JP2645889B2 - Method for producing hydrogen storage alloy electrode for alkaline storage battery - Google Patents

Method for producing hydrogen storage alloy electrode for alkaline storage battery

Info

Publication number
JP2645889B2
JP2645889B2 JP1127302A JP12730289A JP2645889B2 JP 2645889 B2 JP2645889 B2 JP 2645889B2 JP 1127302 A JP1127302 A JP 1127302A JP 12730289 A JP12730289 A JP 12730289A JP 2645889 B2 JP2645889 B2 JP 2645889B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
battery
electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1127302A
Other languages
Japanese (ja)
Other versions
JPH02306541A (en
Inventor
修弘 古川
健次 井上
光造 野上
誠司 亀岡
幹朗 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14956593&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2645889(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1127302A priority Critical patent/JP2645889B2/en
Publication of JPH02306541A publication Critical patent/JPH02306541A/en
Application granted granted Critical
Publication of JP2645889B2 publication Critical patent/JP2645889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、水素を可逆的に吸蔵、放出することのでき
る、アルカリ蓄電池用水素吸蔵合金電極の製造方法に関
する。
The present invention relates to a method for producing a hydrogen storage alloy electrode for an alkaline storage battery, capable of reversibly storing and releasing hydrogen.

(ロ) 従来の技術 従来から良く用いられている蓄電池としては、ニッケ
ル−カドミウム蓄電池のごときアルカリ蓄電池或いは鉛
蓄電池などがある。近年、これらの電池より軽量且つ高
容量で高エネルギー密度となる可能性のある、水素吸蔵
合金を用いてなる水素吸蔵合金電極を負極に備えた金属
−水素アルカリ蓄電池が注目されている。
(B) Conventional technology Conventionally used storage batteries include alkaline storage batteries such as nickel-cadmium storage batteries and lead storage batteries. In recent years, attention has been paid to a metal-hydrogen alkaline storage battery having a negative electrode having a hydrogen storage alloy electrode using a hydrogen storage alloy, which is likely to be lighter, have a higher capacity, and have a higher energy density than these batteries.

この種電池の負極に用いられる水素吸蔵合金として
は、例えば特公昭59−49671号公報に開示されているよ
うに、LaNi5やその改良である三元素系のLaNi4Co、LaNi
4Cu及びLaNi4.8Fe0.2などの合金が知られている。これ
らの合金粉末を導電材粉末とともに焼結してなる多孔体
を水素吸蔵合金電極としたり(特公昭59−49669号公
報)、あるいはこれら水素吸蔵合金粉末と導電材粉末と
の混合物を耐電解液性の粒子状結着剤によって電極支持
体に固着させて水素吸蔵合金電極とする方法(特公昭57
−30273号公報)などが採られている。
As the hydrogen storage alloy used for the negative electrode of this type of battery, for example, as disclosed in Japanese Patent Publication No. 59-49671, LaNi 5 or a three-element LaNi 4 Co,
4 alloys, such as Cu and LaNi 4.8 Fe 0.2 is known. A porous body obtained by sintering these alloy powders with a conductive material powder may be used as a hydrogen storage alloy electrode (Japanese Patent Publication No. 59-49669), or a mixture of the hydrogen storage alloy powder and the conductive material powder may be used as an electrolytic solution. A hydrogen storage alloy electrode by adhering it to an electrode support with a porous particulate binder.
No. -30273).

また、正極としては、ニッケル−カドミウム蓄電池な
どに用いられる焼結式ニッケル極が用いられている。
As the positive electrode, a sintered nickel electrode used for a nickel-cadmium storage battery or the like is used.

特に、水素吸蔵合金を溶融、粉砕して水素吸蔵合金電
極とする方法は、特開昭60−250558号公報に詳述されて
いる。これは水素吸蔵合金に用いられる原料としての金
属を一定の組成比に秤量、混合し、アーク溶解炉に入れ
て減圧のアルゴン雰囲気下でアーク放電し、加熱溶解さ
せて得た水素吸蔵合金のインゴットを粗粉砕後、ボール
ミルで微粉末にするものである。このようにして得た、
水素蔵合金微粉と結着剤とを用いて導電芯体に塗着、充
填するものは公知である。
Particularly, a method of melting and pulverizing a hydrogen storage alloy to form a hydrogen storage alloy electrode is described in detail in Japanese Patent Application Laid-Open No. 60-250558. This is an ingot of a hydrogen storage alloy obtained by weighing and mixing a metal as a raw material used in a hydrogen storage alloy at a fixed composition ratio, placing it in an arc melting furnace, performing arc discharge under a reduced-pressure argon atmosphere, and heating and melting. Is coarsely pulverized and then finely ground by a ball mill. Obtained in this way,
What coats and fills a conductive core using hydrogen storage alloy fine powder and a binder is known.

この種、水素吸蔵合金電極は、充放電サイクルを繰り
返すことにより水素吸蔵合金が微粉化したり、電極の変
形や水素吸蔵合金が電極から脱落する事により、サイク
ル寿命となってしまう。
This type of hydrogen storage alloy electrode has a cycle life due to the hydrogen storage alloy being pulverized by repeating the charge / discharge cycle, or the electrode being deformed or the hydrogen storage alloy falling off the electrode.

そこで水素吸蔵合金を負極に用いる場合には、電極支
持体に充電する前にあらかじめ前記合金を微粉化させて
おき、電池の充放電サイクルが進行しても、それ以上の
微粉化が進行しないようにする方法が検討されている。
Therefore, when using a hydrogen storage alloy for the negative electrode, the alloy is finely divided in advance before charging the electrode support, so that even when the charge and discharge cycle of the battery proceeds, further fineness does not proceed. A way to do this is being considered.

この水素吸蔵合金の微粉化、即ち粉砕方法としては、
合金に水素を強制的に吸蔵、放出させて微粉化する水素
化粉砕方法と、ボールミル等を用い機械的に粉砕する機
械粉砕方法とがある。前記せる水素化粉砕方法は、一度
に多くの合金を粉砕することができないので、量産上好
ましいとは言えない。一方、機械粉砕方法は、粉砕した
水素吸蔵合金が活性であるので酸素と反応し易い。その
ため粉砕を不活性雰囲気下、有機溶剤中あるいはアルカ
リ水溶液中で行い、合金表面の酸化を抑制することが提
案されている(例えば特開昭63−141258号公報参照)。
しかしながら、不活性雰囲気下での粉砕は、装置が大型
化し、種々の制約を受けるので電極製造工程上好ましい
とは言えない。また有機溶剤中における粉砕は、有機溶
剤の取り扱いに難点があり、危険性があるので、アルカ
リ水溶液を用いる方が好ましいと言える。
As a method of pulverizing the hydrogen storage alloy, that is, a grinding method,
There are a hydrogenation pulverization method in which hydrogen is forcibly absorbed and released into the alloy to form fine powder, and a mechanical pulverization method in which the alloy is mechanically pulverized using a ball mill or the like. The hydrogrinding method described above cannot be said to be preferable for mass production since many alloys cannot be ground at once. On the other hand, in the mechanical pulverization method, the pulverized hydrogen storage alloy is active and easily reacts with oxygen. Therefore, it has been proposed that the pulverization is performed in an organic solvent or an aqueous alkaline solution in an inert atmosphere to suppress the oxidation of the alloy surface (for example, see JP-A-63-141258).
However, pulverization in an inert atmosphere is not preferable in the electrode manufacturing process because the apparatus becomes large and is subject to various restrictions. In addition, pulverization in an organic solvent involves difficulty in handling the organic solvent and is dangerous, so it can be said that it is preferable to use an alkaline aqueous solution.

ところが、アルカリ水溶液中で水素吸蔵合金を粉砕す
ると、合金が解け出し易く、合金の特性を低下させると
いう新たな問題が生じてきた。
However, when the hydrogen storage alloy is pulverized in an alkaline aqueous solution, a new problem arises in that the alloy is easily melted and the properties of the alloy are reduced.

(ハ) 発明が解決しようとする課題 本発明は、水素吸蔵合金粉砕時における合金の溶出及
び合金表面の電池特性を低下させるような過度の酸化を
抑制するものである。
(C) Problems to be Solved by the Invention The present invention is to suppress elution of alloy during pulverization of a hydrogen storage alloy and excessive oxidation that deteriorates battery characteristics of the alloy surface.

また、粉砕時に表出した水素吸蔵合金表面を、電極製
造工程に亘って電池特性を劣化させるような過度の酸化
から抑制しようとするものである。
Another object of the present invention is to suppress the surface of the hydrogen storage alloy exposed at the time of pulverization from excessive oxidation that deteriorates battery characteristics throughout the electrode manufacturing process.

更には、電極の量産化に際して、安全でしかも簡易に
実施しうるアルカリ蓄電池用水素吸蔵合金電極の製造方
法を提案するものである。
Further, the present invention proposes a method of manufacturing a hydrogen storage alloy electrode for an alkaline storage battery which is safe and easy to implement when mass-producing the electrode.

(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用水素吸蔵合金電極の製造方
法は、水中で、水素吸蔵合金を粉砕する粉砕工程を有す
ることを特徴とするものである。
(D) Means for Solving the Problems The method for producing a hydrogen storage alloy electrode for an alkaline storage battery of the present invention is characterized by including a pulverizing step of pulverizing the hydrogen storage alloy in water.

そして前記粉砕工程後の水素吸蔵合金の平均粒径を、
3μm以上とするのが好ましい。
And the average particle size of the hydrogen storage alloy after the pulverizing step,
The thickness is preferably 3 μm or more.

(ホ) 作用 本発明の如く、水中で、水素吸蔵合金を粉砕すること
により、水素吸蔵合金粒子の表面が酸化され、酸化膜が
形成される。この酸化膜は、過度の酸化によって形成さ
れるような電池特性を低下させるものではなく、ポーラ
スである。したがって、このような水素吸蔵合金粉末を
用い、金属−水素アルカリ蓄電池の負極を構成した場
合、前記ポーラスな酸化膜中を水酸イオンが拡散しやす
く、サイクル初期の充放電特性が改善される。
(E) Function As described in the present invention, by crushing the hydrogen storage alloy in water, the surfaces of the hydrogen storage alloy particles are oxidized, and an oxide film is formed. This oxide film does not deteriorate battery characteristics as formed by excessive oxidation, but is porous. Therefore, when a negative electrode of a metal-hydrogen alkaline storage battery is formed using such a hydrogen storage alloy powder, hydroxyl ions are easily diffused in the porous oxide film, and the charge / discharge characteristics in the initial cycle are improved.

また本発明においては、水を用いているので、電池反
応に悪影響を与える各種イオンが存在せず、除去する必
要もないので電極製造工程上、優れたものであると言え
る。
In addition, in the present invention, since water is used, there are no various ions that adversely affect the battery reaction, and there is no need to remove them.

(ヘ) 実施例 水素吸蔵合金として、高周波溶解炉を用いることによ
り作製した組成式MmNi3Co1.4Mn0.6のものを用い、最初
に40メッシュアンダーまで機械的に粉砕する。次に、こ
の粉末を、ボールミルによる水中粉砕(粉砕工程)及び
ジェットミルによる乾式粉砕により、平均粒径20μmの
水素吸蔵合金の粒子を得た。
(F) Example As a hydrogen storage alloy, one having a composition formula of MmNi 3 Co 1.4 Mn 0.6 produced by using a high frequency melting furnace is first mechanically pulverized to under 40 mesh. Next, the powder was subjected to underwater pulverization with a ball mill (pulverization step) and dry pulverization with a jet mill to obtain hydrogen storage alloy particles having an average particle diameter of 20 μm.

この2種の水素吸蔵合金粒子の表面酸化膜について、
解析を行った。この方法は、ESCAによる分析方法を用い
た。そして、前記水中粉砕及び乾式粉砕によって得られ
た粒子の、最表面のO1s電子の化学シフトを調べた。こ
の結果を、第1図に示す。
Regarding the surface oxide films of these two kinds of hydrogen storage alloy particles,
Analysis was performed. This method used an analysis method by ESCA. Then, the chemical shift of O 1 s electrons on the outermost surface of the particles obtained by the underwater pulverization and the dry pulverization was examined. The result is shown in FIG.

第1図より、水中粉砕を行った水素吸蔵合金では、水
酸化物の状態でのO原子が多く観測され、酸化物と思わ
れれるO原子が少ない。これに対し、乾式粉砕を行った
水素吸蔵合金粉末では、酸化物の状態でのO原子も、か
なりの量認めることができる。これより、水中粉砕によ
って得た水素吸蔵合金粉末に形成される表面酸化物の最
表面は、乾式粉砕によって得たものに比べ、水酸化物の
占める割合が多いことがわかる。
From FIG. 1, in the hydrogen storage alloy that has been pulverized in water, a large number of O atoms in the state of hydroxide are observed, and a small number of O atoms are considered to be oxides. On the other hand, in the hydrogen-absorbing alloy powder that has been subjected to the dry pulverization, a considerable amount of O atoms in an oxide state can be recognized. From this, it can be seen that the proportion of hydroxide on the outermost surface of the surface oxide formed on the hydrogen storage alloy powder obtained by underwater pulverization is larger than that obtained by dry pulverization.

次に、それぞれの粉砕方法により得た水素吸蔵合金粒
子を用い、ここにPTFE粉末を5重量%加えてペーストを
作製し、ニッケルメッシュに圧着して水素吸蔵合金電極
とした。このようにして作製した電極を、電極容量が10
00mAhのニッケル正極と組み合わせて、30重量%KOH水溶
液を用いて、密閉型のニッケル−水素電池を作製した。
これらの電池各10個を用い、組み立て後の1サイクル目
の放電容量試験を行った。この時の条件は、電池を200m
Aの電流値で7時間充電し、1時間放置後、200mAで電池
電圧が1.0Vに達するまで放電するというものである。そ
して、各10セルずつの平均値を求めた。この結果を、第
1表に示す。
Next, the hydrogen storage alloy particles obtained by the respective pulverization methods were used, and a paste was prepared by adding 5% by weight of PTFE powder thereto, and pressed to a nickel mesh to obtain a hydrogen storage alloy electrode. The electrode manufactured in this manner was used with an electrode capacity of 10
A sealed nickel-hydrogen battery was fabricated using a 30 wt% KOH aqueous solution in combination with a nickel positive electrode of 00 mAh.
Using each of these 10 batteries, a discharge capacity test in the first cycle after assembly was performed. The condition at this time is that the battery is 200m
The battery is charged at the current value of A for 7 hours, left for 1 hour, and discharged at 200 mA until the battery voltage reaches 1.0 V. Then, an average value was determined for each of the 10 cells. The results are shown in Table 1.

第1表より、水中粉砕により得た水素吸蔵合金を用い
た本発明に係る電池は、870mAhと高い電池容量が得られ
ることがわかる。一方、乾式粉砕を行ったものは、530m
Ahの電池容量しか得られない。このように水中粉砕を行
って得た水素吸蔵合金電極を備えた電池が、乾式粉砕を
行ったものに比べて、初期の電気化学容量が大きいこと
がわかる。この容量の差異は、水素吸蔵合金表面に形成
された酸化膜の形態の相異に起因するものである。そし
て、水中粉砕によって生成せる水酸化物の占める割合が
大きい酸化膜の方が、ポーラスであるので乾式粉砕によ
って生成せる酸化膜に比べて、充放電反応に必要なH2O
やOH-の拡散が容易にあると推定され、これが放電容量
の差異となって表れたものである。
Table 1 shows that the battery according to the present invention using the hydrogen storage alloy obtained by underwater pulverization has a high battery capacity of 870 mAh. On the other hand, 530m
Only Ah battery capacity can be obtained. Thus, it can be seen that the battery provided with the hydrogen storage alloy electrode obtained by underwater pulverization has a larger initial electrochemical capacity than that obtained by dry pulverization. This difference in capacity is due to the difference in the form of the oxide film formed on the surface of the hydrogen storage alloy. Oxide films with a larger proportion of hydroxide generated by underwater pulverization are more porous and therefore require more H 2 O for charge / discharge reactions than oxide films generated by dry pulverization.
And OH - spread is estimated to be easy, but this is appeared in a difference in discharge capacity.

次に、水中粉砕またはアルカリ水溶液(pH=12)中で
の粉砕を行った水素吸蔵合金の、平均粒径と電池組み立
て後の1サイクル目の電池容量との関係について調べ
た。
Next, the relationship between the average particle diameter of the hydrogen storage alloy that was pulverized in water or pulverized in an alkaline aqueous solution (pH = 12) and the battery capacity in the first cycle after battery assembly was examined.

この結果を、第2図に示す。 The result is shown in FIG.

第2図より、水中粉砕を行って得た水素吸蔵合金電極
を備えた本発明に係る電池の方が、アルカリ水溶液中で
の粉砕を行ったものに比べて、電池容量が大きいことが
理解される。そして水素吸蔵合金の平均粒径が34μm以
下のものにおいて、前記傾向が著しいことがわかる。
From FIG. 2, it is understood that the battery according to the present invention provided with the hydrogen-absorbing alloy electrode obtained by pulverization in water has a larger battery capacity than that of the battery pulverized in an alkaline aqueous solution. You. It can be seen that the above tendency is remarkable when the average particle size of the hydrogen storage alloy is 34 μm or less.

また水中粉砕を行ったものにおいて水素吸蔵合金の平
均粒径について検討してみると、平均粒径3μm以上の
ものが1サイクル目から800mAhと高い容量を出すことが
でき、特に本発明の製造方法上適するものであると言え
る。
In addition, when the average particle size of the hydrogen storage alloy is examined in underwater pulverization, those having an average particle size of 3 μm or more can provide a high capacity of 800 mAh from the first cycle, and particularly the production method of the present invention. It can be said that it is suitable.

一方、アルカリ水溶液中での粉砕を行ったものは、ア
ルカリ水溶液が水素吸蔵合金を腐食し易く、合金の平均
粒系が小さくなるに従い、より一層腐食が進行する。し
たがって、第2図に示す如く、アルカリ水溶液中での粉
砕を起ったものは、合金の平均粒径が小さくなるのにと
もない、電池容量が小さくなると考えられる。
On the other hand, in the case of pulverization in an alkaline aqueous solution, the alkaline aqueous solution easily corrodes the hydrogen storage alloy, and the corrosion further progresses as the average grain system of the alloy becomes smaller. Therefore, as shown in FIG. 2, it is considered that the battery capacity of the alloy which has been pulverized in the alkaline aqueous solution decreases as the average particle diameter of the alloy decreases.

以上、本実施例では、ボールミルによる水中粉砕の例
について示したが、粉砕方法については水中での粉砕で
あればどのような方法においても、表面に形成される酸
化膜は同様にポーラスであると考えられる。
As described above, in the present embodiment, an example of underwater pulverization by a ball mill has been described, but the pulverization method is any method as long as it is pulverization in water, and the oxide film formed on the surface is similarly porous. Conceivable.

また水素吸蔵合金としてMmNi3Co1.4Mn0.6を用いた
が、これ以外のMmNi5,MmNi2Co3等の希土類系水素吸蔵合
金、Ti−Ni系水素吸蔵合金、Ti−Mn系水素吸蔵合金、Ti
−Fe系水素吸蔵合金、Mg−Ni系水素吸蔵合金、Ti−Zr系
水素吸蔵合金、Zr−Mn系水素吸蔵合金等を用いることが
できるのは言うまでもない。
Although MmNi 3 Co 1.4 Mn 0.6 was used as the hydrogen storage alloy, other rare earth hydrogen storage alloys such as MmNi 5 and MmNi 2 Co 3 , Ti-Ni hydrogen storage alloy, Ti-Mn hydrogen storage alloy, Ti
Needless to say, a Fe-based hydrogen storage alloy, a Mg-Ni-based hydrogen storage alloy, a Ti-Zr-based hydrogen storage alloy, a Zr-Mn-based hydrogen storage alloy, or the like can be used.

(ト) 発明の効果 本発明のアルカリ蓄電池用水素吸蔵電極の製造方法に
よれば、水素吸蔵合金を水中で粉砕しているので、合金
の溶出及び過度の酸化を抑制することができる。その結
果、かかる電極を用いた電池の初期の放電特性を向上し
るとともに、電極製造工程上簡易に実施しうるものであ
り、その工業的価値は極めて大きい。
(G) Effects of the Invention According to the method for producing a hydrogen storage electrode for an alkaline storage battery of the present invention, the hydrogen storage alloy is pulverized in water, so that elution of the alloy and excessive oxidation can be suppressed. As a result, the initial discharge characteristics of a battery using such an electrode can be improved, and the battery can be easily implemented in an electrode manufacturing process, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は水素吸蔵合金表面のESCAによる解析結果図、第
2図は、水素吸蔵合金の平均粒径と電池容量との関係を
示す図である。
FIG. 1 is a diagram showing the results of ESCA analysis of the surface of the hydrogen storage alloy, and FIG. 2 is a diagram showing the relationship between the average particle size of the hydrogen storage alloy and the battery capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀岡 誠司 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 田所 幹朗 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Seiji Kameoka 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Mikiro Tadoko 2--18 Keihanhondori, Moriguchi-shi, Osaka Yo Electric Co., Ltd.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水中で、水素吸蔵合金を粉砕する粉砕工程
を有することを特徴とするアルカリ蓄電池用水素吸蔵合
金電極の製造方法。
1. A method for producing a hydrogen storage alloy electrode for an alkaline storage battery, comprising a pulverizing step of pulverizing a hydrogen storage alloy in water.
【請求項2】前記粉砕工程後の水素吸蔵合金の平均粒径
が3μm以上であることを特徴とする請求項(1)記載
のアルカリ蓄電池用水素吸蔵合金電極の製造方法。
2. The method for producing a hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein the average particle size of the hydrogen storage alloy after the pulverizing step is 3 μm or more.
JP1127302A 1989-05-19 1989-05-19 Method for producing hydrogen storage alloy electrode for alkaline storage battery Expired - Lifetime JP2645889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1127302A JP2645889B2 (en) 1989-05-19 1989-05-19 Method for producing hydrogen storage alloy electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1127302A JP2645889B2 (en) 1989-05-19 1989-05-19 Method for producing hydrogen storage alloy electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH02306541A JPH02306541A (en) 1990-12-19
JP2645889B2 true JP2645889B2 (en) 1997-08-25

Family

ID=14956593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127302A Expired - Lifetime JP2645889B2 (en) 1989-05-19 1989-05-19 Method for producing hydrogen storage alloy electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2645889B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1073135A2 (en) 1999-07-30 2001-01-31 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy powder for use in the negative electrodes of alkaline rechargeable batteries and process for producing same
US6387148B1 (en) 1999-07-30 2002-05-14 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy compact for use as the negative electrode of an alkaline rechargeable battery
JP7013782B2 (en) * 2016-12-27 2022-02-01 株式会社豊田自動織機 Manufacturing method of hydrogen storage alloy powder

Also Published As

Publication number Publication date
JPH02306541A (en) 1990-12-19

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2024023286A (en) Manufacturing method of hydrogen storage material
JP3201247B2 (en) Sealed alkaline storage battery
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0580106B2 (en)
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP7333358B2 (en) Nickel metal hydride storage battery
JP2828680B2 (en) Hydrogen storage alloy electrode
JP2692936B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
EP0641032A1 (en) Hydrogen-occlusion-alloy electrode
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP3043143B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2919544B2 (en) Hydrogen storage electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3519836B2 (en) Hydrogen storage alloy electrode
JP3322415B2 (en) Metal-hydrogen alkaline storage battery and method of manufacturing the same
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13