ni、Co(コバルト)、Al(アルミ
ニウム)、Mn(マンガン)を原料とし、これらが元素
比で1:3.4:0.8:0.2:0.6の割合となる
ように秤量し、高周波溶解炉を用いて組成MmNi3. 4
Co0.8 Al0.2 Mn0.6 で表せる水素吸蔵合金鋳塊
(M1 )を作製した。この合金の不均一歪みは、5.4
×10-3であった。
EXAMPLES Examples of the present invention will be described below, and a metal-hydride storage battery will be manufactured using the electrodes of the examples of the present invention as a negative electrode, and the operation and effect of the present invention will be verified using this battery. Example 1 A metal hydride electrode to which the method of the present invention was applied was manufactured as follows. (Alkali reduction treatment of hydrogen storage alloy) Commercially available Mm (mission metal), Ni, Co (cobalt), Al (aluminum), and Mn (manganese) are used as raw materials, and these have an element ratio of 1: 3.4: 0. 8: 0.2: were weighed so as to be 0.6 ratio, composition using a high frequency melting furnace MmNi 3. 4
A hydrogen storage alloy ingot (M 1 ) represented by Co 0.8 Al 0.2 Mn 0.6 was produced. The non-uniform strain of this alloy is 5.4.
× 10 -3 .

【0020】上記水素吸蔵合金鋳塊(M1 )を、直径1
インチのアルミナ製ボール2kgを入れた回転型ボール
ミル(アルミナ製、内容積1リットル)に入れ、内部を
不活性ガス雰囲気とした状態で、平均粒径が500μm
以下になるまで乾式粉砕した。この粉砕末を水素吸蔵合
金末M2 とする。次いで、このM2 末の適当量と水素化
ホウ素ナトリウム1%、水酸化カリウム30%を含有し
た水溶液(以下、この様な水溶液を処理溶液という)と
を前記と同様なボールミルに入れ、合金の平均粒径が1
50μm以下になるまで室温でボールミル湿式粉砕を行
った。
The hydrogen storage alloy ingot (M 1 ) was
In a rotary ball mill (made of alumina, inner volume: 1 liter) containing 2 kg of inch-sized alumina balls, the average particle size is 500 μm with the inside being an inert gas atmosphere.
The dry pulverization was carried out to the following. The end of this ground to the hydrogen storage alloy powder M 2. Then, an appropriate amount sodium borohydride 1% of M 2 powder, an aqueous solution containing 30% potassium hydroxide (hereinafter, referred to such aqueous treatment solution) were placed and the same ball mill, the alloy Average particle size is 1
Ball mill wet pulverization was performed at room temperature until the particle size became 50 μm or less.

【0021】ボールミル湿式粉砕処理の後、ボールミル
から取り出した粉砕末をイオン交換水で洗浄し、真空下
40℃で乾燥して、粉砕還元処理水素吸蔵合金粉末を得
た。この合金粉末を以下、粉砕還元処理合金(a1 )と
称する。なお、ボールミルの運転条件は、ポットの回転
数;110rpm、運転継続時間;約4時間であった。
また、合金末の粒径はJIS篩により求めた。但し、運
転条件は厳密に規定されるものではなく、合金の平均粒
径が150μm以下になるように適当に設定すればよ
い。 (水素吸蔵合金電極の作製)前記粉砕還元処理合金(a
1 )に、結着剤としてポリテトラフルオロエチレン粉末
を活物質重量に対して5重量%加えて混練し、ペースト
を作製した。このペーストをパンチングメタルから成る
集電体の両面に塗布後、プレスして、本発明に係る水素
吸蔵合金電極(A1 )を作製した。 〔実施例2〕 (水素吸蔵合金の粉砕還元処理)実施例1で用いた水素
吸蔵合金鋳塊(M1 )を、不活性ガス中で1000℃で
8時間アニール処理し、アニール処理済水素吸蔵合金鋳
塊(M3 )を作製した。このアニール処理済水素吸蔵合
金鋳塊(M3 )の不均一歪みは、2.5×10-3であっ
た。
After the ball mill wet pulverization, the pulverized powder removed from the ball mill was washed with ion-exchanged water and dried at 40 ° C. under vacuum to obtain a pulverized reduction-treated hydrogen storage alloy powder. This alloy powder is hereinafter referred to as a pulverized reduction alloy (a 1 ). The operation conditions of the ball mill were as follows: pot rotation speed: 110 rpm, operation duration: about 4 hours.
The particle size of the alloy powder was determined by a JIS sieve. However, the operating conditions are not strictly defined, and may be set appropriately so that the average particle size of the alloy is 150 μm or less. (Preparation of Hydrogen Storage Alloy Electrode)
In 1 ), a polytetrafluoroethylene powder as a binder was added in an amount of 5% by weight based on the weight of the active material and kneaded to prepare a paste. This paste was applied to both sides of a current collector made of a punching metal, and then pressed to produce a hydrogen storage alloy electrode (A 1 ) according to the present invention. [Example 2] (Pulverization reduction treatment of hydrogen storage alloy) The hydrogen storage alloy ingot (M 1 ) used in Example 1 was annealed in an inert gas at 1000 ° C for 8 hours, and hydrogen storage after annealing was performed. An alloy ingot (M 3 ) was produced. The non-uniform strain of the annealed hydrogen storage alloy ingot (M 3 ) was 2.5 × 10 −3 .

【0022】このアニール処理済水素吸蔵合金鋳塊(M
3 )について、上記実施例1と全く同様に処理操作を行
い、粉砕還元処理済の水素吸蔵合金粉末(a2 )を作製
した。この合金末を以下、粉砕還元処理合金(a2 )と
称する。 (水素吸蔵合金電極の作製)前記粉砕還元処理合金(a
2 )を用いた以外は、上記実施例1と全く同様にして、
本発明に係る水素吸蔵合金電極(A2 )を作製した。 〔比較例1〕処理溶液として30%水酸化カリウム水溶
液を使用して合金粉末を作製したこと以外は、実施例1
と同様にして比較電極B1 を作製した。 〔比較例2〕処理溶液として1%水素化ホウ素ナトリウ
ム水溶液を使用して合金粉末を作製したこと以外は、実
施例1と同様にして比較電極B2 を作製した。 〔比較例3〕処理溶液として30%水酸化カリウム水溶
液を使用して合金粉末を作製したこと以外は、実施例2
(アニール処理した水素吸蔵合金鋳塊M3 を使用)と同
様にして比較電極B3 を作製した。 〔比較例4〕処理溶液として1%水素化ホウ素ナトリウ
ム水溶液を使用して合金粉末を作製したこと以外は、実
施例2と同様にして比較電極B4 を作製した。 〔比較例5〕水素吸蔵合金鋳塊M1 を、水素化カリウム
30%、水素化ホウ素ナトリウム1%の処理溶液(25
℃)に、2時間浸漬した後、イオン交換水で洗浄し、真
空下40℃で乾燥して浸漬処理合金を得た。そして、こ
の浸漬処理合金を用い実施例1と同様にして比較電極B
5 を作製した。 〔比較例6〕水素化ホウ素ナトリウム1%の処理溶液を
使用したこと以外は、比較例5と同様にして、比較電極
6 を作製した。 〔比較例7〕水素吸蔵合金鋳塊M3 を使用したこと以外
は、比較例5と同様にして、比較電極B7 を作製した。 〔比較例8〕水素吸蔵合金鋳塊M3 を使用し、浸漬処理
溶液として水素化ホウ素ナトリウム1%水溶液を使用し
たこと以外は、比較例5と同様にして、比較電極B8
作製した。 〔比較例9〕水素吸蔵合金鋳塊M1 をそのまま用い、実
施例1と同様に比較電極B9 を作製した。 〔比較例10〕水素吸蔵合金鋳塊M3 をそのまま用い、
実施例1と同様に比較電極B10を作製した。
This annealed hydrogen storage alloy ingot (M
Regarding 3 ), the treatment operation was performed in exactly the same manner as in Example 1 to produce a pulverized and reduced hydrogen storage alloy powder (a 2 ). This alloy powder is hereinafter referred to as a pulverized reduction alloy (a 2 ). (Preparation of Hydrogen Storage Alloy Electrode)
Except that 2 ) was used, exactly the same as in Example 1 above,
A hydrogen storage alloy electrode (A 2 ) according to the present invention was produced. Comparative Example 1 Example 1 was repeated except that an alloy powder was prepared using a 30% aqueous potassium hydroxide solution as a processing solution.
To produce a comparison electrode B 1 in the same manner as. Except that Comparative Example 2 treated solution using 1% aqueous sodium borohydride solution as to produce an alloy powder to produce a comparison electrode B 2 in the same manner as in Example 1. Comparative Example 3 Example 2 was repeated except that an alloy powder was prepared using a 30% aqueous potassium hydroxide solution as a processing solution.
(Using hydrogen-absorbing alloy ingot M 3 was annealed) and to produce a comparison electrode B 3 in the same manner. Except that Comparative Example 4 treated solution using 1% aqueous sodium borohydride solution as to produce an alloy powder to produce a comparison electrode B 4 in the same manner as in Example 2. [Comparative Example 5] A hydrogen storage alloy ingot M 1 was treated with a treatment solution of potassium hydride 30% and sodium borohydride 1% (25%).
C.) for 2 hours, washed with ion-exchanged water, and dried at 40 ° C. under vacuum to obtain an immersion-treated alloy. Then, the comparative electrode B was prepared in the same manner as in Example 1 using the immersion-treated alloy.
5 was produced. Comparative Example 6 except for using sodium borohydride 1% treatment solution in the same manner as in Comparative Example 5 was produced compared electrode B 6. Comparative Example 7 except for using a hydrogen-absorbing alloy ingot M 3 are, in the same manner as in Comparative Example 5 was produced compared electrode B 7. Comparative Example 8 using the hydrogen-absorbing alloy ingot M 3, except for using sodium borohydride 1% aqueous solution as an immersion processing solution, in the same manner as in Comparative Example 5 was produced compared electrode B 8. Used as the Comparative Example 9] hydrogen-absorbing alloy ingot M 1, to prepare a comparative electrode B 9 in the same manner as in Example 1. As used Comparative Example 10] hydrogen-absorbing alloy ingot M 3,
To produce a comparison electrode B 10 in the same manner as in Example 1.

【0023】〔実験1〕極として、上記で作製した本発
明方法に係る金属水素化物電極(A1 )、(A 2 )及び
比較電極(B1 )〜(B10)をそれぞれ用い、これと公
知の方法で作製した焼結式ニッケル正極とを、不織布か
らなるセパレータを介して巻回し、電池群を作製した。
この電池群を公知の円筒状外装缶に挿入し、30重量%
の水酸化カリウム水溶液を注入した後、密閉して理論容
量が1000mAhのニッケル−水素化物電池を作製し
た。そして、これらの各電池を下記条件で活性化した。
[Experiment 1] The present invention prepared above was used as a pole.
Metal hydride electrode (A1), (A Two)as well as
Reference electrode (B1)-(BTen), And this and public
The sintered nickel positive electrode produced by a known method is
The battery was wound with a separator formed between the batteries to form a battery group.
This battery group was inserted into a well-known cylindrical outer can, and 30% by weight
After injecting potassium hydroxide aqueous solution of
A nickel-hydride battery having a capacity of 1000 mAh was manufactured.
Was. Then, each of these batteries was activated under the following conditions.

【0024】電池活性化条件 100mAで16時間充電した後、1時間休止する。次
いで200mAhで電池電圧が1.0Vになるまで放電
し、その後1時間休止する。この一連の操作を1サイク
ルとし、同様な操作を室温環境下で3回繰り返して行
う。このようにして活性化操作を行った12通りのニッ
ケル−水素化物蓄電池を、使用した負極電極に対応させ
て、それぞれ電池XA1 、XA2 及びXB1 〜XB 10
する。
[0024]Battery activation conditions After charging at 100 mA for 16 hours, rest for 1 hour. Next
Discharge at 200 mAh until the battery voltage reaches 1.0 V
And then rest for one hour. One cycle of this series of operations
And repeat the same operation three times in a room temperature environment.
U. The twelve types of nicks that have been activated in this way
Kel-Hydride storage battery, corresponding to the negative electrode used
And each battery XA1, XATwoAnd XB1~ XB TenWhen
I do.

【0025】上記各電池について、高率放電特性、低温
放電特性、充放電サイクル特性を調べた。そして、高率
放電特性と低温放電特性については、測定した各電池の
特性値を比較することにより、また充放電サイクル特性
については、電池容量が500mAhに達した時点で電
池寿命が尽きたものとみなし、この時点のサイクル数を
比較することにより、それぞれの負極特性を評価した。
但し、各特性値は次のような条件で測定した。
The high-rate discharge characteristics, low-temperature discharge characteristics, and charge / discharge cycle characteristics of each of the above batteries were examined. The high-rate discharge characteristics and the low-temperature discharge characteristics were compared by comparing the measured characteristic values of the batteries, and the charge-discharge cycle characteristics were determined to indicate that the battery life had expired when the battery capacity reached 500 mAh. Considering this, the respective negative electrode characteristics were evaluated by comparing the number of cycles at this time.
However, each characteristic value was measured under the following conditions.

【0026】高率放電特性 室温環境下において、100mAで16時間充電し、1
時間休止た後、4000mAで電池電圧が1.0Vにな
るまで放電して、放電容量を測定する。低温放電特性 室温環境下において100mAで16時間充電する。そ
の後0℃環境で3時間休止した後、1000mAで電池
電圧が1.0Vになるまで放電し、放電容量を測定す
る。
High Rate Discharge Characteristics In a room temperature environment, the battery was charged at 100 mA for 16 hours,
After a pause, the battery is discharged at 4000 mA until the battery voltage reaches 1.0 V, and the discharge capacity is measured. Low temperature discharge characteristics Charge at 100 mA for 16 hours in a room temperature environment. Thereafter, after a pause of 3 hours in a 0 ° C. environment, the battery is discharged at 1000 mA until the battery voltage becomes 1.0 V, and the discharge capacity is measured.

【0027】充放電サイクル特性 室温環境において、1500mAで48分間充電した
後、1時間休止する。次いで、1500mAで電池電圧
が1.0Vになるまで放電して、1時間休止する。この
一連の操作を1サイクルとし、このサイクルを電池容量
が500mAhに達するまで繰り返す。 (測定結果)表1に高率放電特性、表2に低温放電特
性、表3に充放電サイクル特性の測定結果を示す。
Charge / discharge cycle characteristics In a room temperature environment, the battery is charged at 1500 mA for 48 minutes, and then paused for 1 hour. Next, the battery is discharged at 1500 mA until the battery voltage becomes 1.0 V, and the battery is paused for 1 hour. This series of operations is defined as one cycle, and this cycle is repeated until the battery capacity reaches 500 mAh. (Measurement Results) Table 1 shows the measurement results of the high-rate discharge characteristics, Table 2 shows the measurement results of the low-temperature discharge characteristics, and Table 3 shows the measurement results of the charge / discharge cycle characteristics.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】表1及び表2から明らかなように、本発明
に係る電池XA1 〜XA2 の高率放電特性及び低温放電
特性は、何れも比較例電池XB1 〜XB10のそれよりも
顕著に優れていた。このことを更に詳細に述べる。水素
化ホウ素ナトリウム1%、水酸化カリウム30%水溶液
を処理溶液として使用したXA1 〜XA2 (粉砕還元処
理法)、XB5 及びXB7 (浸漬法)について見ると、
同じ処理溶液を使用したにもかかわらず、処理方法の違
いにより明確な差が認められた。即ち、粉砕還元処理法
を用いた本発明に係る電池XA1 〜XA2 は、浸漬法を
用いた比較例電池XB5 、XB7 より高率放電容量、低
温放電容量とも有為に高い値を示した。このことから、
水素吸蔵合金鋳塊を還元剤含有アルカリ溶液中で粉砕処
理した場合、単に同溶液に浸漬する方法に比較し、水素
吸蔵合金の活性度が大幅に向上することが確認された。
As is clear from Tables 1 and 2 , the high-rate discharge characteristics and the low-temperature discharge characteristics of the batteries XA 1 to XA 2 according to the present invention are all more remarkable than those of the comparative batteries XB 1 to XB 10. Was excellent. This will be described in more detail. Sodium borohydride 1%, XA 1 ~XA 2 (crushing reduction method) using potassium 30% aqueous hydroxide as the processing solution, regarding XB 5 and XB 7 (immersion method),
Despite the use of the same processing solution, a clear difference was observed due to the difference in the processing method. That is, the battery XA 1 ~XA 2 according to the present invention using the grinding reduction treatment method, high-rate discharge capacity than the comparative example batteries XB 5, XB 7 using dipping method, the significance high value with low-temperature discharge capacity Indicated. From this,
It was confirmed that when the hydrogen storage alloy ingot was pulverized in a reducing agent-containing alkaline solution, the activity of the hydrogen storage alloy was significantly improved as compared with the method of simply immersing the ingot in the solution.

【0032】一方、粉砕処理法を用いた場合であって
も、処理溶液として水酸化カリウム30%水溶液を使用
したXB1 及びXB3 では、本発明に係る電池XA1
XA2はもとより、全く処理操作を行わなかったXB9
又はXB10よりも、高率放電特性、低温放電特性とも悪
かった。ほぼ同様なことが水素化ホウ素ナトリウム1%
水溶液を使用したXB2 及びXB4 についてもいえる。
但し、水素化ホウ素ナトリウム1%の場合は、前者と異
なり還元作用があるため、全く処理操作を行わなかった
XB9 又はXB10よりも、高率放電特性、低温放電特性
とも若干高かった。
On the other hand, even when the pulverization method is used, the batteries XA 1 to XA 1 to XB 1 according to the present invention are used in XB 1 and XB 3 using a 30% aqueous solution of potassium hydroxide as the processing solution.
Not only XA 2 but also XB 9 which did not perform any processing operation
Or than XB 10, high-rate discharge characteristics, poor even with low-temperature discharge characteristics. Almost same thing 1% of sodium borohydride
The same is true for XB 2 and XB 4 using an aqueous solution.
However, in the case of sodium borohydride 1%, since the former had a reducing action, the high-rate discharge characteristics and the low-temperature discharge characteristics were slightly higher than those of XB 9 or XB 10 in which no treatment was performed.

【0033】次に表3の結果について説明する。表3か
ら明らかなように、本発明に係る電池XA1 (不均一歪
み5.4×10-3)の充放電サイクル寿命は、同じ不均
一歪みの合金を用いた比較例(XB1 〜XB2 、XB5
〜XB6 、XB9 )と同等乃至やや優れていた。他方、
本発明に係る電池XA2 (不均一歪み2.5×10-3
では、前記XA1 及び全ての比較例電池に比較し、充放
電サイクル寿命が顕著に優れていた。このことから、充
放電サイクル寿命の側面からも本発明方法の優位性(効
果)が確認された。なお、XA1 とXA2 との間に大き
なサイクル寿命差が認められたが、これは合金の不均一
歪みの違いの基づくものであろうと考察される。
Next, the results in Table 3 will be described. As is clear from Table 3, the charge / discharge cycle life of the battery XA 1 (non-uniform strain 5.4 × 10 −3 ) according to the present invention is comparable to that of the comparative examples (XB 1 to XB 1 ) using alloys having the same non-uniform strain. 2 , XB 5
To XB 6 and XB 9 ). On the other hand,
Battery XA 2 according to the present invention (non-uniform distortion 2.5 × 10 −3 )
So compared to the XA 1 and all of the comparative example battery, charge-discharge cycle life was remarkably excellent. From this, the superiority (effect) of the method of the present invention was also confirmed from the aspect of charge / discharge cycle life. Although a large cycle life difference was observed between XA 1 and XA 2 , it is considered that this was probably due to the difference in non-uniform strain of the alloy.

【0034】〔実験2〕合金不均一歪を種々に変えた水
素吸蔵合金鋳塊に対し、本発明方法を適用して合金不均
一歪みの異なる水素吸蔵合金粉末を作製し、この合金粉
末を用い、前記実施例1と同様にして合金不均一歪のみ
を異にする各種電池を作製した。また、比較対照とし
て、処理溶液として1%水素化ホウ素ナトリウム水溶液
を使用したこと以外は、前記と同様に作製した電池、及
び溶液処理操作を全く行わずに作製した電池を用意し
た。そして、これらの電池について、実験1と同様な条
件で高率放電特性を調べた。
[Experiment 2] Hydrogen storage alloy ingots having different alloy non-uniform strains were produced by applying the method of the present invention to hydrogen storage alloy ingots having variously changed alloy non-uniform strains, and this alloy powder was used. Various batteries were prepared in the same manner as in Example 1 except that only the alloy nonuniform strain was different. In addition, as a control, a battery prepared in the same manner as above except that a 1% aqueous solution of sodium borohydride was used as a treatment solution, and a battery produced without performing any solution treatment operation were prepared. Then, high-rate discharge characteristics of these batteries were examined under the same conditions as in Experiment 1.

【0035】実験結果を図1に示す。図1から、本発明
方法を適用した電池は、広範囲の不均一歪みにおいて高
い放電容量(900mAh以上)を示した。これに対
し、処理溶液として1%水素化ホウ素ナトリウム水溶液
を使用して調製した電池、及び溶液処理操作を全く行わ
なかった電池は、本発明方法を適用した電池に比べ、高
率放電特性が劣っており、特に合金不均一歪みが小さく
なる程、本発明方法適用電池との差が拡大した。
FIG. 1 shows the experimental results. From FIG. 1, the battery to which the method of the present invention was applied showed a high discharge capacity (900 mAh or more) in a wide range of non-uniform strain. On the other hand, batteries prepared using a 1% aqueous sodium borohydride solution as a processing solution and batteries not subjected to any solution processing operation have inferior high-rate discharge characteristics as compared with batteries to which the method of the present invention is applied. In particular, the difference from the battery to which the method of the present invention was applied increased as the alloy non-uniform strain became smaller.

【0036】図1の結果に基づいて、不均一歪みの面か
ら、本発明方法の作用効果を評価すると、本発明方法適
用電池は不均一歪み6×10-3未満において、1%水素
化ホウ素ナトリウム水溶液を使用して調製した電池に比
べ高い放電容量を示している。即ち、還元剤含有アルカ
リ処理溶液を用いた湿式粉砕還元処理を行う本発明方法
は、不均一歪み6×10-3未満において効果的であるこ
とが判る。更に、1%水素化ホウ素ナトリウム水溶液を
使用して調製した電池と、本発明方法適用電池との放電
容量を比較すると、不均一歪み4×10-3のところに屈
折点があることが判る。つまり、本発明方法は不均一歪
み4×10-3以下で一層効果的になることが判る。
[0036] Based on the results of FIG. 1, in terms of non-uniform distortion, when assessing the effects of the present inventive method, the present invention method applied battery in less than irregular distortion 6 × 10 -3, 1% borohydride It shows a higher discharge capacity than a battery prepared using a sodium aqueous solution. That is, it can be seen that the method of the present invention in which the wet pulverizing and reducing treatment using a reducing agent-containing alkali treatment solution is effective at less than a nonuniform strain of 6 × 10 −3 . Further, comparing the discharge capacity of the battery prepared using a 1% aqueous solution of sodium borohydride and the battery to which the method of the present invention is applied, it can be seen that there is a refraction point at a nonuniform strain of 4 × 10 −3 . In other words, it is understood that the method of the present invention becomes more effective when the nonuniform distortion is 4 × 10 −3 or less.

【0037】〔実験3〕実験3では、本発明方法におけ
る処理溶液PHの影響を調べた。実験条件は次のようで
ある。即ち、水素化ホウ素ナトリウムを1%に固定し、
溶液PHが7〜14になるように水酸化カリウム添加量
を0%〜30%に変化させて、各種処理溶液を調製し
た。この処理溶液を用い不均一歪み2.5×10-3
合金鋳塊に対し本発明方法にかかる湿式粉砕を行った。
その他の事項については実施例1と同様にして各種電池
を作製し、これらの電池について前記実験1と同様な条
件で高率放電特性を調べた。
[Experiment 3] In Experiment 3, the effect of the treatment solution PH on the method of the present invention was examined. The experimental conditions are as follows. That is, sodium borohydride is fixed at 1%,
Various treatment solutions were prepared by changing the amount of potassium hydroxide added from 0% to 30% so that the solution PH became 7-14. Using this processing solution, an alloy ingot having a non-uniform strain of 2.5 × 10 −3 was subjected to wet grinding according to the method of the present invention.
For other items, various batteries were manufactured in the same manner as in Example 1, and high-rate discharge characteristics of these batteries were examined under the same conditions as in Experiment 1.

【0038】実験結果を図2に示す。図2から明らかな
ように、処理溶液PH10を境にして高率放電特性が大
きく変化し、PH10未満では顕著に放電容量値が小さ
くなった。このことから、本発明方法は処理溶液PHを
10以上に調製するのが好ましいことが判る。 (その他の事項)上記実施例では、還元剤として水素化
ホウ素ナトリウムを用いたが、還元剤は水素化ホウ素ナ
トリウムに限定されるものでないことは勿論であって、
例えば水素化アルミニウム、次亜リン酸ナトリウム、次
亜リン酸カリウム、ホルマリン等が使用できる。更に付
記すれば、本発明方法における還元剤は、アルカリ溶液
中で粉砕操作時に水素を水素吸蔵合金に供給し得る還元
性物質であればよく、固体間反応を排除するものではな
い。
FIG. 2 shows the experimental results. As is clear from FIG. 2, the high-rate discharge characteristics greatly changed at the boundary of the treatment solution PH10, and the discharge capacity value was remarkably reduced below PH10. This indicates that the method of the present invention preferably adjusts the treatment solution PH to 10 or more. (Other Matters) In the above embodiment, sodium borohydride was used as a reducing agent. However, it goes without saying that the reducing agent is not limited to sodium borohydride.
For example, aluminum hydride, sodium hypophosphite, potassium hypophosphite, formalin and the like can be used. It is further noted that the reducing agent in the method of the present invention may be any reducing substance capable of supplying hydrogen to the hydrogen storage alloy during the pulverizing operation in an alkaline solution, and does not exclude a solid-solid reaction.

【0039】また上記実施例では、アルカリとして水酸
化カリウムを用いたが、これに限定されるものではな
く、他のアルカリ性物質を適当に選択使用できる。更に
上記実施例では処理溶液の溶媒として水を用いたが、こ
れに限定されるものでもない。要は湿式粉砕において、
水素吸蔵合金鋳塊に対する還元性物質及びアルカリ性物
質の作用を阻害せず、また水素吸蔵合金自体に悪影響を
及ぼさない溶媒であればよい。そして更に付け加えれ
ば、前記還元性物質及びアルカリ性物質と溶媒との相溶
性は必須の要件ではない。なお、他の溶媒の一例を挙げ
ると、水とアルカリ類との混合液がある。
In the above embodiment, potassium hydroxide was used as the alkali. However, the present invention is not limited to this, and other alkaline substances can be appropriately selected and used. Further, in the above embodiment, water was used as the solvent of the processing solution, but the present invention is not limited to this. In short, in wet grinding,
Any solvent that does not inhibit the action of the reducing substance and the alkaline substance on the hydrogen storage alloy ingot and does not adversely affect the hydrogen storage alloy itself may be used. Further, the compatibility of the reducing substance and the alkaline substance with the solvent is not an essential requirement. In addition, as an example of another solvent, there is a mixed solution of water and alkalis.

【0040】[0040]

【発明の効果】以上に説明したように、本発明方法によ
れば、水素吸蔵合金の活性度が格段に向上するので、こ
の水素吸蔵合金を主成分とする金属水素化物電極は、従
来の活性化処理方法を適用した負極に比較し、負極性能
が顕著に向上する。よって、本発明にかかる金属水素化
物電極を使用した場合、高率放電特性、低温放電特性、
更には充放電サイクル特性に優れた金属−水素化物アル
カリ蓄電池を得ることができる。
As described above, according to the method of the present invention, the activity of the hydrogen storage alloy is remarkably improved. The performance of the negative electrode is remarkably improved as compared with the negative electrode to which the conversion treatment method is applied. Therefore, when using the metal hydride electrode according to the present invention, high-rate discharge characteristics, low-temperature discharge characteristics,
Further, a metal-hydride alkaline storage battery having excellent charge-discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を適用した金属水素化物電極を用い
た金属−水素化物アルカリ蓄電池 における、合金不均
一歪みと高率放電特性の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between alloy non-uniform strain and high-rate discharge characteristics in a metal-hydride alkaline storage battery using a metal hydride electrode to which the method of the present invention is applied.

【図2】本発明方法を適用した金属水素化物電極を用い
た金属−水素化物アルカリ蓄電池における、処理溶液の
PHと高率放電特性の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the pH of a processing solution and high-rate discharge characteristics in a metal-hydride alkaline storage battery using a metal hydride electrode to which the method of the present invention is applied.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/62 H01M 10/24 - 10/30 C22C 19/00 B22F 9/00 - 9/30 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/24-4/62 H01M 10/24-10/30 C22C 19/00 B22F 9/00-9 / 30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金鋳塊を粉砕して水素吸蔵合
金粉末とし、この水素吸蔵合金粉末を用いて電極を作製
する金属水素化物電極の製造方法において、 水素吸蔵合金鋳塊を還元剤含有アルカリ溶液中で粉砕し
て水素吸蔵合金粉末となす水素吸蔵合金粉砕還元処理工
程を有することを特徴とした金属水素化物電極の製造方
法。
1. A method for manufacturing a metal hydride electrode, wherein a hydrogen storage alloy ingot is pulverized into a hydrogen storage alloy powder, and an electrode is manufactured using the hydrogen storage alloy powder. A method for producing a metal hydride electrode, comprising a hydrogen storage alloy pulverization reduction step of pulverizing in an alkaline solution to form a hydrogen storage alloy powder.
【請求項2】 不均一歪みが6×10-3未満である水素
吸蔵合金鋳塊に対し、前記水素吸蔵合金粉砕還元処理を
行うことを特徴とする請求項1記載の金属水素化物電極
の製造方法
2. The metal hydride electrode according to claim 1, wherein the hydrogen storage alloy ingot having a non-uniform strain of less than 6 × 10 -3 is subjected to the hydrogen storage alloy pulverization reduction treatment. Method
【請求項3】 PH10以上の還元剤含有アルカリ溶液
を用い前記水素吸蔵合金粉砕還元処理を行うことを特徴
とする請求項1または請求項2記載の金属水素化物電極
の製造方法。
3. The method for producing a metal hydride electrode according to claim 1, wherein the pulverizing and reducing treatment of the hydrogen storage alloy is performed using an alkaline solution containing a reducing agent having a pH of 10 or more.
JP21443593A 1993-08-30 1993-08-30 Method for producing metal hydride electrode Expired - Fee Related JP3322449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21443593A JP3322449B2 (en) 1993-08-30 1993-08-30 Method for producing metal hydride electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21443593A JP3322449B2 (en) 1993-08-30 1993-08-30 Method for producing metal hydride electrode

Publications (2)

Publication Number Publication Date
JPH0765828A JPH0765828A (en) 1995-03-10
JP3322449B2 true JP3322449B2 (en) 2002-09-09

Family

ID=16655740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21443593A Expired - Fee Related JP3322449B2 (en) 1993-08-30 1993-08-30 Method for producing metal hydride electrode

Country Status (1)

Country Link
JP (1) JP3322449B2 (en)

Also Published As

Publication number Publication date
JPH0765828A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
EP0645833B1 (en) Method for producing a hydrogen absorbing alloy electrode
JP3318141B2 (en) Method for producing hydrogen storage alloy electrode
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP3432870B2 (en) Method for producing metal hydride electrode
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP3322449B2 (en) Method for producing metal hydride electrode
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JP3454600B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3189361B2 (en) Alkaline storage battery
JP3043143B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3568337B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3136960B2 (en) Method of treating hydrogen storage alloy for batteries
JP2003173772A (en) Hydrogen storage alloy powder for electrode and its manufacturing method
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JPH0513077A (en) Manufacture of hydrogen storage alloy electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees